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Supplementary Materials for “A Likelihood Based Approach to
Distribution Regression Using Conditional Deep Generative

Models”

A ADDITIONAL NUMERICAL RESULTS

A.1 NUMERICAL RESULT FOR REAL DATA

We utilized the widely used MNIST dataset for two purposes: to demonstrate the generalizability of
our approach to a benchmark image dataset where the intrinsic dimension d is much lesser than the
ambient dimension D = 784 and to underscore the effectiveness of sparse networks as outlined in
Lemma 4.1 and Corollary 1.1.

For the fully connected architecture, we set renc = (10 + 784, 512, 2) for µϕ and Σϕ, and rdec =
(10 + 2, 512, 784) for g. For the sparse architecture, we use renc = (10 + 784, 608, 432, 256, 2) for
µϕ and Σϕ, and rdec = (10 + 2, 256, 432, 608, 784) for g. The input dimension of 10 for both the
encoder and decoder corresponds to the one-hot encoding of the labels. We employ a batch size of
64 with a learning rate of 10−3.

Figure 2 presents a visual comparison between real and generated images, organized according to
their respective labels. The real images were randomly sampled from the training set along with their
corresponding labels, while the generated images were produced using these labels (conditions) and
random seeds.

Figure 2: MNIST images: real images (left panel), generated images with sparse architecture (cen-
tral panel), and generated images with fully connected architecture (right panel)

This MNIST example highlights a case where the intrinsic dimension is significantly smaller than
the ambient data dimension. This example serves to validate the proposed methodology in high-
dimensional settings.

A.2 ADDITIONAL NUMERICAL RESULTS FOR DISTRIBUTIONS ON MANIFOLD

We extended our analysis to examine how the empirical W1 distance varies with sample size, while
keeping the noise level fixed at σ∗ = 0.01. Below is a summary table showing the median empirical
Wasserstein distances for different sample sizes. The experimental setup remains consistent with the
manifold case described in the Section 3.
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Table 2: Empirical Wasserstein distance W1 (median) for different sample sizes

Sample Size Two Moon (σ∗ = 0.01) Ellipse (σ∗ = 0.01)
4000 0.251 0.295

6000 0.232 0.285

7000 0.216 0.271

8000 0.214 0.253

9000 0.212 0.259

10000 0.196 0.251

While extracting exact rates through simulation can be challenging, the results in the table validate
the large-sample properties for manifolds. These empirical findings align well with the theoretical
expectations, further confirming the consistency and convergence trends of our framework.

B NOTATION

We denote a∨ b and a∧ b as the maximum and minimum of two real numbers a and b, respectively.
The notation ⌈a⌉ represents the smallest integer greater than or equal to a. The inequality a ≲ b
indicates that a is less than or equal to b up to a multiplicative constant. When we write a ≲log b,
it means that a is less than or equal to b up to a logarithmic factor, specifically log(n). We denote
a ≍ b when both a ≲ b and b ≲ a hold. For vector norms, | · |p represents the ℓp norm, while ∥ · ∥p
denotes the Lp-norm of a function for 1 ≤ p ≤ ∞. Lastly, Bϵ(u) signifies the Euclidean open ball
with radius ϵ centered at u.

We use the multi-index notation through the main paper and the appendix. Denote N as the
set of natural numbers and N0 as N ∪ {0}. For a vector x ∈ Rr, we denote the components
as x = (x(1), . . . , x(r)). Given a function f : D ⊂ Rr → R, the operator is defined as
∂α := ∂α(1)

. . . ∂α(r)

with α ∈ Nr
0, where ∂α(j)

f := ∂α(j)

f(x)/∂x(j). For α ∈ Nr
0, the ex-

pression |α| =
∑r

j=1 |α(j)|. Given a function f(·, ·) : D × D′ ⊂ Rr × Rr′ → R, we de-

note the operator ∂α+α′ := ∂α(1)

. . . ∂α(r)

∂α
(1)
′ . . . ∂α

(r′)
′ , with α ∈ Nr

0 and α′ ∈ Nr′
0 , where

∂α(j)

f(x,y) = ∂α(j)

f(x,y)/∂α(j)

x(j) and ∂α
(j)
′ f(x,y) = ∂α

(j)
′ f(x,y)/∂y(j), with x ∈ D and

y ∈ D′. This notation allows us to represent the derivative with variable x and y separately through
the vector α and α′ which is required to tackle the smoothness disparity along x and y variable. The
β−Hölder class functions are defined as

Hβ
r (D,M) =

{
f : D ⊂ Rr → R :∑

α:|α|<β

∥∂αf∥∞ +
∑

α:|α|=⌊β⌋

sup
u1,u2∈D
u1 ̸=u2

|∂αf(u1)− ∂αf(u2)|
|u1 − u2|β−⌊β⌋

∞
≤ M

}
,

(15)

We extend this definition to include the Hölder class of functions with differences in smoothness
(smoothness disparity) along two variables. This class is defined as

Hβ,β′
r,r′ (D,D′,M) =

{
f(·, ·) : D ×D′ ⊂ Rr × Rr′ → R :∑

α:|α|<β
α′:|α′|<β′

∥∂α+α′f∥∞ +
∑

α:|α|=⌊β⌋
α′:|α′|=⌊β′⌋

sup
u1,u2∈DX
v1,v2∈DY
u1 ̸=u2
v1 ̸=v2

|∂α+α′f(v1,u1)− ∂α+α′f(v2,u2)|
|u1 − u2|β−⌊β⌋

∞ ∨ |v1 − v2|β′−⌊β′⌋
∞

≤ M
}
.

(16)
We denote Hβ

r (D) = ∪M>0Hβ
r (D,M) and Hβ,β′

r,r′ (D,D′) = ∪M>0Hβ,β′
r,r′ (D,D′,M).
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C MORE ON SMOOTH CONDITIONAL DENSITY

Theorem 4 (Villani et al. (2009) Theorem 12.50). Suppose that

(i) A1 and A2 are uniformly convex, bounded, open subsets of Rd with C⌊β⌋+2 (continuously
differentiable up to order ⌊β⌋+ 2) boundaries,

(ii) h1 ∈ Hβ(A1) and h2 ∈ Hβ(A2) for some β > 0, are probability densities bounded above
and below.

Then, there exists a unique map (up to an additive constant) g : A1 → A2 with g ∈ Hβ+1(A1),
such that if U ∼ h1 then g(U) ∼ h2.

Proof of Lemma 2. Given that Z and X is independent, the product measure on Z × X is pZµ
∗
X .

