Supplementary Materials for ‘“A Likelihood Based Approach to
Distribution Regression Using Conditional Deep Generative
Models”

A ADDITIONAL NUMERICAL RESULTS

A.1 NUMERICAL RESULT FOR REAL DATA

We utilized the widely used MNIST dataset for two purposes: to demonstrate the generalizability of
our approach to a benchmark image dataset where the intrinsic dimension 9 is much lesser than the
ambient dimension D = 784 and to underscore the effectiveness of sparse networks as outlined in
Lemma 4.1 and Corollary 1.1.

For the fully connected architecture, we set rene = (10 4 784,512, 2) for 114 and 3y, and rgec =
(10 + 2,512, 784) for g. For the sparse architecture, we use ron. = (10 4 784,608, 432, 256, 2) for
e and Xy, and rgec = (10 + 2,256, 432, 608, 784) for g. The input dimension of 10 for both the
encoder and decoder corresponds to the one-hot encoding of the labels. We employ a batch size of
64 with a learning rate of 1073,

Figure 2 presents a visual comparison between real and generated images, organized according to
their respective labels. The real images were randomly sampled from the training set along with their
corresponding labels, while the generated images were produced using these labels (conditions) and
random seeds.
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Figure 2: MNIST images: real images (left panel), generated images with sparse architecture (cen-
tral panel), and generated images with fully connected architecture (right panel)

This MNIST example highlights a case where the intrinsic dimension is significantly smaller than
the ambient data dimension. This example serves to validate the proposed methodology in high-
dimensional settings.

A.2 ADDITIONAL NUMERICAL RESULTS FOR DISTRIBUTIONS ON MANIFOLD

We extended our analysis to examine how the empirical W3 distance varies with sample size, while
keeping the noise level fixed at o,. = 0.01. Below is a summary table showing the median empirical
Wasserstein distances for different sample sizes. The experimental setup remains consistent with the
manifold case described in the Section 3.
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Table 2: Empirical Wasserstein distance W (median) for different sample sizes

Sample Size Two Moon (o, = 0.01) Ellipse (o, = 0.01)
4000 0.251 0.295
6000 0.232 0.285
7000 0.216 0.271
8000 0.214 0.253
9000 0.212 0.259
10000 0.196 0.251

While extracting exact rates through simulation can be challenging, the results in the table validate
the large-sample properties for manifolds. These empirical findings align well with the theoretical
expectations, further confirming the consistency and convergence trends of our framework.

B NOTATION

We denote a V b and a A b as the maximum and minimum of two real numbers a and b, respectively.
The notation [a] represents the smallest integer greater than or equal to a. The inequality a < b
indicates that a is less than or equal to b up to a multiplicative constant. When we write a Sjog b,
it means that a is less than or equal to b up to a logarithmic factor, specifically log(n). We denote
a < bwhenbotha < band b < ahold. For vector norms, | - |, represents the £° norm, while || - ||,
denotes the LP-norm of a function for 1 < p < co. Lastly, B.(u) signifies the Euclidean open ball
with radius e centered at w.

We use the multi-index notation through the main paper and the appendix. Denote N as the
set of natural numbers and Ny as N U {0}. For a vector x € R", we denote the components
as x = (21, ... 2("). Given a function f : D C R" — R, the operator is defined as
oo = 9" . 92" with a € N7%. where 6"‘(j)f = Ba(j)f(x)/ﬁx(j). For a € N7, the ex-
pression |a = Y77, |a9)|. Given a function f(-,-) : D x D, C R" x R — R, we de-

(1 (") any(D . .
note the operator 9*T = 9%~ ...9% 9% ...0% ', with a € N and a0, € Nj, where

30‘('7)f(x,y) = 8“<J)f(x, y)/a"‘(])x(j) and 8("5J)f(x,y) = 8“53)]”()(, y)/0yY), with x € D and
y € D,. This notation allows us to represent the derivative with variable x and y separately through
the vector a and oy, which is required to tackle the smoothness disparity along = and y variable. The
[—Holder class functions are defined as

HE(D,M):{f;DcR"AR:

Z 10 £l o0 + Z sup |0 f(ul)_aﬁ_{éjluﬂ SM}, (15)
alal<p a:lal=[8] u11171"252D ‘111 - 112|o<>

We extend this definition to include the Holder class of functions with differences in smoothness
(smoothness disparity) along two variables. This class is defined as

MO (Dﬂ,,M):{f(-,-):DxD,cRT XxR” 5 R:

a+aoy _ Aataoy
Z ||6a+a/f”oo + Z sup ‘8 f(Vl,U]_) 0 f(VQ,UQ)‘ S M}

alal<B ailal=lp) U1uzEDx uy — s[5 WV vy — v
aviley|<B, aslas|=16/] " %u,

V1#Va
(16)
We denote HY (D) = UprsoHE (D, M) and HE:P (D, D,) = UnsoHE (D, D, M).
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C MORE ON SMOOTH CONDITIONAL DENSITY

Theorem 4 (Villani et al. (2009) Theorem 12.50). Suppose that

(i) Ay and Ay are uniformly convex, bounded, open subsets of R? with C\81+2 (continuously
differentiable up to order | 3] + 2) boundaries,

(ii) hy € HP (A1) and hy € HP(A3) for some B > 0, are probability densities bounded above
and below.

Then, there exists a unique map (up to an additive constant) g = Ay — Az with g € HP(A),
such that if U ~ hy then g(U) ~ ha.

