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Appendix

This document contains the materials supporting and extending the discussion in the main text. It is
organised as follows:

* Appendix A collects the proofs to all the Theorems and Corollaries of the main text.
Additionally, we elaborate further observations derived from our theoretical framework.

» Appendix B provides all the details of our experimental setup.

* Appendix C gathers additional results supporting the experiments described in the main
text.

Figure 4: The multitask solution for the toy challenge in Figure 1. The same network has been used.
This demonstrates that a multitask solution exists, despite standard optimization algorithms are not
able to find it.
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A PROOFS AND FURTHER DISCUSSION

A.0.1 NOTATION AND FORMALISM

First, we shortly recap the notation and formalism introduced in our discussion.

We consider a sequence of supervised learning tasks 77, ..., 7, each associated with a dataset
Dy ={(z1,v1),-..,(Tn,,Yn,)}, where (z,y) € X x ). We describe a neural network by its set of
parameters ©;, C R” P denoting the total number of parameters in the network. We tipically use the
index t to refer to the task currently being learned and o to a general previous task.

We use bold to indicate a vector or a matrix, e.g. 0 is the null vector. 8 refers to a general value taken
by the parameters, and 6; is the solution found on task 7;. Moreover, we write A; := 6; — 0;_1, i.e.
the update to the parameters following task 7;. Simply, Ay = 0, 6, being the initialisation point.

We use I;(z,y, 8) to denote the ¢-th task loss function, and write the average loss over the dataset
as £,(0),1.e. L(0) = n% St l(xi, yi, 0). We shorten the loss measured at the end of training

L:(0:) to LF.

The vector of first-order derivatives or gradient of the loss with respect to the parameters 6 is

VLi(0) = Matée) and the matrix of second-order-derivativatives or Hessian of the loss with respect

2
to the parameters 6 is H;(6) = 9 gééa) . In the interest of space, we shorten the Hessian evaluated at

the end of training H,(6;) to H}.

In our discussion we use w.l.o.g. ©; C ©. We will now justify this choice. Consider the case in
which the network is somewhat different for each task (e.g. in the case of Progressive Networks
(Rusu et al., 2016) a new component is added to the network for each task). We then write ©; # O;

for any i,j € [T]. Define © = Ule Oy to be the final parameter space. Accordingly, each task
update A, belongs to a subspace of the final parameter space, i.e. 8; € ©, C ©. Our analysis applies
to a general ©, thus carrying over to any choice of ©;. Intuitively, using new parameters for each
task introduces orthogonality between the parameters (and correspondingly their update vectors) over
task-specific dimensions in ©. In order to be comprehensive, we use a general © in our analysis.

A.1 OMITTED PROOFS

A.1.1 APPROXIMATIONS OF FORGETTING

In the following, we show the steps leading to Equation 3.

We start from the Taylor expansion (Equation 2) of the loss around 6,:

1
gO(Qt) = (9,5 - OO)TVEO(OO) + 5 (07& - OO)THZ(Gt - 00) + O(Hat - OOHB)

Using Assumptions 1-2 we write:

Eo(t) = % (6: — OO)T H7 (6; —60,) + O - )
1 t T t
=3 ( > AT> H;( > AT> + 0@ -€)
T=0+1 T=0+1
1 t—1 T t—1 1
= 5 ( Z A’T) Hz ( Z AT) +§A2-H2At+
T=0+1 T=0+1

8o(t_1)

t—1 T t—1
1 * 1 *
+5 ( > AT> HOAH—QA{HO( > AT> +0(8 - €)

T=0+1 T=0+1

1 t—1 T
=&t = 1) + S ATH A, + ( > AT> HIA; + O -€)
T=0+1
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Based on this formulation, we characterize the average forgetting as follows:

1< 1 1
Elt) = n ;80(7» = t&%"'t Z Eo(t)
- ES [go(t—1)+1AIH*At+ ( Z AT> HIA, + O - )]
to:l 2 ’ T=0+1
1 t—1 1 t—1 1 1 t—1
— > [E,(t—1)] + 72 [2A{H3At + = ; KT 3 ) HX A, | + O -€)

t—1

1
At D (01— 0,)TH, | Ay +O(6-€)
o=1

t—1 N
=1+ AT [ZH

T

== ((tl)-c‘f(tl)Jr ;AJ(ZH;)AtJrvTAt) + 0O -€)

A.1.2 THEOREM 1

We want to prove the following statement.