Following the smoothness from pZ and µ∗
X , the map pZ(·)µ∗

X(·) ∈ Hmin{βZ ,βX}(Z × X ).
This implies that pZ(·)µ∗

X(·) ∈ Hmin{βZ ,βX ,βQ}(Z × X ). Again q∗ ∈ HβQ(Y) implies q∗ ∈
Hmin{βZ ,βX ,βQ}(Y). The result now follows directly from Theorem 4.

Many of the problems in the conditional setting have an analog in the joint setup. Our proposed
approach has a direct statistical extension to this setup. The sufficiency of such extension follows
from the observation in the subsequent Lemma 3 which is based on Lemma 2.1 and Lemma 2.2 of
Zhou et al. (2022) (see also Theorem 5.10 of Kallenberg (1997)).

Lemma 3 (Noise Outsourcing Lemma). Let (Y,X) ∈ Y ×X with joint distribution PY,X . Suppose
Y is standard Borel space, then there exists Z ∼ N(0, Im) for any given m ≥ 1, independent of X ,
and a Borel measurable function G : Rm ×X → Y such that

(X,G(Z,X)) ∼ (Y,X). (17)

Moreover, the condition (17) is equivalent of

G(Z, x) ∼ PY |X=x.

D MORE ON CONDITIONAL DISTRIBUTION ON MANIFOLDS

Suppose (Y, φ) is the single chart covering Y , where φ : B1(0d∗) → Y is a homeomorphism. We
assume that φ ∈ Hβmin+1, and that infu∈B1(0d∗ )

|Jφ(u)| is bounded below by a positive constant,
where

|Jφ(u)| =

√
det

(
∂φ

∂u⊤
∂φ

∂u

)
is the Jacobian determinant of φ.

Note that when d∗ < D, the distribution Q∗ cannot possess a Lebesgue density because of the
singularity of Y . We, therefore consider a density with respect to the d∗−dimensional Hausdorff
measure in RD, denoted by Hd∗ . Suppose that Q allows the Radon-Nikodym derivative q with
respect to Hd∗ . We further assume that q is bounded from above and below and that q ◦ φ ∈ Hβmin .
Then by change of variable formula, the Lebesgue density of Q̃, the push-forward measure on
B1(0d∗) through the map φ−1, is given as

q̃(u) = q(φ(u))|Jφ(u)|.

Following the assumptions on the Jacobian determinant and φ ∈ Hβmin+1, it follows that |Jφ(u)|
is bounded from above and below, and the map u 7→ |Jφ(u)| belongs to Hβmin . Therefore, q̃ is
bounded above and below, belongs to Hβmin(B1(0d∗)). By Lemma 2, assuming βmin ≤ βZ ∧ βX ,
there exists g ∈ Hβmin+1 such that Q̃ = Qg . Thus, we have Q = Qφ◦g , where φ ◦ g : Z ×X → Y .
Following Lemma 4, it is possible to find the appropriate neural network approximating them.

Suppose Y is covered by the charts {(Uk, φk)}Kk=1, with 1 < K < ∞, where φk : B1(0d∗) → Uk

is a homeomorphism. As before, we assume φk ∈ Hβmin+1, |Jφk
(u)| is bounded below by a
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positive constant, Q possesses density q with respect to Hd∗ that is bounded above and below, and
that q ◦ ϕk ∈ Hβmin . Let Qk(·) = Q(·)/Q(Uk) be the normalized measure of Q over Uk.

We denote qk as the corresponding density with respect to Hd∗ . For u ∈ Uk ∩ Uℓ, qk(u)Q(Uk) =
qℓ(u)Q(Uℓ) = q(u) holds due to the measure Q(·) being compatible with the charts. This is ensured
because the densities Q(Uk)qk(·) and Q(Uℓ)qℓ(·) are consistent and align with the measure Q over
the overlapping regions of the charts. This compatibility is essential for constructing a coherent
global measure from local chart densities.

A compact manifold Y can be covered by a finite partition of unity {τk, k = 1, . . . ,K}, each
sufficiently smooth (Lee, 2012). By definition, each function in this partition satisfies τk(u) = 0

for u /∈ Uk and
∑K

k=1 τk(u) = 1 for all u ∈ Y . Given that q(u) = Q(Uk)qk(u) for each k and
u ∈ Uk, we can express q(u) as:

q(u) =

K∑
k=1

Q(Uk)τk(u)qk(u).

To normalize, let ck =
∫
τk(u)dQk(u) and define q′k(u) = τk(u)qk(u)/ck. Thus, we can rewrite

q(u) as:

q(u) =

K∑
k=1

πkq
′
k(u),

where πk = ckQ(Uk). This formulation reveals that q is a mixture of the component densities q′k(u),
weighted by πk. This mixture approach ensures compatibility across different charts, providing a
unified density representation over the entire manifold Y .

Since q′k is sufficiently smooth, we can construct a mapping gk : Ṽ → Y such that Q′
k is the

distribution of gk(Ṽ ), supported on Uk, where Ṽ is a uniformly convex set in Rd∗ , and Ṽ follows a
uniform distribution on Ṽ . Next, construct a disjoint partition of the interval (0, 1) into K intervals
I1, . . . , IK with lengths π1, . . . , πK , where Ik = [

∑k−1
i=1 πi,

∑k
i=1 πi]. Define hk as the indicator

function on the interval Ik, i.e., hk(u) = 1 if u ∈ Ik and 0 otherwise. For a random variable U
following Uniform(0, 1), it follows that PU(hk(U) = 1) = πk, and PU(hk(U) = 0) = 1 − πk.
Now, define v = (u, ṽ), where u ∼ Uniform(0, 1) and v ∼ Uniform(Ṽ). Using this, construct
g(v) =

∑K
k=1 hk(u)gk(v). It is straightforward to observe that Q = Qg , as the partitioning through

hk ensures that the measure is correctly matched to each gk, and gk ensures that the restricted
distributions Q′

k are appropriately supported on Uk.

From an approximation perspective, the indicator functions hk and the localized generators can be
effectively approximated using ReLU neural networks. This also holds for their products and further
linear combinations. For details on such constructions, one may refer to Schmidt-Hieber (2019) for
sparse neural networks and Kohler et al. (2023) for dense neural networks.