Proof of Lemma 2. Given that Z and X is independent, the product measure on Z x X is pzu’.
Following the smoothness from pz and %, the map pz(-)ui (1) € H™MBzBx}(Z x X).
This implies that pz (-)u% (-) € H™{Pz:Bx.0e}(Z x X). Again q. € HP2(Y) implies ¢. €
Hmind{Bz.5x.8a} (). The result now follows directly from Theorem 4. O

Many of the problems in the conditional setting have an analog in the joint setup. Our proposed
approach has a direct statistical extension to this setup. The sufficiency of such extension follows
from the observation in the subsequent Lemma 3 which is based on Lemma 2.1 and Lemma 2.2 of
Zhou et al. (2022) (see also Theorem 5.10 of Kallenberg (1997)).

Lemma 3 (Noise Outsourcing Lemma). Let (Y, X) € Y x X with joint distribution Py, x. Suppose
Y is standard Borel space, then there exists Z ~ N(0, I,,,) for any given m > 1, independent of X,
and a Borel measurable function G : R™ x X — Y such that

(X,G(Z, X)) ~ (Y, X). (17)
Moreover, the condition (17) is equivalent of

G(Z,x) ~ Py|x=y-

D MORE ON CONDITIONAL DISTRIBUTION ON MANIFOLDS

Suppose (Y, ¢) is the single chart covering ), where ¢ : B1(04,) — ) is a homeomorphism. We
assume that € Pt and that infep, (o, ) |/ ()| is bounded below by a positive constant,

where
_ dp Oy

is the Jacobian determinant of .

Note that when d, < D, the distribution (), cannot possess a Lebesgue density because of the
singularity of ). We, therefore consider a density with respect to the d,—dimensional Hausdorff
measure in R, denoted by Hy, . Suppose that () allows the Radon-Nikodym derivative ¢ with
respect to Hq_. We further assume that ¢ is bounded from above and below and that g o ¢ € HPmin.
Then by change of variable formula, the Lebesgue density of @, the push-forward measure on
B1(0q4,) through the map ¢~ 1, is given as

q(u) = q(p())|Jy(a)].

Following the assumptions on the Jacobian determinant and ¢ € HP=in*1 it follows that |J,,(u)|
is bounded from above and below, and the map u ~ |J,(u)| belongs to HPmin. Therefore, q is
bounded above and below, belongs to H”min (B; (04, )). By Lemma 2, assuming Bmin < Bz A Bx.,
there exists g € H min*+1 such that @ = ()g. Thus, we have QQ = Qp0q, Where pog: Z x X — ).
Following Lemma 4, it is possible to find the appropriate neural network approximating them.

Suppose Y is covered by the charts {(Uy, @k)}le, with 1 < K < oo, where ¢y, : B1(04,) — Uy
is a homeomorphism. As before, we assume @), € HP=nt1 | J_ (u)| is bounded below by a

17



positive constant, () possesses density ¢ with respect to Hy, that is bounded above and below, and
that g o ¢, € HPmin, Let Qi (-) = Q(+)/Q(U}) be the normalized measure of Q over U,.

We denote gy, as the corresponding density with respect to Hq,. For u € Ux N Uy, ¢x(0)Q(Uy) =
qe(0)Q(Uy) = q(u) holds due to the measure Q(-) being compatible with the charts. This is ensured
because the densities Q(Uy)qx(+) and Q(Uy)qe(-) are consistent and align with the measure @Q over
the overlapping regions of the charts. This compatibility is essential for constructing a coherent
global measure from local chart densities.

A compact manifold ) can be covered by a finite partition of unity {73,k = 1,..., K}, each
sufficiently smooth (Lee, 2012). By definition, each function in this partition satisfies 7, (u) = 0
foru ¢ Uy, and Zszl T(u) = 1 for all u € Y. Given that ¢(u) = Q(Uy)gx(u) for each k and
u € Uy, we can express ¢(u) as:

To normalize, let ¢, = [ 75,(u)dQy(u) and define g}, (u) = 74 (u)gx(u)/ck. Thus, we can rewrite
q(u) as:

K
g(u) = > migp(u),
k=1

where 7, = ¢, Q(Uy). This formulation reveals that ¢ is a mixture of the component densities g, (u),
weighted by 7. This mixture approach ensures compatibility across different charts, providing a
unified density representation over the entire manifold ).

Since g}, is sufficiently smooth, we can construct a mapping gj : V — Y such that Q). is the
distribution of gk(‘~/) supported on Uy, where Visa uniformly convex set in R% and V follows a
uniform distribution on V. Next, construct a disjoint partition of the interval (0,1) into K intervals
I,...,Ix with lengths 71, ..., 7, where I, = [Zf:_ll T, Ele m;]. Define hy, as the indicator
function on the interval I, i.e., hy(u) = 1 if u € Ij and O otherwise. For a random variable U
following Uniform(0, 1), it follows that Py(hx(U) = 1) = m, and Py(hi(U) = 0) = 1 — 7.

Now, define v = (u,v), where u ~ Uniform(0,1) and v ~ Uniform(V). Using this, construct
g(v) = Zszl hi(u) gy (v). It is straightforward to observe that ) = @, as the partitioning through
hy ensures that the measure is correctly matched to each gi, and g ensures that the restricted
distributions )}, are appropriately supported on Uy,.

From an approximation perspective, the indicator functions hj and the localized generators can be
effectively approximated using ReL U neural networks. This also holds for their products and further
linear combinations. For details on such constructions, one may refer to Schmidt-Hieber (2019) for
sparse neural networks and Kohler et al. (2023) for dense neural networks.