Theorem I (Null forgetting). For any continual learning algorithm satisfying Assumptions 1-2 the
following relationship between previous and current forgetting exists:

E),...,E(t—1)=0 = E(t) AT< ZH*)At

Proof. We prove the above statement by induction. We prove the base case for £ = 1 and ¢ = 2, since
some terms trivially cancel out for ¢ = 1.

Base case 1: £(1) =0 = £(2) = LATH} A,. Notice that by definition, £(1) = £ (1) =

Using Equation 3 we can write £(2):
1
E(2)=€E(1)+ §A5(HT)A2 + (60, —6,)THT A,

1
=0+ JATH{A; +0

Base case 2: £(1) = 0,E(2) =0 = £(3) = $Al(:Hf + 1 H3)A..
Using the last result from case 1, we have that :

1
£(2) = SATH{ Az =0

The latter equation implies that AJ H! = 0. Plugging it into the value of £(3) given by Equation 3:

2

1 1

€)= (2 £+ GAIH; + HI)Aq + 3062~ 007 H; A
t=1

1 1 1 1 1 T
=0+ -AI(SH} + -H})A; + - ATH{ Az + - (02 — 02) H A3
2 3 3 3. ’ 3 =

=0 =0
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Induction step: if E(T) =0 VT < tthenE(t) >0
We start by writing out £(t).

t—1
5(t):1<(t—1)-6(t—1)+ SA] ZH* A+ > (0 1—07)TH:At>

t
T=1 T=1

1 t—1 . t—1
=0+ 5A{(Z HY)A + Y (A +- -+ 8)THS A,

The induction step is accomplished if > " (Ar ) + -+ Ay )THF = Y 2 (A + - +
A;_1)TH* = 0. Consider now the case in which Zt;:ll(ATH +---+A;_1)TH* # 0. It follows
that:

t—2
S (Arii++ A1) THE£0

=1

STAT H Y (Ar+ o+ AL)THE£0

Multilying by A;_; on the right we get:
t—3

Z A HIA; 1 + Z(ATH +o 4+ A )THIA, 1 #0TA,
= T=1

We compare this result with the value of £(¢ — 1) given by Equation 3:

1
E(t—l):H((t—Q)-E(t—2+ AT ZH*Atl—i-Z T+1+~-~+At1)TH7*_At1)

t—2

1
(0 + Al (Z H)A 1 + Z(AT+1 o+ A1) THE A1) #£0
T=1 T=1

Ti-1
We arrived at a contradiction, which proves the induction step and concludes the claim’s proof.

A.1.3 THEOREM 2

In order to arrive at the statement of Theorem 2 simply notice that, by definition, £(1) = 0 for any
continual learning algorithm, and apply repeatedly Theorem 1. We briefly go through all the steps.

By £(1) = 0 and Theorem 1, £(2) = Ag(Zizl H})A,. By assumption 1-2, all Hessian matrices
are positive semi-definite and, accordingly, £(2) > 0. It follows that A is forgetting-optimal if and
only if £(2) = 0. Recursively applying this argument, if A is forgetting-optimal then it holds:

1
= A;(Z HY)A2 =0
o=1

T-1
=AL() _H)Ar =0
o=1
as stated in Theorem 2.

A.1.4 THEOREM 3

We wish to prove the following statement regarding Orthogonal Gradient Descent (OGD) Farajtabar
et al. (2020).
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Theorem 3. Let A : [T] — © be a continual learning algorithm satisfying Assumption 1. If
A(t) = A, satisfies Equation 5, then it satisfies Equation 4.