It is important to note that we do not guarantee the regularity of the gk maps, as they are not neces-
sarily lower bounded. However, the partition of unity maps τk vanish only at the boundary of Uk.
This property may allows for the construction of sufficiently smooth maps. For the multiple-chart
case, we rely on more stringent results, such as Brenier’s Theorem (see, for example, Villani et al.
(2009)) or the Noise Outsourcing Lemma (Lemma 3), to ensure the existence of the transport maps.
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E PROOF OF LEMMA 1

Proof. For g1(·|x), g2(·|x) ∈ F with ∥|g1 − g2|∞∥∞ ≤ η1. Then
pg1,σ(y|x)− pg2,σ(y|x)

=

∫
ϕσ(y − g1(x, z))

(
1− ϕσ(y − g2(x, z))

ϕσ(y − g1(x, z))

)
dPZ(z)

=

∫
ϕσ(y − g1(x, z))

(
1− exp

{
−|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

})
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|y − g2(x, z)|22 − |y − g1(x, z)|22

2σ2

)
dPZ(z) (18)

=

∫
ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22 − 2(y − g1(x, z))

T (g2(x, z)− g1(x, z))

2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))

(
|g2(x, z)− g1(x, z)|22

2σ2
+

2|y − g1(x, z)|1|g2(x, z)− g1(x, z)|∞
2σ2

)
dPZ(z)

≤
∫

ϕσ(y − g1(x, z))
2KDη1
2σ2

dPZ(z) +
2η1
2σ2

∫
|y − g1(x, z)|1ϕσ(y − g1(x, z))dPZ(z) (19)

≤2KDη1
2σ2

1(√
2πσ2

)D +
η1
σ2

∫ √
D

2πe

1

(
√
2πσ2)D−1

dPZ(z) (20)

≤c1(K,D)σ
−(D+2)
min η1. (21)

For the last line, we use the fact that σmin ≤ 1. The inequality at (18) follows from e−x ≥ (1− x).
The ones at (19) follows using

|g2(x, z)− g1(x, z)|22 ≤ 2K|g2(x, z)− g1(x, z)|1 ≤ 2KD|g2(x, z)− g1(x, z)|∞
≤ 2KD∥|g1 − g2|∞∥∞ ≤ 2KDη1

and |g2(x, z)−g1(x, z)|∞ ≤ η1. The change at (20) follows from ϕσ(y−g1(x, z)) ≤
(√

2πσ2
)−D

and the bound

|v|1ϕσ(v) ≤
√

D

2πe

1

(
√
2πσ2)D−1

.

Now for σ1, σ2 ∈ [σmin, σmax] with |σ1 − σ2| ≤ η2. It holds that
∣∣σ−2

1 − σ−2
2

∣∣ ≤
σ−2
1 σ−2

2 (σ1 + σ2) η2 and
∣∣∣log (σ2

σ1

)∣∣∣ ≤ η2

min{σ1,σ2} . We have

pg,σ1
(y|x)− pg2,σ2

(y|x)

=

∫
ϕσ1(y − g(x, z)

(
1−

(
σ1

σ2

)D

exp

{
|y − g(x, z)|22

2

(
1

σ2
1

− 1

σ2
2

)})
dPZ(z)

≤
∫

ϕσ1(y − g(x, z)

[
|y − g(x, z)|22

2

(
1

σ2
2

− 1

σ2
1

)
−D log

(
σ1

σ2

)]
dPZ(z) (22)

≤
∫

ϕσ1(y − g(x, z)

[
|y − g(x, z)|22

2

(
σ1 + σ2

σ2
1σ

2
2

)
η2 +

Dη2
min{σ1, σ2}

]
dPZ(z)

≤ 1

(
√

2πσ2
1)

D

σ1 + σ2

eσ2
2

η2 +
1(√

2πσ2
1

)D Dη2
min{σ1, σ2}

(23)

≤c2(D)σ
−(D+1)
min η2. (24)

The (22) follows from 1 − e−α ≤ α. The change at (23) follows from ϕσ1
(y − g(x, z)) ≤(√

2πσ2
1

)−D

and

|v|22ϕσ(v) ≤
σ2

(
√
2πσ2)D

2

e
.
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Let ε > 0. Let {g1, . . . , gN1
} be η1−covering of F and {σ1, . . . , σN2

} be η2−covering of
[σmin, σmax] with respect to ∥| · |∞∥∞ and | · |∞. By (21) and (24), η1 = c−1

1 σD+2
min ε/4 and

η2 = c−2
2 σD+1

min ε/4 implies{
Pgi,σj (·|·) : i = 1, . . . , N1, j = 1, . . . , N2

}
forms an ε/2−covering for P with respect to ∥ · ∥∞. Denote the envelope function of F

H(y, x) = sup
p∈P

p(y|x) ≤ 1

(2πσ2
min)

−D/2
exp

{
−|y|22 − 4K2D

4σ2
max

}

= eK
2D/2σ2

max2D/2

(
σmax

σmin

)D

ϕ√
2σmax

(y).

Following from
∫
|y|∞>t

ϕσ(y)dy ≤ 2De−t2/2σ2

, we have∫ ∫
|y|∞>B

H(y, x)µ(y, x)dydx =

∫ (∫
|y|∞>B

H(y, x)µ(y|x)dy

)
µ∗
X(x)dx < ε,

where

B = 2σmax

(
log

1

ε
+D log

σmax

σmin
+

K2D

2σ2
max

+ log 2D

)1/2

.

For each (i, j) define
lij(y, x) = max

{
pgi,σj (y, x)− ε/2, 0

}
and uij(y, x) = min

{
pgi,σj (y, x) + ε/2, H(y, x)

}
.

It follows that ∫ ∫
{uij(y, x)− lij(y, x)}µ∗

X(x)dydx

≤
∫ ∫

|y|∞≤B

εµ∗
X(x)dydx+

∫ ∫
|y|∞>B

H(y, x)µ∗
X(x)dydx

≤
{
(2B)D + 1

}
ε.

(25)

Denote δ2 :=
{
(2B)D + 1

}
. With d2H(uij , lij) ≤ d1(uij , lij), we have

N[](δ,P, dH) ≤ N[](δ
2,P, d1) ≤ N1N2 ≤ σmax − σmin

η2
N (η1,F , ∥| · |∞∥∞). (26)

It is possible to write

δ2 = ε ≤ C1(σmax, D)

[
ε(log ε−1)D/2 + εC2(K) + ε

(
log

σmax

σmin

)D/2
]
,

where C1(σmax, D) and C2(K) is a constant. There exists small enough ε∗(D) such that for all
ε ∈ (0, ε∗]

δ2 ≤ C3(σmax, D,K)
√
ε

(
log

σmax

σmin

)D/2

.

Consequently, there exists δ∗ = δ∗(D), such that for all δ ≤ δ∗, we have

C2
3 (σmax,K,D)δ4

(
log

σmax

σmin

)−D

≤ ε.