It is important to note that we do not guarantee the regularity of the g;, maps, as they are not neces-
sarily lower bounded. However, the partition of unity maps 74 vanish only at the boundary of Uy.
This property may allows for the construction of sufficiently smooth maps. For the multiple-chart
case, we rely on more stringent results, such as Brenier’s Theorem (see, for example, Villani et al.
(2009)) or the Noise Outsourcing Lemma (Lemma 3), to ensure the existence of the transport maps.
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E PROOF OF LEMMA 1

Proof. For g1(-|z), g2(-|z) € F with |||g1 — g2|collco < 71. Then
P10 (Y]T) = Pgso (yl2)

/% (y — g1(z, 2) 1_exp{ ly — g2(7, 2)|5 2;2|y—91($72)|§ }) dPy(2)

/¢a y 91 z, Z <|y g2 z, Z 0_2|y gl(x Z)|2>dPZ(Z) (18)
/¢a (y—g1(z,2) <|92 — 9@ Z)| —2 ;Uggl(x’Z))T(g2(x72) —gl(x,z))> dPz(z)
/¢a y 91 z, Z (ng €,z 20291 Zz, Z)|2 + 2|y—gl($72)|1|g22(§:§,2) _gl(xwz)'OO) dPZ(Z)

</ asa(y—gl(x,z))”;])zmdpz(z)+ﬂ / v =01 hooly — 910, 2)dP2()  (19)

2K D, L /
< \ —
<53 ( Rezmare -dPz(2) (20)

<e1(K, D)o “’“)n 1)

lTlln

For the last line, we use the fact that 0y,;, < 1. The inequality at (18) follows from e~* > (1 — x).
The ones at (19) follows using

l92(2, 2) — g1(x, 2)|3 < 2K |ga(x, 2) — g1(x, 2)|1 < 2K Dlga(x, 2) — g1(7, 2)|
< 2KD|l|g1 — g2]oclloe < 2K Dmy

-D
and |g2(x, 2) — g1(, 2)| 0o < m1. The change at (20) follows from ¢, (y — g1 (2, 2)) < (\/27r02)

and the bound
D 1
[v]1¢0(v) <4/ 2W6W'

Now for 01,02 € [Omin,Omax] With |07 — 03] < 1. It holds that af2 —052 <

IOg (%)‘ = mm{al o2} We have
Pg,o1 (y|$) — Pg2,02 (y“r)

onom (- (2 oo {2 (3 )

2
gz )2 1 1
< [ b0tu—gla.2) ['yg(“' agaf)mog(j;)]d&(a )

0'1_202_2 (o1 + 02) m2 and

2
ly —g(z,2)[3 (01 + 09 Dy
o —— | dP
/(’ZS (Y~ 9(@,2) { 2 o202 Ch min{cy, 05} 7(2)
o1+ 09 1 Dnp
5 112 + . (23)
(\/27T0'1)D 602 ( /27T0_%>D mln{glaUQ}
<ca (D)ot . (24)

The (22) follows from 1 — e~®* < «. The change at (23) follows from ¢, (y — g(z,2)) <

(\/ﬁ) i and

2 _ o 2
‘v|2¢0(v) S (W)D 6.



Let ¢ > 0. Let {g1,...,9n,} be n1—covering of F and {o1,...,0n,} be ny—covering of
[Cumins Tmax] With respect t0 ||| - |oolloo and | - |oo. By (21) and (24), 71 = ¢y o2+ 2e/4 and

mln
— (2,01
N2 = ¢y “0 e /4 implies

{ 9110'] Z_l Nl,jzl,...,NQ}

forms an e /2—covering for P with respect to || - HOO Denote the envelope function of F
1 y|2 — 4K2D
H(y,z) = supp(y|z) < 53 P {_|242
pEP (27r0r2111n) O max

5 2 Omax
— oK*D/205,,,9D/2 () DB (V)

Omin

Following from flyloo>t 6o (y)dy < 2De=t*/27"  we have

//yloo>B H(y, x)u(y, z)dyde = / (/yoo>3 H(y,x)u(ylx)dy> px (z)dr <,

where "
1 max . K2D
B = 20max | log — + Dlog g —i— +log 2D .
€ Om 202

de

For each (i, j) define
lij(y,x) = max {pgmj (y,x) — 5/2,0} and ui;(y, x) = min {pgi’aj (y,z) +¢/2,H(y, at)} .
It follows that

[ [ st = 1.0} i@y

< / / e (z)dyda + / / H(y, o)1y (2)dyde (25)

<{(2B)" +1}e.
Denote §2 := {(QB)D + 1}. With d%{(uu, l”) <d (U,‘j, lij), we have

Ny (5, dir) < Ny(@, P, di) < NiNp < 222222\, F - L lle)- - 26)

It is possible to write

D/2
62 = £ < C1(0max, D) [@(logg_l)m2 +eCy(K) + ¢ <log UImx) ] ,
Omin
where C(0max, D) and C3(K) is a constant. There exists small enough ¢, (D) such that for all

g€ (0,e4]

min

o D/2
62 < CS(O—mavayK)ﬁ <10g me) .

Consequently, there exists d,. = 0.(D), such that for all 6 < d.., we have

Omin

-D
C2(0max, K, D)6 (log "“‘*”‘) <e.

It lead us to, for all § < 4,
ci ' Cioltist D+3 54
> co 0%,
Umin{log(amax/amin)}
where ¢(0max, K, D) is a constant. We use the fact that o1, {10g(0max/0min) } is bounded above
by some constant depending only upon o ,.x as omin < 1. Similar to (27), it is possible to write for
all 6 > 0,

m = 27)

min

ny > P25, for all § < 4., (28)

min

where ¢/ (0max, K, D) is some constant.