We start by recalling the OGD algorithm. Let D, = {(x1,v1), -, (®n,,Yn,))} be the dataset
associated with task T, and fg(x) € R¥ be the network output corresponding to the input . The
gradient of the network output with respect to the network parameters is the P x K matrix:

Vefo(x) = [Vofs(@), -+ . Vofs (z)]

The standard version of OGD imposes the following constraint on any parameter update u:

<’u’a Ve.fgo (w1)> =0

forall k € [1, K], z; € D, and o < t, t being the number of tasks solved so far. If SGD is used, for
example, the update u is the gradient of the new task loss for a data batch. Notice that the old task
gradients are evaluated at the minima 6,,.

Proof Recall the definition of the average loss:

1 &
L:(6) = - th(wi,tayi,taa)
i=0

The Hessian matrix of the loss H(0) can be decomposed as a sum of two other matrices (Schraudolph,
2002): the outer-product Hessian and the functional Hessian.

=

n

H,(0) = nit > Vofo(w:) V3] Vofe ()T + ni SN Vel Vafs (i), )
i=1

ti=1 k=1

where ¢; = l(x;,y;) and V%& is the K x K matrix of second order derivatives of the loss ¢; with

respect to the network output fg(x;). At the optimum 6; (Assumption 1) the contribution of the
functional Hessian is negligible (Singh et al., 2021). We rewrite the goal of the proof using these two
facts:

ATH;A; =0

1 &
Af <n > Vofo(xi) [V3i] Voo (wq;)T) A =0 (10)
0 =1

Farajtabar et al. (2020) apply the OGD constraint (Equation 5) to the batch gradient vector gg = VLB,

Following this choice A; = f;l —ngs, where 7 is the learning rate. Clearly, if, for all s, g, satisfies
Equation 5, then A, satisfies it. Hereafter, we ignore the specific form of A, proving the result for a
broader class of algorithms for which A, satisfies the OGD constraint. Continuing from Equation 10:

X (Z VoAl fo(x:) [Vit] Voo (i)' At)

n
2 \i=1

L (Z Vo [AT [Vofs(x:), -+, Vefs (x:)]] [V3li] Vafe (:vi)TAt>

n,
° \i=1

1 [ &
— [ D Vo |AIVofs(@i), -+, ATVaf (i) | [V3] Vofo (x:)T Ay | =0,

To

=1 =0 =0

where A] Vg f§(x;) = 0 is the OGD constraint, which holds for any &, 4 and o < ¢. This concludes
the proof.

A.1.5 COROLLARY 1

Consider an algorithm A satisfying Assumptions 1-2. By Theorem 3 we know that, if A(t) = A,

satisfies the OGD constraint, then ATH*A; = 0Vo < t. Consequently, AZ(ZZ; H)A; =0.By
Theorem 2, it follows that £(t) = 0 V¢ € [T].
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A.1.6 ON THE VALIDITY OF OGD-GTL

Instead of considering all the function gradients with respect to all the outputs {Vg fa(z)|k €
[1,K],x € D,}, Farajtabar et al. (2020) also consider a cheaper approximation where they impose
orthogonality only with respect to the index corresponding to the true ground truth label (GTL). We
show this can be understood via fairly mild assumptions, if the loss function is cross-entropy.

For a cross-entropy loss, fg(aci) is the log-probability (or logit) associated with class k for input
x;. The probability p(y; = k|x;; 0) is then defined as (p;); = softmax(fg(x;))s. Recall, from the
proof of Theorem 3, that the theorem statement can be equivalently written as:

Af (711 i:vefe(wi) [V34:] Voo (ffci)T> Ay=0
2 =1

For a cross-entropy loss the Hessian of the loss with respect to the network output is given by:
V3t = diag(p;) — pip]

Without loss of generality, assume index £ = 1 corresponds to the GTL. Towards the end of the
usual training, the softmax output at index 1, i.e., p; = 1. Let us assume that the probabilities for the
remaining output coordinates is equally split between them. More precisely, let

e — 1 N
D2, yPK K—1 .
Hence, in terms of their scales, we can regard p; = O(1) while po, -+ ,px = O (K~'). Further-

more, (1 —p;) = O(1) Vi € [2--- K]. Then, a simple computation of the inner matrix in the
Hessian outer product, i.e., V;é = diag(p) — pp ", will reveal that diagonal entry corresponding to
the ground truth label is O(1), while rest of the entries in the matrix are of the order O (Kﬁl) or
@ (K ’2) — thereby explaining this approximation. Also, we can see that this approximation would
work well only when K > 1 and does not carry over to other loss functions, e.g. Mean Squared
Error (MSE). In fact, K = 2 all the entries of this matrix are of the same magnitude |p;(1 — p;)|,
and for MSE simply V%& =Ig.