It lead us to, for all δ ≤ δ∗

η1 ≥ c−1
1 C2

3σ
D+3
min δ4

σmin{log(σmax/σmin)}D
≥ cσD+3

min δ4, (27)

where c(σmax,K,D) is a constant. We use the fact that σmin{log(σmax/σmin)}D is bounded above
by some constant depending only upon σmax as σmin ≤ 1. Similar to (27), it is possible to write for
all δ > δ∗

η2 ≥ c′σD+2
min δ4, for all δ ≤ δ∗, (28)

where c′(σmax,K,D) is some constant.

The result now follows directly (28) and (27) with (26).
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F PROOF OF THEOREM 1

Proof. Choose four absolute constants c1, . . . , c4 as in Theorem 1 of Wong and Shen (1995). Define
c and C in the statement of Lemma 1. The proof closely follows Chae et al. (2023). We have therein
the proof of Theorem 3 that∫ √

2ε

ε2/28

√
logN[](δ/c3,P, dH)dδ

≤
√
2ε

√
ξA+ (D + 3)(s+ 1) log σ−1

min + c5ξ +
√
2ε
√

4(ξ + 1)
√
log(28/ε2),

(29)

for every ε ≤
√
2 ≤ c3δ∗/

√
2, where c5 = c5(c, C, c3). Observe that c4

√
nε2n is upper bound to

(29) and Eq. (3.1) of Wong and Shen (1995) is satisfied.

Using B.12 of Ghosal and van der Vaart (2017), we have

K(pG∗,σ∗ , pg,σ∗) ≤
∫ ∫

K
(
N
(
G∗(z, x), σ

2
∗
)
, N
(
g(z, x), σ2

∗
) )

µ∗
X(x) dx dPZ(z)

=

∫ ∫
|G∗(z, x)− g(z, x)|22

2σ2
∗

µ∗
X(x) dx dPZ(z) ≤

Dδ2approx
2σ2

∗
=: δn.

One may easily see that∫ (
log

ϕσ(x)

ϕσ(x− y)

)2

ϕσ(x)dx =

∫
|y|42 + 4|xT y|2

4σ2
ϕσ(x)dx ≤ |y|42

4σ2
+ |y|22

∫
|x|22
σ2

ϕσ(x)dx.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal and van der Vaart (2017),
we have ∫ ∫ (

log
pG∗,σ∗(y|x)
pg,σ∗(y|x)

)2

dP∗(y|x)µ∗
X(x)dx

≤
∫ ∫ ∫ (

log
ϕσ(y −G∗(z, x)

ϕσ(y −G(z, x)

)2

ϕσ(y −G∗(z, x)) dy dPZ(z)µ
∗
X(x)dx

≤
D2δ4approx

4σ2
∗

+Dδ2approx

∫
|x|22
σ2
∗
ϕσ∗(y)dy +

2Dδ2approx
σ2
∗

≤ c7
δ2approx
σ2
∗

=: τn,

where c7 = c7(D). We are using δn and τn, although they are independent of n, for notational
consistency with Theorem 4 of Wong and Shen (1995). Let ε∗n = εn∨

√
12δn. Then, using Theorem

4 of Wong and Shen (1995), we have

P∗ (dH(p̂, p∗) > εn) ≤ 5e−c2nε
∗2
n +

τn
nδn

= 5e−c2nε
∗2
n +

2c27
Dn

.

The proof is complete after redefining constants.

G PROOFS OF COROLLARY 1

Proof. For the sparse case in 1.1, utilizing the entropy bound from (10), we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.

Similarly for the fully connected case 1.2, utilizing the entropy bound from (11) , we observe that

ξ{A+ log(n/σmin)} ≍ δ−t∗/β∗
approx log3(δ−1

approx),

which naturally leads to the required convergence rate.
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H PROOF OF THEOREM 2

Proof. It is suffice to assume that ε and σ∗
√
log ε−1 are sufficiently small. If not, let ε +

σ∗
√
log ε−1 ≥ c0, where c0(K,D, r∗). Then Theorem 2 holds trivially by taking a large enough

constant depending just on D, K, and r∗.

Let V ∼ Q(·|X = x), V∗ ∼ Q(·|X = x), ϵ ∼ N(0D, σ2Id) and ϵ∗ ∼ N(0D, σ2
∗Id) be independent

with underlying probability density ν. We truncate the random variable ϵ and ϵ∗ componentwise
as (ϵK)j = max{−K,min{K, ϵj}} and (ϵ∗K)j = max{−K,min{K, (ϵ∗)j}} respectively. We

denote Pg,σ as P , Qg as Q, P̃ as distribution of V + ϵK and P̃∗ as the distribution of V∗ + ϵ∗K .

One may note that W1(P̃∗, Q∗) ≤ W2(P̃∗, Q∗) ≤
√

E
[
|ϵ∗K |22

]
≤
√
E
[
|ϵ∗|22

]
≤ σ∗

√
D. Similarly,

W1(P̃ , Q) ≤ σ
√
D. The ℓ1 diameter of [−2K, 2K]D, where the support of P̃ and P̃∗, is 4KD.

Observe that

W1

(
P̃∗, P̃

)
≤ 4KDd1

(
P̃∗, P̃

)
≤ 4KDd1(P∗, P ) ≤ 8KDdH(P∗, P ),

where the first inequality follows from Theorem 4 of Gibbs and Su (2002), the second inequality
follows from the fact the distance between two truncated distributions is always lesser than the
original distributions and the last inequality follows from d1 ≤ 2dH . Hence,

W1 (Q∗, Q) ≤ W2

(
Q∗, P̃∗

)
+W1

(
P̃∗, P̃

)
+W2

(
P̃ , Q

)
≤ σ∗

√
D + 8KDε+ σ

√
D.

Now it is suffice to show that σ ≤ c σ∗
√

log ε−1, where c = c(D,K, r∗) is a constant, because
we have assumed that ε is small enough. We establish this in the rest of the proof. Let t∗ =[
2σ2

∗ D log
(
2D
ε

)]1/2
. Observe that∫

|x|2>t∗

ϕσ∗(x)dx ≤
∫
|x|∞>t∗/

√
D

ϕσ∗(x)dx ≤ 2De−t2∗/2Dσ2

≤ ε.

Let Mt∗
∗ = M∗ ⊕ Bt∗(0D). We may write

1− P∗
(
Mt∗

∗
)
= ν

(
Y∗ + ϵ∗ /∈ Mt∗

∗
)
≤ ν (|ϵ∗|2 > t∗)

=⇒ P
(
Mt∗

∗
)
≥ 1− 2ε,

(30)

the implication in the last line follows from supB |P (B)− P∗(B)| ≤ dH(P, P∗) ≤ ε. For the sake
of contradiction, let σ ∈ [2t∗, r

∗/2] ∪ (r∗/2,∞) (t∗ is sufficiently small, from the assumption we
made at the beginning of this proof). If σ > r∗/2, then

2ε ≥ 1− P
(
Mt∗

∗
)
≥ 1− P

(
[−K,K]D

)
≥ c2(K,D, r∗)

where c2 is some positive constant. It is a contradiction following from the smallness of ε. Lets
make a claim that if σ ∈ [2t∗, r∗/2], then for every y ∈ RD, there is some z ∈ RD such that
|z − y|2 ≤ σ and Bσ/2(z) ∩Mt∗

∗ = ∅.