The result now follows directly (28) and (27) with (26). ]
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F PROOF OF THEOREM 1

Proof. Choose four absolute constants ¢y, . . ., ¢4 as in Theorem 1 of Wong and Shen (1995). Define
c and C in the statement of Lemma 1. The proof closely follows Chae et al. (2023). We have therein
the proof of Theorem 3 that

/ \/logj\/[ (6/c3,P,dy)dd
€2/28 (29

<VEe\[EA+ (D +3)(s + Dlog o), + s + v2er/A(E + 1)y/Iog(25/27),

for every ¢ < V2 < ¢36,/v/2, where ¢5 = cs(c, C, c3). Observe that c4+/ne2 is upper bound to
(29) and Eq. (3.1) of Wong and Shen (1995) is satisfied.

Using B.12 of Ghosal and van der Vaart (2017), we have
K6 p00) < [ [ K(N(Gola0),02) N (glz10),0%) ) (a) do dP(2)

_ 2 Dé?
:// \G*(z7x)202g(z,x)|2 ( )ddeZ( )_ ﬂ::én.

2
202

One may easily see that

b0 2 44 A|zTy2
/(logM) (bg(x)dm:/ngg(x)dx_ Lylg +ly \2/|i|2 o (x)dx.

Combining this with Example B.12, (B.17) and Exercise B.8 of Ghosal and van der Vaart (2017),

we have
pG* 0'* yl )) *
log : dP.(y|z) ux (x)dx
J [ (o2 WD) i 1) o

///(10 2ol LI x)>2¢a(y—G*(z,m))dydPZ(z)u}}(a:)dx

do(y — G(z,x)
254 2 2
<D 5“LPPTOX D52 ‘ |2 2l)(;approx < 6approx — 7
= 4 2 approx O_E — 0’% 12}

where ¢; = ¢7(D). We are using d,, and 7,,, although they are independent of n, for notational
consistency with Theorem 4 of Wong and Shen (1995). Let ¢} = ¢, V1/126,,. Then, using Theorem
4 of Wong and Shen (1995), we have

*2 202
P. (du(B,pe) > £n) < Be™ 0 4 2 = pemeanen’ 4 T
(du(p,ps) > €n) < 5e” +n5 + o,

The proof is complete after redefining constants. O

G PROOFS OF COROLLARY 1

Proof. For the sparse case in 1.1, utilizing the entropy bound from (10), we observe that

g{A + log(n/amin)} - 6aptpr/o€(* lOg (5;pprox)
which naturally leads to the required convergence rate.

Similarly for the fully connected case 1.2, utilizing the entropy bound from (11) , we observe that

f{A + log(n/amin)} - 5aptpr/0€(* log (5ap1pr0x)

which naturally leads to the required convergence rate. O
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H PROOF OF THEOREM 2

Proof. Tt is suffice to assume that £ and o,+/loge—! are sufficiently small. If not, let ¢ +
o«/loge=! > c¢g, where ¢o(K, D,r,). Then Theorem 2 holds trivially by taking a large enough
constant depending just on D, K, and r,.

LetV ~ Q(|X =2), V. ~Q(:|X = 2), e ~ N(0p, 0?],) and €, ~ N(0p, 02I) be independent
with underlying probability density v. We truncate the random variable € and €, componentwise
as (ex); = max{—K,min{K, €;}} and (e.x); = max{—K, min{K, (e.),}} respectively. We

denote P, , as P, Q4 as Q, P as distribution of V + €x and ]3* as the distribution of V, + €.x.
One may note that W1 (P,, Q,) < Wa(Py,Q,) < \/]E[|6*K|§] < \/E[|e*|§] < 0,V/D. Similarly,

W1(P,Q) < ov/D. The ¢ diameter of [-2K,2K]P, where the support of P and P,, is 4KD.
Observe that

Wi (ﬁhﬁ) <4KDd, (ﬁhﬁ) < 4KDdy(P,,P) <8KDdy(P.,P),

where the first inequality follows from Theorem 4 of Gibbs and Su (2002), the second inequality
follows from the fact the distance between two truncated distributions is always lesser than the
original distributions and the last inequality follows from d; < 2dz. Hence,

W1(Qnr Q) < Wa (Qu B.) + W1 (B, P) + W5 (P,Q) < 0uV/D +8KDe +0VD.

Now it is suffice to show that 0 < ¢ o.+/loge™1, where ¢ = ¢(D, K, rx) is a constant, because
we have assumed that € is small enough. We establish this in the rest of the proof. Let ¢, =

[202 Dlog (22)] "2 Observe that
/ bo. (z)dr < / b, (z)dr < 9 Det2/2D7* <
|2 >t | 0o >tu /VD
Let Mt = M, & B;, (0p). We may write
1-P, (M) =v(Ye+e ¢ M) <v(ledo >ts) 30)
= P (M) >1-2,

the implication in the last line follows from supg |P(B) — P.(B)| < di (P, P.) < e. For the sake
of contradiction, let o € [2t,,7*/2] U (r./2,00) (L. is sufficiently small, from the assumption we
made at the beginning of this proof). If ¢ > r, /2, then

26>1-P (ML) >1-P([-K,K|”) > co(K,D,rx)

where ¢y is some positive constant. It is a contradiction following from the smallness of €. Lets
make a claim that if ¢ € [2t,,r,/2], then for every y € RP, there is some z € R? such that
|z —yl2 < o and B, j5(2) N ML = 0.