A.1.7 THEOREM 5

We start by proving Theorem 5. Before proceeding, we introduce the special notation to be used in
the proof.

Notation: given some a X b matrix C we identify with vec(C) its a - b vector form (vec(-) is
the vectorisation operator). We use the standard input X output in order to determine the matrices
dimensionality. Moreover, for simplicity, we consider all the network layers to have width D (the
same analysis can be done for layers of different widths). As an example, the gradient V1 £4(0) is
a tensor of dimensions D x D x 1, and vec(Vyy:L£;(0)) is a vector of size D?. Finally, we use 0
to refer to the vector of network parameters (the vectorization operation is implicit), thus Vg £;(8),
shortened to V.L;(0) is a vector of size P.

Proof We recall the GPM algorithm. Let z:7* = o(W'"x!) be the representation of a;, by layer
[ of the network (ac? = x;). Notice that the GPM algorithm does not allow for bias vectors in the
layer functions, thus the set of network parameters is {W?, ..., WX~1}. The GPM constraint on
the weight matrix update AW! reads:

(AW zly =0 (11)
for all network layers [, ; € D, and all previous tasks 7,, 0 < t.

The optimization path from 8;_; to 8, is the sequence of parameter values {0}, .,,...,0:", .},
with parameter updates ét(i) =0;_,_,—0."1 ., Inthe following discussion we drop the task index
and simply write () = () —@(=1)_ Similarly, Wi = w1 4 dt(i) [1] for the layer parameters.
Observe that:

vee(Viyi1 Lo(00 DN T vec(8D[1]) =0 VI = VL0760 =0
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and, similarly:
vee(8{ 1)) TH, (W= D) vee(8{[1]) = 0 V1
— 07 block-diag(H,(0"3".,)) 6 = 0
Thus it is sufficient to prove the following two statements, for all ¢ € [1, S;], all layers [, and all 0 < :

vee(Viyt Lo(00 DN vec(8D[1]) =0 (12)
vee(8S 1) TH (WD) vec(8L”]1]) = 0 (13)
By the linearity of the derivative Vyy:1L,(8071) = 7%2221 Vwilj, where (; =

lo(xj,v,;;07~1)). We unpack V1, using the chain rule:
Vwily = Vi foi-n (x5) 0 Vil;
Again, by the use of the chain rule we have:

=0T (4— . I(i—
vvec(W").fB(ifl) (xj) = vvec(Wl) (Wl w]’( 1)> dlag (U/(Wl wj( 1))) . Vw;‘*lfe(i*l)(mj)

=A =:C1+1

(i—1)T

G—-1)T i—
= vvcc(Wl) (Wl iBé( 1)> “A- Cl+1
— (w;(i—l) ® ID) A - Cl+1
= (@ @ 4)-Gn

where A contains the element-wise derivatives of the activation function o and Ip is the D x D
identity matrix. Expanding recursively the layer activation:

1(i—1) _ 1-1(i—1)7, 1=1(i-1)
x; =o(W x; )

1=
J =
As a consequence of the GPM constraint:

(i—-1)T
U(WO iL’j)

(i—1)T (i—1) T
wo ey = (W(?JF(WO —Wf)) z; =W z;,
W0 being the value of W at the optimum of task 75, i.e. 8,. By a recursive argument we then get:

a:jl(i_l) = J(WOOij) = cc}

1(i-1) _ 1—17 _1—1\ _ 1
T; =o(W, T )7mj

In a nutshell, the GPM constraint freezes the network activation vectors to their value at the optimum,
for each input stored in memory. Using this result, the expression of the output gradient simplifies to:

Vieew) fou-n (5) = (25 ® A) - 141 (14)
We are now ready finalize the first point of our proof (Equation 12).

vec(VWz,Co(G(i_l)))T vec(ts(i) 1)) =

(Vvee(w)Lo(80 )T vec(8P[1]) =
.