Following from the claim, we have

ν
(
Y + ϵ /∈ Mt∗

∗
∣∣Y = y

)
≥ ν

(
ϵ ∈ Bσ/2(z − y)

)
.

Since |z − y|2 ≤ σ, the right hand side is bounded below by a positive constant depending just on
D which is again a contradiction to (30). This proves the assertion made in the theorem.

The proof of the claim is divided into three cases. Let ρ (y,M∗) = inf{|y− y′|2 : y′ ∈ M∗} be the
ℓ2 set distance.

Case 1. ρ(y,M∗) ≥ σ : We may choose z = y.

Case 2. ρ(y,M∗) ∈ (0, σ) : Let y0 be the unique Euclidean projection of y onto M∗. Such a
unique projection exists because σ < r∗ is within the reach and y ∈ M∗, since M∗ is closed.
Suppose yt = y0 + t(y − y0). We shall define two continuous functions d0(t) = |yt − y0|2 and
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d(t) = ρ(yt,M∗). It is obvious that d(t) ≤ d0(t). For t ∈
[
0, 1 + σ/|y − y0|2

]
, d0(t) ≤ d(t)

because y0 is the unique projection for all the points that lie on the line segment including the farthest
point with t = 1 + σ/|y − y0|2. Otherwise, say d(t) = ρ(yt, z) and

|y − y0|2 = |y − yt|2 + |yt − y0|2 > |y − yt|+ |yt − z| ≥ |y − z|2
which contradicts y0 being a unique projection. The claim holds for the point z = y1+σ/|y−y0|2 . To
see this, observe |z−y| = σ and Bσ/2(z)∩Mt∗

∗ = ∅ because t∗ ≤ σ/2 and the ball Bσ/2(z) ⊂ Mr∗
∗

is within the reach of the manifold.

Case 3. ρ(y,M∗) = 0 : Because M∗ has empty interior, for all γ > 0, we always find a point yγ ,
which in Bγ(y) which away from M∗. For small enough γ, we reduce to case 2 by taking γ → 0,
the limit point of yγ has the required behavior.

I PROOF OF COROLLARY 2

Proof. The effective noise variance after the perturbation would be

σ̃∗ = n−α + n−β∗/2(β∗+t∗) ≍
{
n−α, α < β∗/{2(β∗ + t∗)}
nβ∗/2(β∗+t∗), otherwise.

Following this and the Theorem 2, for the rate we have

ε∗n + σ∗
√

log((ε∗n)
−1) ≍

(
n− β∗−t∗α

2β∗+t∗ + n−α
)
log2(n)

≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.

J PROOF OF THEOREM 3

Proof. With m = ⌈log2(n)⌉ and N =
(
n(β−1

Z d+β−1
X p)[1+α(β−1

Z d+β−1
X p)]/[2+β−1

Z d+β−1
X p]

)
in Theo-

rem 5, we can find a network G with the mentioned architecture such that
∥|G−G∗|∞∥∞ ≤ δapprox.

Following the entropy bound from (10), we have
logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(rL) + log δ−1}

≲ δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx

{
log
(
δ−1
approx log

(
δ−1
approx

))
+ log

(
δ−1
approx

)}
.

The rest directly follows from the Theorem 1

K APPROXIMATION PROPERTIES OF THE SPARSE AND FULLY CONNECTED
DNNS

The approximability of the sparse network is detailed in Lemma 4.1, which restates Lemma 5 from
Chae et al. (2023). For the fully connected network, Lemma 4.2 demonstrates its approximation
capabilities, derived directly from Theorem 2 and the proof of Theorem 1 in Kohler and Langer
(2021). Additionally, the inclusion of the class G in the fully connected setup is supported by the
discussion in Section 1 of Kohler and Langer (2020).
Lemma 4. Suppose that G∗ ∈ G. Then, for every small enough δ ∈ (0, 1),

1. there exists a sparse network G ∈ Fs = Fs (L, r, s,K ∨ 1) with L ≲ log δ−1, r ≲
δ−t∗/β∗ , s ≲ δ−t∗/β∗ log δ−1 satisfying ∥|G−G∗|∞∥∞ ≤ δ.

2. there exists a fully connected network G ∈ Fc with L ≲ log δ−1, r ≲ δ−t∗/2β∗ , B ≲ δ−1

satisfying ∥|G−G∗|∞∥∞ ≤ δ.
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L A NEW APPROXIMATION RESULT FOR FUNCTIONS WITH SMOOTHNESS
DISPARITY

In this section, we prove the approximability of the sparse neural network for the Hölder class of
function f ∈ Hβ,β′

r,r′ (D,D′,K).

Theorem 5. Let f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K). Denote rsum = r + r′ and βsum = β + β′. Then

for any integers m ≥ 1 and N ≥ (βsum + 1)rsum ∨ (K + 1)ersum , there exists a network

f̃ ∈ Fs

(
L,
(
rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1

)
, s,∞

)
with depth

L = 8 + (m+ 5)
(
1 +

⌈
log2

(
rsum ∨ βsum

)⌉)
and the number of parameters

s ≤ 109
(
rsum + βsum + 1

)3+rsum
N(m+ 6),

such that

∥f̃ − f∥L∞([0,1]rsum ) ≤ (2K + 1)
(
1 + r2sum + β2

sum

)
6rsum N 2−m +K 3rsum/(β−1r+β−1

′ r′) N−1/(β−1r+β−1
′ r′).

We denote β̃ = (β + β′)
−1ββ′ and r̃ = (β + β′)

−1(rβ + r′β′). Before presenting the proof of
Theorem 5, we formulate some required results.

We follow the classical idea of function approximation by local Taylor approximations that have
previously been used for network approximations in Yarotsky (2017) and Schmidt-Hieber (2020).
For a vector a ∈ [0, 1]r define

P β,β′
a,b f(u,v) =

∑
0≤|α|<β
0≤|α′|<β′

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!
. (31)

We use the notation the u = (u(j))j to represent the component of the vector when the index j is
well understood. Accordingly we have v = (v(j))j , a = (a(j))j and b = (b(j))j . By Taylor’s
theorem for multivariate functions, we have for a suitable ξ ∈ [0, 1],

f(u,v) =
∑

α:|α|<β−1
α′:|α′|<β′−1

(∂α+α′f)(a,b)
(u− a)α(v − b)α′

α!α′!