Following from the claim, we have
v(Y+eg MY =y) >v(e€B,a(z—v)).

Since |z — y|2 < o, the right hand side is bounded below by a positive constant depending just on
D which is again a contradiction to (30). This proves the assertion made in the theorem.

The proof of the claim is divided into three cases. Let p (y, M) = inf{|y —¢/|2 : ¥ € M.} be the
{5 set distance.

Case 1. p(y, M,) > o : We may choose z = y.

Case 2. p(y,M.) € (0,0) : Let yo be the unique Euclidean projection of y onto M,. Such a
unique projection exists because o < r, is within the reach and y € M., since M., is closed.
Suppose y; = yo + t(y — yo). We shall define two continuous functions dy(t) = |y: — yo|2 and
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d(t) = p(y, M..). It is obvious that d(t) < dy(t). Fort € [0,1+ /|y — yol2], do(t) < d(2t)
because v is the unique projection for all the points that lie on the line segment including the farthest
point with t = 1 + o/|y — yol2. Otherwise, say d(t) = p(y:, z) and

[y —yolz = |y —wel2 + [ye —yolo > |y —ye| + e — 2| = |y — 2|2
which contradicts yo being a unique projection. The claim holds for the point z = y1 14 /|y—yq|- 1O

see this, observe |z —y| = o and B, /»(2) NM’ = () because . < ¢ /2 and the ball B, 5(z) C M
is within the reach of the manifold.

Case 3. p(y, M.) = 0 : Because M, has empty interior, for all v > 0, we always find a point y.,,
which in B, (y) which away from M... For small enough , we reduce to case 2 by taking v — 0,
the limit point of ¥, has the required behavior.

O
I PROOF OF COROLLARY 2
Proof. The effective noise variance after the perturbation would be
= _o—a g o —Bu/2(Bt) o ST a < B /{2(B + t.)}
ge=mo {nﬁ*ﬂ(ﬁ**t*), otherwise.
Following this and the Theorem 2, for the rate we have
er 4+ oxy/log((ex)~1) < (n_ ot 4 nfo‘) log?(n)
Bx—txa
_ nT R log?(n),  ifa < B /{2(8 + 1)},
— B
n~ 2@ log?(n), otherwise.
O

J PROOF OF THEOREM 3

Proof. With m = [logy(n)] and N = (n(ﬂgldﬂg;lp)[Ha(ﬂgldﬂg;(lp)]/[%551‘”5;{11’]) in Theo-
rem 5, we can find a network G with the mentioned architecture such that
G = Gilxlloc < bapprox-
Following the entropy bound from (10), we have
log N'(8, Fs, ||| - [solloo) < sL {log(rL) +log "}

— (B d+Bx'P) | 2 o - - -
5 5aPPr%X X7 10g 6ap1pr0x { log (5ap1prox 10g (5ap1pr0><)) + log (5ap1pr0>¢)} .
The rest directly follows from the Theorem 1 O

K APPROXIMATION PROPERTIES OF THE SPARSE AND FULLY CONNECTED
DNNs

The approximability of the sparse network is detailed in Lemma 4.1, which restates Lemma 5 from
Chae et al. (2023). For the fully connected network, Lemma 4.2 demonstrates its approximation
capabilities, derived directly from Theorem 2 and the proof of Theorem 1 in Kohler and Langer
(2021). Additionally, the inclusion of the class G in the fully connected setup is supported by the
discussion in Section 1 of Kohler and Langer (2020).

Lemma 4. Suppose that G, € G. Then, for every small enough 6 € (0, 1),

1. there exists a sparse network G € Fy = Fy(L,7,s, KV 1) with L < logd~!, r <
§te/Be 5 < 571/B log 61 satisfying |||G — Gyloolleo < 0.

2. there exists a fully connected network G € F, with L < logé=1, r < §=4/28« B < 51
satisfying |||G — G| ||, < 0.
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L A NEW APPROXIMATION RESULT FOR FUNCTIONS WITH SMOOTHNESS
DISPARITY

In this section, we prove the approximability of the sparse neural network for the Holder class of
function f € H2:5 (D, D), K).

T

Theorem 5. Let f € HZ:P ([0,1]",[0,1]™, K). Denote ryum = r + 7, and Bsum = B + B;. Then

T

for any integers m > 1 and N > (Bsym + 1) V (K + 1)e"um | there exists a network

fe -7:3 (L7 (rsuma 6(rsum + [ﬂsum])Na cey 6(rsum + |—5Su1n])Na l)a S, OO)

with depth
L=8+ (m + 5) (1 + ’VIOgQ (rsum \ Bsum)—‘)

and the number of parameters
5 < 109 (raum + Baum +1)" N (m + 6),

such that

f -m r “lrts — “lrysty,
1f = fllzoeo.agreum) < (2K +1) (14 riyy + Bayy) 670 N 277 4 K 3w/ (w6 N= /(5 rk5, ),

sum

We denote B = B+ pB) BB and 7 = (B + B)"1(rB + 7,3/). Before presenting the proof of
Theorem 5, we formulate some required results.

We follow the classical idea of function approximation by local Taylor approximations that have
previously been used for network approximations in Yarotsky (2017) and Schmidt-Hieber (2020).
For a vector a € [0, 1]" define

Pl fav)= Y (9% f)(ab)
0<]a|<B
0§|Q/|<5/

(u—a)*(v—-b)™ .