Mo

1 )
23wl © A)- G Vgl | vec(8O0) =
0]21

1 & :
L3 vee( O (@l @ A) - Gy - Vgt =
o =
1 No .
— Z Vec(:cé» SO A)- ¢y -Vl =0 (GPM constraint, eq. 11)
No = ——

=0
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We now proceed to the second point. As before, we decompose the Hessian into the sum of outer-
product and functional Hessian:

H,( Zvefe x;) [V34;] Voo (2;)T +fZZ [V #t3], Vo fs (x))

Ozykl

In particular we are interested in the block-diagonal elements of the Hessian matrix, i.e. H,(W*'(~1)),
When ReLU or linear activation functions are used the functional part does not contribute to the the
block-diagonal elements, as it can be seen from Equation 14:

Vivifou-n (2)) =V (@5 © A) - Giy1)
= (2} © [Vwi A]) - G
A is a diagonal matrix, and if 0 = ReLU then:
. i—1)T (-1
A, dL e DT Y] > 0
0 otherwise
Consequently, the gradient with respect to the layer weights W'*~1) is null. Similarly, if the
activation function is linear, A is simply the identity matrix, and the gradient is 0. For a general
activation function o, the diagonal entries of A can have a non-linear dependence on Wii=1) and a

case-by-case evaluation is required. Hereafter, we consider the piecewise-linear and linear case, for
which the functional Hessian is block-hollow.

We can thus ignore the outer-product component in the Hessian layer blocks Ho(Wl(i_l)) and write:

H,(W'=) = — Z Vwifoun (@) [V3] Vi fon (25)7

j 1
- TTZ ; ® A) - G [V34] (25 @ ) Gl
Oj 1
We can now finalise the second point in our proof (Equation 13).
vece(6\) (1) TH, (vec(WH= 1)) vee(8(1]) =

No

1

= vee(@ )T | D7 (@] © A) - Ga] [V34] [(2) © A) - Ga] | vee(d” 1) =
= ni O ({Vec (8 )T(af @ A)- Cl+1D (V3] ([(3317 ®A) - C]’ vee(s!" U])) =
ni Z vee(@! 8" 1] A) - Gy | | [V365] ([(@} @ A) - Gaa] Tvee(s 1)) =0
j=1 N—_——

=0

Once more, azéT 5t(i) [1] evaluates to 0 following the GPM constraint. We have evaluated only the right
side of the expression (as it is enough to prove the equivalence), however notice that the expression is
symmetric.

Notice that our proof applies to any o < ¢ and any 4 € [1, S¢] and layer [ in the network, since the
GPM constraint also holds for all these cases. We have proved Theorem 5 for all network with
piecewise-linear and linear activation functions. We leave the case of other activation functions to the
reader.

A.1.8 THEOREM 4

We are now ready to prove that, under Assumptions 1-2, algorithms satisfying the GPM constraint
also satisfy the null-forgetting constraint (Equation 4, when the Hessian matrices are block diagonal.
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Recall the null-forgetting constraint (Equation 4):
t—1
A(t) = Ay = argmin E(t) — AI(Z H))A,

o=1

0

By Assumption 1, we know H} coincides with the outer-product Hessian:
H, (6 Zvefa (z;) [V3;] Voo, (x;)7

Thus the statement to prove is:

t—1
AI(Z H})A; =0
o=1

t—1 No
= Al an Zvo.fe (z;) [V34,] Voo, (x;)T)A; =0
o=1"°
t—1 No
= an ZAJ Vo fo, (ZBJ) [fo ] Ve fo, (:L'J) )At =0
o=1 ¢ j=1