+
∑

β−1≤|α|<β
β′−1≤|α′|<β′

(∂α+α′f)(a+ ξ(u− a),b+ ξ(v − b))
(u− a)α(v − b)α′

α!α′!
.

We have |(u − a)α| =
∏r

j=1 |uj − aj |α
(j) ≤ |u − a||α|

∞ and |(v − b)α′ | =
∏r′

j=1 |vj − bj |α
(j)
′ ≤

|v − b||α′|
∞ . Consequently, for f ∈ Hβ,β′

r,r′ ([0, 1]r, [0, 1]r′ ,K),∣∣f(u,v)− P β,β′
a,b f(u,v)

∣∣
≤

∑
β−1≤|α|<β

β′−1≤|α′|<β′

(
∂α+α′f(a+ ξ(u− a),b+ ξ(v − b))− ∂α+α′f(a,b)

) (u− a)α(v − b)α′

α!α′!

(32)

≤K
(
|u− a|β∞ ∨ |v − b|β′

∞
)

We may also write (31) as a linear combination of monomials

P β,β′
a,b f(u,v) =

∑
0≤|γ|<β
0≤|γ′|<β′

cγ,γ′u
γvγ′ , (33)
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for suitable coefficients cγ,γ′ . For convenience, we omit the dependency on a and b in cγ,γ′ . Since
∂γ,γ′P β,β′

a,b f(u,v) |(u=0,v=0) = γ!γ′! cγ,γ′ , we must have

cγ,γ′ =
∑

γ≤α&|α|<β
γ′≤α′&|α′|<β′

(∂α+α′f)(a,b)
(−a)α−γ (−b)α′−γ′

γ!γ′! (α− γ)! (α′ − γ′)!
.

Notice that since a ∈ [0, 1]r, b ∈ [0, 1]r′ , and f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K),

|cγγ′ | ≤ K/(γ!γ′!) and
∑
γ≥0
γ′≥0

|cγ,γ′ | ≤ K

r∏
i=1

r′∏
j=1

∑
γ(i)≥0

∑
γ
(j)
′ ≥0

1

γ(i)!

1

γ
(j)
′ !

= Ker+r′ , (34)

where γ = (γ(1), . . . , γ(r)) and γ′ = (γ
(1)
′ , . . . , γ

(r′)
′ ).

Consider the set of grid points

D(M) := {uℓ(1) =(ℓ
(1)
j /M1)j=1,...,r and vℓ(2) = (ℓ

(2)
j /M2)j=1,...,r′

: ℓ(1) = (ℓ
(1)
1 , . . . , ℓ(1)r ) ∈ {0, 1, . . . ,M1}r,

ℓ(2) = (ℓ
(2)
1 , . . . , ℓ(2)r ) ∈ {0, 1, . . . ,M2}r′ ,M1 = M β̃/β ,M2 = M β̃/β′}.

The cardinality of this set is (M1 + 1)r · (M2 + 1)r′ . We write uℓ(1) = (u
(j)

ℓ(1)
)j=1,...,r

and vℓ(2) = (v
(j)

ℓ(2)
)j=1,...,r′ to denote the components of uℓ(1) and vℓ(2) respectively. With

slight abuse of notation we denote w = (u,v) = (u(1), . . . , u(r), v(1), . . . , v(r′)), ℓ =

(ℓ(1), ℓ(2)) = (ℓ
(1)
1 , . . . , ℓ

(1)
r , ℓ

(2)
1 , . . . , ℓ

(2)
r′ ) and wℓ = (w

(j)
ℓ )j=1,...,r+r′ = (uℓ(1) ,vℓ(2)) =

(u
(1)

ℓ(1)
, . . . , u

(r)

ℓ(1)
, v

(1)

ℓ(2)
, . . . , u

(r′)

ℓ(2)
). Define

P β,β′f(u,v)

=P β,β′f(w)

:=
∑

wℓ∈D(M)

P β,β′
wℓ

f(w)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+

 ,

where Mj = M1 for j = 1, . . . , r and Mj = M2 for j = r + 1, . . . , r + r′.

Lemma 5. If f ∈ Hβ,β′
r,r′ ([0, 1]r, [0, 1]r′ ,K), then ∥P β,β′f − f∥L∞[0,1]r+r′ ≤ KM−β̃ .

Proof. Since for all w = (w(1), . . . , w(r+r′)) ∈ [0, 1]r+r′ ,∑
wℓ∈D(M)

r+r′∏
j=1

(1−Mj |w(j) − w
(j)
ℓ |)+ =

r+r′∏
j=1

Mj∑
ℓ=0

(1−Mj |w(j) − ℓ/Mj |)+ = 1, (35)

we have

f(w) = f(u,v)

=
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

f(u,v)

 r∏
j=1

(1−M1|u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1−M2|v(j) − v
(j)

ℓ(2)
|)+



25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

and with (32),∣∣P β,β′f(u,v)− f(u,v)
∣∣ ≤ max

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

∣∣P β,β′
u

ℓ(1)
,v

ℓ(2)
f(u,v)− f(u,v)

∣∣

≤ K
(
M−β

1 ∨M−β′
2

)
= KM−β̃ .

In the next few steps, we describe how to build a network that approximates P β,β′f .

Lemma 6. Let M,m, be any positive integer. Denote M1 = M β̃/β , M2 = M β̃/β′ , M = (M1 +
1)r(M2 + 1)r′ and rsum = r + r′. Then there exists a network

Hatrsum ∈ F (2 + (m+ 5)⌈log2(rsum)⌉, rsum, 2rsumM, rsumM, 6rsumM, . . . , 6rsumM,M), s, 1)

with s ≤ 37rsum
2M(m + 5)⌈log2(rsum)⌉, such that Hatr ∈ [0, 1]M and for any u =

(u(1), . . . , u(j)) ∈ [0, 1]r and for any v = (v(1), . . . , v(j)) ∈ [0, 1]r′∣∣∣∣∣Hatrsum(u,v)−

{( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)
×

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)}

u
ℓ(1)

,v
ℓ(2)

∈D(M)

∣∣∣∣∣
∞

≤ rsum
22−m.

For any uℓ(1) ,vℓ(2) ∈ D(M), the support of the function (u,v) 7→ (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is
moreover contained in the support of the function

(u,v) 7→


( r∏

j=1

(1/M − |u(j) − u
(j)

ℓ(1)
|)+
)( r′∏

j=1

(1/M − |v(j) − v
(j)

ℓ(2)
|)+
) .