We use the notation the u = (u(7)) ;j to represent the component of the vector when the index j is
well understood. Accordingly we have v = (v));, a = (a)); and b = (b")); . By Taylor’s
theorem for multivariate functions, we have for a suitable £ € [0, 1],

flu,v) = Z (52 f)(a, b) (u—a)*(v — b)™

a' a/!
a:la|<f—1
alay|<B—1

+ > (0" f)la+é(u—a),b+E(v—b))
B—1<|a|<B
Br—1< e [<B)

(u—a)*(v—b)™
ol o '

o r « oy T a(j>
We have |(u — a)*| = [Tj_; [u; — a;[*"" < Ju— a2 and |(v = b)>| = [T}, Ju; — by <
|v — b\Loo‘". Consequently, for f € 22 ([0,1]",[0,1]", K),
’f(u,v) - Pﬁf/f(uvv)|

< ) (0T fa+{(u—a),b+{(v—b)) — 0T f(ab))

)

(u—a)*(v—b)™

al o
B—-1<|a|<pB
Br—1<]a,|<B)
(32)
<K (ju—al% v |v - b|%)
We may also write (31) as a linear combination of monomials
P Fav) = 3 eppuv, (33)
0<|y|<B
0§‘7/|<B/

24



for suitable coefficients ¢ -,. For convenience, we omit the dependency on a and b in ¢ -,. Since

a7V P f(0,v) | (uo.v—0)

Cyyv, = Z (6a+a/f)(a7 b) | | . | . N
S <oblal<s Yt (e =) (e =)
v < &l |<B,
Notice that since a € [0,1]", b € [0,1]™, and f € HZ ([0,1]",[0,1]", K),
|C’Y'7/‘ < K/ ’Y ’7/ and Z |c’7 ’Y/| < KH H Z Z (j)| K6r+7‘,7 (34)
~>0 i=1j=1~>0 (J)>O
~¥,>0
_ (~(D) (r) (1) (1)
where y = (v, ..., y")andy, = (v, ..., ).
Consider the set of grid points
D(M) = {ue(l) :(Egl)/Ml)jzl e and Ve(z) = (£ /MQ)J 1,...,
e = (VY efo,1,..., M),
£ = (02 dPy e {0,1,..., My} My = MP/P My = MPIPY
The cardinality of this set is (M7 + 1)" - (My + 1)™. We write u,q) (u Z(Z>)J 1,
and vye = (UE{Q)) )j=1,...,r, to denote the components of u,a) and v,e) respectively. Wlth
slight abuse of notation we denote w = (u,v) (w®, . u W )) e =
(e gy = (£(1) . 5(1) 5(2) 5(2)) and wp = (wéj))jd ____ i = (W, Va)) =
1 T 1
(ué(l)), cey 55(1)>’ é(g), cey 2(23) Define
PP f(u,v)
= PP f(w)
r+r, ) )
= > P [T Myl = w?))
weED(M) J=1
= 2 ity e £ ) | T = el —wgd Do | | TL( = Moot — v,
ueu),vl@)GD(M) j=1 j=1
where M; = My forj=1,...,rand M; = My forj=r+1,....7+r,.
Lemma 5. If f € H22 (10,1]7,[0,1]7, K), then | P55 f — fll oo < KMP.
Proof. Since for all w = (w() ... w(*™)) € [0, 1]+,
r+r, r+r, M;
ST - Milw® —w@ =TT D00 - Mylw® — /M) =1, (35)
weeD(M) j=1 j=1 £=0

we have

f(w)

fu,v)

by

ul(l) ’v£(2) ED(]\/[):
lu—u,(1) o <1/My
HV*VK(Q) Hoogl/]\fz

= v!'v!cy,~,, we must have

()2 (-b)

D+

H(l — My — u%)
=1

[T = Moo@ — v
j=1
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and with (32),

8,8, 8,8,
!P f(ua V) - f(u,v)’ < ue(l),vrj(lga)‘}éD(M): Pue(1)7ve(2)f(u7 V) - f(u,v)’
la—u,) le <1/My
IV=v,(2) lloo <1/M>

<K (M;B v M;ﬂ') —KMP.

In the next few steps, we describe how to build a network that approximates P?# f.

Lemma 6. Let M, m, be any positive integer. Denote M, = MB/B, My = Ma/ﬁ’, M= (M +
1)" (M3 + 1) and tsum = 1 + 7. Then there exists a network

Hat™»w ¢ F (2 + (m + 5) lrlOgQ(rsum)‘la lsum 2rsumMa rsuva 6rsumM7 s aGrSHmM? M)7 S5, 1)
with s < 3Trsum>M(m + 5)[logy(rsum)], such that Hat" € [0,1]M and for any u =
(u®, ... u9)) €[0,1)" and for any v = (v, ... v € [0,1]"

r

Haﬂ“mﬁhv)—'{(IIU/NG—WUU)—UgLD+)X

j=1

T

(IIU/A@-w“)—v2;>+)}
U,(1)5V,(2) ED(]\/[)

< rsum22_m~

j=1 [e’e}

For any U,ay, Vee € D(M), the support of the function (u,v) +— (Hat™"" (u,v)) is

moreover contained in the support of the function

U,(1),V,(2)

oww>(ﬁWM4wLﬁmQ(ﬁWMwwhﬁmQ

j=1 j=1

Proof. Step 1: (For r + r, = 1) Without loss of generality we consider the case when » = 1 and
r, = 0. We compute the functions {(u9) — é/Ml)Jr};iVlIfe:O and {(¢/M; — u(j))+}§iv1[f£:0 for the
first hidden layer of the network. This requires 2r(M; + 1) units (nodes) and 2r (M7 + 1) non-zero
parameters.