— Zn i 25 Vofeo(«’fj) (V3] Vofo, (x Zé(

o=1 j=1 i=1

= Zn i(Zé( Voo, w3)> (V345 <Zvefe (a;)760 >:

o=1 j= i=1 i=1

Being the Hessian matrix block-diagonal by assumption, it is sufficient to prove:

vee(8("[1])TVw fo, () = 0
where we adopt the notation from the proof of Theorem 5. Using the result in Equation 14:

vee(8 1)V fo, () = vee(8 ()T (@} © A) - Gy
= vee(@}] 81" [1]A) - 11 = 0,
where the last equality follows from the GPM constraint.
A.1.9 COROLLARY 2

Finally we go over the proof of Corollary 2. We start by considering the following Taylor expansion:
i i-1 i-1 i, Lea i-1 i
Eo(01)1 ) = Eo(011)) + VL6506 + 581 THL(0,1,1,)81" + O(1157" )

By the GPM constraint, VL, (Gt 1_,t)76( = 0 and Jt(i)THo(B,fi]gt)Jt(i) = 0, as by assump-

tion block-diag(H,(6\";",) = H,(6\";".,). Consequently, the expression of forgetting on the
optimization path simplifies to:

£o(01, ) = & (0/70) + O(I8”)

For sufficiently small step sizes (often ||5,Ei) || € O(n), where 7 is the learning rate), the approximation
error is negligible, and, by recursively applying the above identity we obtain: &,(0;) = £,(0,) = 0,
which proves the statement.

A.2 FURTHER DISCUSSION
A.2.1 NON MONOTONIC NULL-FORGETTING

The null-forgetting constraint presupposes that forgetting is zero after learning each task, i.e. £, (t) =
0 for any 7 and ¢ (with 7 < t). Here we consider what happens when £(7) > 0 for some 7 < t.
Specifically, we want to derive a new constraint on the update A such that E(7 + 1) = 0.
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Theorem 6 (Non monotonic null-forgetting constraint.). Let A : [T] — © be a continual learning
algorithm satisfying Assumptions 1-2. Furthermore, for the first T — 1 tasks it holds that £(k) = 0.
Let A(T) = A; s.t. E(1) > 0.

Then for an update A(t + 1) = A, 41, E(t + 1) = 0 if and only if:

A =2z— (Z H))'BA,, (16)

o=1
for any vector z satisfying the condition (3. _, H%)z = 0. B is the matrix characterising (1), i.e.
E(t) = £AIBA,.

Proof. By Assumptions 1-2 we can approximate £(7 + 1) using Equation 3:

8(7+1):T+1

T T—1
1
(70 + GATL S HDA L+ 360, - 0)TH;A L )
o=1

o=1
Using £(k) = 0¥k < 7 and Theorem 1 we have £(7) = ATBA, = C > 0, where we define
B = (Zg;ll H}). Moreover, notice that:

7—1 T—1
Vr = Z(OT - OO)THO = Z AIH; + v
o=1 o=1

From Theorem 1 it follows that v,._; = 0 and thus:

1 1 T
£+ 1) = 1 (7004 FATL(CH)AL + ATBA L, )
o=1

Notice that this expression is quadratic in A, and thus £(7 + 1) admits a closed-form solution.
We get:

argming  E(T+1) =2z — (Z H)'BA,,
o=1
where z is any vector satisfying the condition (}]_, H})z = 0. Notice that if £(7) = 0 then
BA, = 0 and 6 reduces to the null-forgetting constraint from Theorem 2. Intuitively, in order to

reverse forgetting, the algorithm has to retrace its steps along the harmful directions in the previous
update (i.e. BA,).

The next Corollary extends the result in Theorem 1 to the case of non-monotonic forgetting. It follows
directly from Theorem 6 and the formulation of forgetting in Equation 3.

Corollary 3 (Non monotonic null-forgetting.). For any continual learning algorithm satisfying
Assumptions 1-2 the following relationship between previous and current forgetting exists:

t+1
(), Et—2)=0,Et—1)>0,EF) =0 = E(t+2) = ;A;Q(tiz : ZH;)AW
o=1

A.2.2 IMPLICATIONS OF NULL-FORGETTING

Theorem 1 describes forgetting in terms of the alignment between the current parameter update and
the column space of the Hessians of the previous tasks.