Proof. Step 1: (For r + r′ = 1) Without loss of generality we consider the case when r = 1 and
r′ = 0. We compute the functions {(u(j) − ℓ/M1)+}r,M1

j=1,ℓ=0 and {(ℓ/M1 − u(j))+}r,M1

j=1,ℓ=0 for the
first hidden layer of the network. This requires 2r(M1 + 1) units (nodes) and 2r(M1 + 1) non-zero
parameters.

For the second hidden layer we compute the functions (1/M1−|u(j)−ℓ/M1|)+ = (1/M1−(u(j)−
ℓ/M1)+− (ℓ/M1−u(j))+)+ using the output (u(j)− ℓ/M1)+ and (ℓ/M1−u(j))+ from the output
of the first hidden layer. This requires r(M1 + 1) + r′(M2 + 1) units (nodes) and 2r(M1 + 1)
non-zero parameters. This proves the result for the base case when r + r′ = 1.

Step 2: For r+r′ > 1, we compose the obtained network with networks that approximately compute
the following

 r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+

 r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+


u

ℓ(1)
,v

ℓ(2)
∈D(M)

.

For fixed uℓ(1) and vℓ(2) , and from the use of Lemma 8 there exist Multr+r′
m networks in the class

F (2 + (m+ 5)⌈log2(r + r′)⌉, (r + r′, 2(r + r′), r + r′, 6(r + r′), 6(r + r′), . . . , 6(r + r′), 1))

computing (
∏r

j=1(1/M1 − |u(j) − uℓ(1) |)+)× (
∏r′

j=1(1/M2 − |v(j) − vℓ(2) |)+) up to an error that
is bounded by (r + r′)

2 2−m. Observe that we have two extra hidden layers to compute (1/M1 −
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|u(j) − uℓ(1) |)+) and (1/M2 − |v(j) − vℓ(2) |)+) for fixed uℓ(1) and vℓ(2) respectively, before we
enter into the multinomial computation by regime invoking Lemma 8. Observe that the number of
parameters in this network is upper bounded by 37(r + r′)

2(m+ 5)⌈log2(r + r′)⌉.

Now we use the parallelization technique to have (M1 + 1)r · (M1 + 1)r parallel architecture for
all elements of D(M). This provides the existence of the network with the number of non-zero
parameters bounded by 37(r + r′)

2(M1 + 1)r(M2 + 1)r′(m+ 5)⌈log2(r + r′)⌉
By Lemma 8, for any x ∈ Rr, Multrm(x) = 0 if one of the components of x
is zero. This shows that for any uℓ(1) ,vℓ(2) ∈ D(M), the support of the function
(u,v) 7→ (Hatr+r′(u,v))u

ℓ(1)
,v

ℓ(2)
is contained in the support of the function (u,v) 7→(∏r

j=1(1/M − |u(j) − u
(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

.

Proof of Theorem 5. All the constructed networks in this proof are of the form F(L,p, s) =

F(L,p, s,∞) with F = ∞. Denote M1 = M β̃/β , M2 = M β̃/β′ , βsum = β + β′, and
rsum = r + r′. Let M be the largest integer such that M = (M1 + 1)r(M2 + 1)r′ ≤ N and
define L∗ := (m + 5)⌈log2(βsum ∨ rsum)⌉. Thanks to (34), (33) and Lemma 9, we can add one
hidden layer to the network Monrsum

m,βsum
to obtain a network

Q1 ∈ F
(
2 + L∗, (r, 6⌈β⌉Crsum,βsum

, . . . , 6⌈β⌉Crsum,βsum
, Crsum,βsum

,M)
)
,

such that Q1(u,v) ∈ [0, 1]M and for any u ∈ [0, 1]r and for any v ∈ [0, 1]r′∣∣∣Q1(u,v)−
(P β,β′f(u,v)

B
+

1

2

)
u

ℓ(1)
,v

ℓ(2)
∈D(M)

∣∣∣
∞

≤ β2
sum2

−m (36)

with B := ⌈2Kersum⌉. The total number of non-zero parameters in the Q1 network is 6rsum(βsum+
1)Crsum,βsum

+ 42(βsum + 1)2C2
rsum,βsum

(L∗ + 1) + Crsum,βsum
M.

Recall that the network Hatrsum computes the products of hat functions (splines) (
∏r

j=1(1/M1 −
|u(j) − uℓ(1) |)+)(

∏r′
j=1(1/M2 − |v(j) − vℓ(2) |)+) up to an error that is bounded by r2sum2

−m. It
requires at most 37r2sumNL∗ active parameters. Observe that Crsum,βsum ≤ (βsum + 1)rsum ≤ N
by the definition of Cr,β and the assumptions on N. By Lemma 6, the networks Q1 and Hatrsum

can be embedded into a joint parallel network (Q1,Hatrsum) with 2 + L∗ hidden layers of size
(rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 2M). Using Cr,β ∨ (M + 1)r ≤ N again, the
number of non-zero parameters in the combined network (Q1,Hatr) is bounded by

6rsum(βsum + 1)Crsum,βsum
+ 42(βsum + 1)2C2

rsum,βsum
(L∗ + 1) + Crsum,βsum

M+ 37r2sumNL∗

≤ 42(rsum + βsum + 1)2Crsum,βsum
N(1 + L∗)

≤ 84(rsum + βsum + 1)3+rsumN(m+ 5),
(37)

where for the last inequality, we used Crsum,βsum
≤ (βsum +1)rsum , the definition of L∗ and that for

any x ≥ 1, 1 + ⌈log2(x)⌉ ≤ 2 + log2(x) ≤ 2(1 + log(x)) ≤ 2x.

Next, we pair the (uℓ(1) ,vℓ(2))-th entry of the output of Q1 and Hatr and apply to each of the M
pairs the Multm network described in Lemma 7. In the last layer, we add all entries. By Lemma 7
this requires at most 24(m+5)M+M ≤ 25(m+5)N active parameters for the M multiplications and
the sum. Using Lemma 7, Lemma 6, (36) and triangle inequality, there exists a network Q2 ∈ F(2+
L∗ +m+ 6, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)) such that for any u ∈ [0, 1]r

and for any v ∈ [0, 1]r′

∣∣∣∣∣Q2(u,v)−
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M)

(P β,β′f(u,v)

B
+

1

2

)( r∏
j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣
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≤
∑

u
ℓ(1)

,v
ℓ(2)

∈D(M):

∥u−u
ℓ(1)

∥∞≤1/M1

∥v−v
ℓ(2)

∥∞≤1/M2

(1 + r2sum + β2
sum)2

−m

≤ (1 + r2sum + β2
sum)2

r−m. (38)

Here, the first inequality follows from the fact that the support of (Hatr+r′(u,v))u
ℓ(1)

,v
ℓ(2)

is

contained in the support of
(∏r

j=1(1/M − |u(j) − u
(j)

ℓ(1)
|)+
∏r′

j=1(1/M − |v(j) − v
(j)

ℓ(2)
|)+
)

(see
Lemma 6). Because of (37), the network Q2 has at most

109(rsum + βsum + 1)3+rsumN(m+ 5) (39)

non-zero parameters.