For the second hidden layer we compute the functions (1/M; — [ul) —¢/M;|); = (1/M; — (ul) —
0/My), — (£/My —u9)), ) using the output (u¥) —¢/M;) and (¢/M; —u'9)) from the output
of the first hidden layer. This requires 7(M; + 1) + r,(M2 + 1) units (nodes) and 2r(M; + 1)
non-zero parameters. This proves the result for the base case when r + r, = 1.

Step 2: For r+r, > 1, we compose the obtained network with networks that approximately compute
the following

T T

[Ta/n — 1@ —u§h e | | TT/M: — 09 — o5 )
=t =1 U,(1) ¥ (2) ED(M)

For fixed u,1) and v(2), and from the use of Lemma 8 there exist Mult:n‘”’ networks in the class
f(2 + (m + 5) ﬂOgZ(T + ’f’/).|, (7" + Try Q(T + 7"/),7" + Try 6(7' + T/)v 6(T + T/)a cery G(T + 71/)7 1))
computing ([T;_, (1/M; — [u) — upm)|)4) X (Il (/M2 — |v19) — vy(2)|)4) up to an error that
is bounded by (r + 7,)227™. Observe that we have two extra hidden layers to compute (1/M; —
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[u) — upm|)4) and (1/My — [v9) — v,e)|) 1) for fixed upn) and v, respectively, before we
enter into the multinomial computation by regime invoking Lemma 8. Observe that the number of
parameters in this network is upper bounded by 37(r + r,)?(m + 5)[logy (r + 7/)].

Now we use the parallelization technique to have (My + 1)" - (M7 + 1)" parallel architecture for
all elements of D(M). This provides the existence of the network with the number of non-zero
parameters bounded by 37(r + r,)2(My + 1)"(Ms + 1) (m + 5)[logy (r + 7,)]

By Lemma 8, for any x € R”", Mult; (x) = 0 if one of the components of x
is zero. This shows that for any w,m),vye € D(M), the support of the function
(u,v) ~ (Hat"™"(u, V))u,1).v,e is contained in the support of the function (u,v)

(TT5= (/A = 1) = ) T2y (1M = 09 = o)) ).
O

Proof of Theorem 5. All the constructed networks in this proof are of the form F (L,p,s) =
F(L,p,s,00) with F' = oo. Denote My = MP/®, My = MP/%, By = B+ B, and
fsum = 7 + 7,. Let M be the largest integer such that M = (M; + 1)"(Ms + 1) < N and
define L* := (m + 5)[1ogs(Bsum V fsum)]- Thanks to (34), (33) and Lemma 9, we can add one
hidden layer to the network Mon;;“"gsum to obtain a network

Ql € ‘7(2 + L*7 (T’ 6[6] C"sum;ﬁsum’ o 6[6] Crsumaﬁsum ) Crsumaﬁsum? M))?
such that Q1 (u, v) € [0, 1]M and for any u € [0, 1]" and for any v € [0, 1]™

Q1) - (w+1

= sum (36)
B 2)ul(1),vl(2>€D(M) ﬁ

with B := [2Ke"um]. The total number of non-zero parameters in the Q1 network is 6rgym (Bsum +
1)C + 42(Boum + 1)*C7 (L*+1)+C

rsum,Bsum Fsum s Bsum rsum,Bsum

Recall that the network Hat™™® computes the products of hat functions (splines) (Hr 1(1/My —
ul) — g ) ) (TT52y (1/Ma — [0 — vgea [) ) up to an error that is bounded by r2,,,27™. Tt

sum
requires at most 37r2 N L* active parameters. Observe that C,_ 5. < (Beum + 1)™== < N
by the definition of C,. 3 and the assumptions on N. By Lemma 6, the networks @; and Hat"
can be embedded into a joint parallel network (Qq,Hat™" ™) with 2 + L* hidden layers of size
(rsum, 6(rsum + [ﬂsum])Na B 6(rsum + [Bsum] )N, 2M) Using C?",B \ (M + 1)r <N again, the
number of non-zero parameters in the combined network (@)1, Hat™) is bounded by
6rsum(6sum + 1)Cr:;ulna/85urn + 42(/Bsum +1) Cium,ﬂhum(l}* + 1) +C, M + 37rsumNL*
< 42(rsum + Bsum + 1)20rsumﬁsumN(1 +L7)

< 84(rsum + /Bsum + 1)3+rsumN(m + 5)a

sumBsum

(37

where for the last inequality, we used Cy_ . 8o < (Bsum + 1)+, the definition of L* and that for
any x > 1, 1 4 [logy(2z)] < 2 +1logy(z) < 2(1 4 log(z)) < 2.

Next, we pair the (uya), Ve )-th entry of the output of Q1 and Hat"” and apply to each of the M
pairs the Mult,,, network described in Lemma 7. In the last layer, we add all entries. By Lemma 7
this requires at most 24(m-+5)M+M < 25(m+5) N active parameters for the M multiplications and
the sum. Using Lemma 7, Lemma 6, (36) and triangle inequality, there exists a network Q2 € F(2+
L* +m+ 6, (rsum, 6(rsum + [Bsum | )N, - - ., 6(Ysum + [Bsum )V, 1)) such that for any u € [0, 1]"
and for any v € [0, 1]

Q2(u,v) — > (W + %) ( ﬁ(l/Ml ) — u%) |)+>

U, (1)5V,(2) eD(M) Jj=1

(Ul/Mz o9 =i D+)
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IA

§ 2 2 —m
(1 + rsum + ﬁsum)

U£(1)7Ve(2)€D(M):

lu—u,(1)llec <1/M;

V=V, 2) lloc<1/M>

< (U am + o) 27 (38)
Here, the first inequality follows from the fact that the support of (Hat”r’(u,v))uz(mvz(z) is
contained in the support of (H§:1(1/M — |u@) — ugz)|)+ T2, (1/M — o — é{z)) )+> (see
Lemma 6). Because of (37), the network ()2 has at most

109(rsum + Boum + 1)°T N (m +5) (39)

non-zero parameters.