LetH., := 27 - 3"~ H denote the average Hessian matrix of the old tasks. Intuitively, the higher

the rank of ﬁ*<t the less capacity is left to learn a new task. In order to see this, simply consider the
constrained optimization problem:

Ay =argminacg Li(A +6;-1)
st. ATHL, A, =0

The constraint on the parameter update effectively restricts the search space from O to the P — R-
dimensional subspace orthogonal to the column space of ﬁit, where R = rank(ﬁit). Thus, the
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Figure 5: Rank and effective rank for various threshold A values on the Rotated MNIST challenge,
learned by SGD. The values are averaged over seeds.

higher R, the smaller the set of feasible solutions for the current task. Importantly, this formulation
ignores potential constructive interference between tasks, which is a limitation of many parameter
isolation models (Lin et al. (2022) do follow-up work on GPM addressing this problem). This
condition is necessary under Assumption 1-2, where forgetting is always non-negative and thus there
can be no constructive interference. However, in the more general setting, the condition reflects a
worse-case scenario, and exploiting a constructive intereference of task may save network capacity
for future tasks.

Methods enforcing sparsity on the parameter updates (Schwarz et al., 2021) induce a transformation
of the loss gradient vector and Hessian matrix similar to parameter isolation methods. In practice,
the column space of H,, is a subset of the task parameters O,. Thereby, the alignment of the current
update to the column space of the average Hessian becomes simply a function of the overlap with the
previous updates ||A; — 6;_1||p and the average Hessian rank is R < (22;11 ro) - P, where 1, is the
fraction of active connections for task 7. If the average Hessian rank is not maximal, Theorem 1
suggests that r; > (1 — (Zz;ll 7)) can be achieved without suffering forgetting.

In Figure 5 we plot the evolution of rank(ﬁit) over t for the Rotated-MNIST challenge. Additionally,
we evaluate the effective rank of the average Hessian for multiple threshold A values, which better
captures the effective dimensionality of the matrix column space.

B EXPERIMENTAL DETAILS

B.0.1 EXPERIMENTAL SETUP

The experiments are designed to support the theoretical contribution of the paper. The specific
experimental design choices are motivated by the theory and by the common practices in the field.
Especially when providing results on existing methods (Section 5.2), we employ similar experimental
setting as in the original paper. Following is a detailed description of our experimental setup, which
is aimed at facilitating reproducibility. To that aim, we also provide public access to our code’.

Datasets.

1. Rotated-MNIST: a sequence of 5 tasks, each corresponding to a fixed rotation applied to
the MNIST dataset. We fix the set of rotations to [—45°, —22.5°, 0, 22.5°,45°], in line with
(Farajtabar et al., 2020). In order to be able to compute the network Hessian matrix, the input
is downscaled to 14 x 14. The output space is shared across task, and has 10 dimensions,
one for each digit. We employ the standard Pytorch train-test split, loading 60, 000 inputs to
train each task.

2. Split CIFAR-10: a sequence of 5 tasks, each corresponding to a different pair of labels in
the CIFAR-10 dataset. The splits are fixed across experiments: classes (0, 1) for the first

'We hide the repository link for the double-blind review.
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task, (2, 3) for the second one, and so on. The output space is shared across task, and has
dimensionality 2. We employ the standard Pytorch train-test split, loading 5, 000 x 2 inputs
to train each task.

3. Split CIFAR-100: a sequence of 20 tasks. Similarly to Split CIFARO-10, each task corre-
sponds to a different set of 5 classes from the CIFAR-100 dataset. The splits are fixed across
experiments. The output space is shared across task, and has dimensionality 5. We employ
the standard Pytorch train-test split, loading 500 x 5 inputs to train each task.

Network architectures. Overall, we employ 3 different network architectures in the experiments:
an MLP, a CNN, and a Transformer. We here describe the implementation of the three networks.
In Table 3 we provide an overview of the different hyperparameter settings used: each experiment
configuration takes one row of the table.