To obtain a network reconstruction of the function f , it remains to scale and shift the output entries.
This is not entirely trivial because of the bounded parameter weights in the network. Recall that
B = ⌈2Ker⌉. The network x 7→ BMr

1M
r′
2 x is in the class F(3, (1,Mr

1M
r′
2 , 1, ⌈2Ker⌉, 1)) with

shift vectors vj are all equal to zero and weight matrices Wj with all entries equal to one. Because of
N ≥ (K+1)ersum , the number of parameters of this network is bounded by 2Mr

1M
r′
2 +2⌈2Ker⌉ ≤

6N . This shows existence of a network in the class F(4, (1, 2, 2Mr
1M

r′
2 , 2, 2⌈2Ker⌉, 1)) computing

a 7→ BMr
1M

r′
2 (a − c) with c := 1/(2Mr

1M
r′
2 ). This network computes in the first hidden layer

(a−c)+ and (c−a)+ and then applies the network x 7→ BMr
1M

r′
2 x to both units. In the output layer,

the second value is subtracted from the first one. This requires at most 6 + 12N active parameters.

Because of (38) and (35), there exists a network Q3 in

F
(
(m+ 13) + L∗, (rsum, 6(rsum + ⌈βsum⌉)N, . . . , 6(rsum + ⌈βsum⌉)N, 1)

)
such that∣∣∣∣∣Q3(u,v)−

∑
u

ℓ(1)
,v

ℓ(2)
∈D(M)

P β,β′f(u,v)
( r∏

j=1

(1/M1 − |u(j) − u
(j)

ℓ(1)
|)+
)

( r′∏
j=1

(1/M2 − |v(j) − v
(j)

ℓ(2)
|)+
)∣∣∣∣∣

≤ (2K + 1)Mr
1M

r′
2 (1 + r2sum + β2

sum)(2e)
rsum2−m, for all (u,v) ∈ [0, 1]rsum .

With (39), the number of non-zero parameters of Q3 is bounded by

109(rsum + βsum + 1)3+rsumN(m+ 6).

Observe that by construction M = (M1 + 1)r(M2 + 1)r′ ≤ N ≤ (3M1)
r(3M2)

r′ = 3rsumM r̃ and
hence M−β̃ ≤ N−β̃/r̃3rsumβ̃/r̃. Together with Lemma 5, the result follows.

L.1 EMBEDDING PROPERTIES OF NEURAL NETWORK FUNCTION CLASSES

We denote F(L,p) as the class of neural networks with L hidden layers and p ∈ NL+2 nodes per
layer. The class F(L,p) is subset of F(L,p) with the sparsity parameter s.

For the approximation of a function by a network, we first construct smaller networks computing
simpler objects. Let p = (p0, . . . , pL+1) and p′ = (p′0, . . . , p

′
L+1). To combine networks, we make

frequent use of the following rules.

Enlarging: F(L,p, s) ⊆ F(L,q, s′) whenever p ≤ q componentwise and s ≤ s′.

Composition: Suppose that f ∈ F(L,p) and g ∈ F(L′,p′) with pL+1 = p′0. For a vec-
tor v ∈ RpL+1 we define the composed network g ◦ σv(f) which is in the space F(L + L′ +
1, (p, p′1, . . . , p

′
L′+1)). In most of the cases that we consider, the output of the first network is non-

negative and the shift vector v will be taken to be zero.
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Additional layers/depth synchronization: To synchronize the number of hidden layers for two net-
works, we can add additional layers with an identity weight matrix, such that

F(L,p, s) ⊂ F(L+ q, (p0, . . . , p0︸ ︷︷ ︸
q times

,p), s+ qp0). (40)

Parallelization: Suppose that f, g are two networks with the same number of hidden layers and the
same input dimension, that is, f ∈ F(L,p) and g ∈ F(L,p′) with p0 = p′0. The parallelized
network (f, g) computes f and g simultaneously in a joint network in the class F(L, (p0, p1 +
p′1, . . . , pL+1 + p′L+1)).

L.2 TECHNICAL LEMMAS FOR THE PROOF OF THEOREM 5

We use F(L, r) to denote a fully connected network with L deep layers and r ∈ NL+2
0 representing

the nodes in each layer.

The following technical lemmas are required for the proof of Theorem 5. Lemma 7, Lemma 8, and
Lemma 9 restate Lemma A.2, Lemma A.3, and Lemma A.4 from Schmidt-Hieber (2020), respec-
tively.
Lemma 7. For any positive integer m, there exists a network Multm ∈ F(m+4, (2, 6, 6, . . . , 6, 1)),
such that Multm(x, y) ∈ [0, 1],∣∣Multm(x, y)− xy

∣∣ ≤ 2−m, for all x, y ∈ [0, 1],

and Multm(0, y) = Multm(x, 0) = 0.

Lemma 8. For any positive integer m, there exists a network

Multrm ∈ F((m+ 5)⌈log2 r⌉, (r, 6r, 6r, . . . , 6r, 1))

such that Multrm ∈ [0, 1] and∣∣∣Multrm(x)−
r∏

i=1

xi

∣∣∣ ≤ r22−m, for all x = (x1, . . . , xr) ∈ [0, 1]r.

Moreover, Multrm(x) = 0 if one of the components of x is zero.

The number of monomials with degree |α| < γ is denoted by Cr,γ . Obviously, Cr,γ ≤ (γ + 1)r

since each αi has to take values in {0, 1, . . . , ⌊γ⌋}.
Lemma 9. For γ > 0 and any positive integer m, there exists a network

Monrm,γ ∈ F
(
1 + (m+ 5)⌈log2(γ ∨ 1)⌉, (r, 6⌈γ⌉Cr,γ , . . . , 6⌈γ⌉Cr,γ , Cr,γ)

)
,

such that Monrm,γ ∈ [0, 1]Cr,γ and∣∣∣Monrm,γ(x)− (xα)|α|<γ

∣∣∣
∞

≤ γ22−m, for all x ∈ [0, 1]r.
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