To obtain a network reconstruction of the function f, it remains to scale and shift the output entries.
This is not entirely trivial because of the bounded parameter weights in the network. Recall that
B = [2Ke"]. The network « — BM{ M x is in the class F (3, (1, M{ M3, 1,[2Ke"], 1)) with
shift vectors v; are all equal to zero and weight matrices W with all entries equal to one. Because of
N > (K +1)e"m  the number of parameters of this network is bounded by 2M7 MJ" +2[2Ke"] <
6.N. This shows existence of a network in the class F (4, (1,2,2M7M;',2,2[2Ke"], 1)) computing
a — BM{MJ (a — ¢) with ¢ := 1/(2M7] M3"). This network computes in the first hidden layer
(a—c) 4 and (c—a) 4+ and then applies the network = — BM7 M.’ x to both units. In the output layer,
the second value is subtracted from the first one. This requires at most 6 + 12N active parameters.

Because of (38) and (35), there exists a network Q3 in
]:((m + 13) + L*, (rsuma 6(rsum + [/Bsum—l)Na ey 6(rsum + [ﬁsum—I)Na 1))
such that

r

v~ Y P (T - = ui))y)
U,(1),V,(2) ED(]\/I) J=1

(TL/A = @ =) )

j=1

< (2K + 1)M7TMy (14 r2, + B2 (26)=m27 ™ forall (u,v) € [0, 1],

sum

With (39), the number of non-zero parameters of )3 is bounded by
109(rsum + ﬁsum + 1)3+'S“mN(m + 6)

Observe that by construction M = (M + 1)"(Mz + 1) < N < (3M1)"(3Mz)" = 3rsum M and
hence M8 < N—8/73raumB/T Together with Lemma 5, the result follows. O

L.1 EMBEDDING PROPERTIES OF NEURAL NETWORK FUNCTION CLASSES

We denote F (L, p) as the class of neural networks with L hidden layers and p € N2 nodes per
layer. The class F (L, p) is subset of F(L, p) with the sparsity parameter s.

For the approximation of a function by a network, we first construct smaller networks computing
simpler objects. Let p = (po, ..., pr4+1) and p’ = (p, . .., 7). To combine networks, we make
frequent use of the following rules.

Enlarging: F(L,p,s) C F(L,q, s’) whenever p < q componentwise and s < s.

Composition: Suppose that f € F(L,p) and g € F(L',p’) with pr41 = pj. For a vec-
tor v. € RPL+t we define the composed network g o oy (f) which is in the space F(L + L' +
L, (p, Py, .-+, P741))- In most of the cases that we consider, the output of the first network is non-
negative and the shift vector v will be taken to be zero.
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Additional layers/depth synchronization: To synchronize the number of hidden layers for two net-
works, we can add additional layers with an identity weight matrix, such that

./T"(L,p,S) C‘F(L+q7 (p07"'7p07p)75+qp0)' (40)
—_———

q times

Parallelization: Suppose that f, g are two networks with the same number of hidden layers and the
same input dimension, that is, f € F(L,p) and g € F(L,p’) with pg = p|,. The parallelized
network (f,g) computes f and g simultaneously in a joint network in the class F (L, (po,p1 +
Pl PL41 T PLy1))-

L.2 TECHNICAL LEMMAS FOR THE PROOF OF THEOREM 5

We use F (L, r) to denote a fully connected network with L deep layers and r € Ng +2 representing
the nodes in each layer.

The following technical lemmas are required for the proof of Theorem 5. Lemma 7, Lemma 8, and
Lemma 9 restate Lemma A.2, Lemma A.3, and Lemma A.4 from Schmidt-Hieber (2020), respec-
tively.

Lemma 7. For any positive integer m, there exists a network Mult,,, € F(m+4,(2,6,6,...,6,1)),
such that Mult,, (x,y) € [0,1],

‘ Mult,, (z,y) — my| <27™ forallxz,y € [0,1],
and Mult,,, (0, y) = Mult,, (x,0) = 0.
Lemma 8. For any positive integer m, there exists a network

Mult,, € F((m + 5)[logy 7], (r,6r,6r,...,6r,1))
such that Mult, € [0, 1] and

m

<r?27™. forall x = (x1,...,7,) €[0,1]".

T
Mult;, (x) — H Z;
i=1

Moreover, Mult, (x) = 0 if one of the components of X is zero.

The number of monomials with degree || < «y is denoted by C, . Obviously, Cr, < (y + 1)"
since each «; has to take values in {0,1, ..., |v]}.

Lemma 9. For v > 0 and any positive integer m, there exists a network
Mony, ., € F(1+ (m +5)[logy(y V1)1, (1,6[7]Crprs - .., 6[71Cr iy, Cry),

such that Mony, € 0,119~ and

‘ Mony, (%) — (X¥)|a|<~ N <~%27™ forallx € [0,1]".
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