1. The MLP has 3 hidden layers with 50 units each. Experiments with similar MLP architec-
tures are widespread in the literature (Farajtabar et al., 2020; Saha et al., 2021; Mirzadeh
et al., 2020b; Hsu et al., 2018). However, we reduce the conventional layer width from
100 (or 200) to 50 neurons, while increasing the depth by one layer (from 2 to 3), thereby
lowering the network size. Our network has a total of 18, 010 parameters. In the GPM exper-
iments we do not include bias terms in the network, thus reducing the size further to 17, 800.
We train this network using SGD, SGD', OGD and GPM with the same hyperparameter
configurations.

2. The CNN used is a ResNet 18 (He et al., 2016). We adopt the same implementation as
(Mirzadeh et al., 2020b; Saha et al., 2021; Lopez-Paz & Ranzato, 2017), which is a smaller
version of the original ResNet18, with three times less feature maps per layer. In total, the
network has around 0.5M parameters. This network is trained using SGD and SGD' on
Split CIFAR-10 and Split CIFAR-100 (the output layer size is changed accordingly). The
same hyperparameter configuration is used for both SGD and SGDT in order to make a fair
comparison.

3. The Transformer is a ViT (Dosovitskiy et al., 2020). The use of Transformers is not
as widespread yet in the continual learning literature. We refer to a publicly available
implementation of a ViT in Pytorch?, which is again a smaller version than the original.
The network has around 12M parameters. We retain the standard configuration provided
in the reference implementation for almost all hyperparameters, except we simplify the
optimization scheme. We use SGD instead of the Adam optimizer, no weight decay or label
smoothing and a simple two-steps learning rate decay schedule. We train this network for
SGD and SGD' again on Split CIFAR-10 and Split CIFAR-100, changing the output layer
accordingly.

Metrics. Finally, we recapitulate the metrics used in the paper. We measure forgetting on a specific
task as &,(t) = L,(0;) — L and average forgetting as £(t) = % Zf;ll Eo(t). In the literature,

L 1 -
forgetting is often measured as BWT = 71 23;11 (@o,0 — ar,0), Where a; ; denotes the accuracy

on task 7; for @ = 6;. In our results we also report forgetting in terms of accuracy, in order to
increase the interpretability of the scores. Simply, we replace the definition of forgetting with

Eo(t) = oo —aroand E(t) = % 22;11 E4(t). Finally, in accordance with the convention in the

. 1
literature, we also measure the average accuracy over tasks as a(t) = n 22:1 ay,o. For all these

scores we evaluate the loss and accuracy on the test set.

Selection of k in experiment 5.2 When comparing OGD, GPM and SGDt we have to be careful in
selecting the number of new vectors to store in the memory for each task, since each method uses
different vectors in practice. We decide to threshold the spectral energy of the addition to the memory,
using € as a cutoff parameter. In practice, instead of controlling , the number of eigenvectors, we
control , the portion of spectral energy left out, where spectral energy is the squared eigenvalues norm
. From the eigendecomposition, we obtain the cumulative spectral energy and we make a cut keeping

2Found on Github: https://github.com/omihub777/ViT-CIFAR. Last accessed in May 2023.

24


https://github.com/omihub777/ViT-CIFAR

Under review as a conference paper at ICLR 2024

Table 3: Experiments configurations

Network Dataset Algorithm Learning rate Epochs
SGD 0.01 5
SGD {0.01,107°} 15
SGDf, ¢ = 0.01 0.01 5
Rotated- SGDf,e=0.01  {0.01,107°} 15
MLP ’ : YL
MNIST GPM, € = 0.01 0.01 5
GPM, e =0.01  {0.01,107°} 15
OGD-gtl, e = 0.01 0.01 5
OGD-gtl, e = 0.01  {0.01, 107°} 15
SGD {0.1,0.001} {10/20,1}
Split SGDT, k=10 {0.1,0.001} {10/20,1}
CIFAR-10 SGDT, k = 20 {0.1,0.001} {10/20, 1}
ResNet8 _ SGD {0.1,0.001}  {30/60/70, 10}
Split SGDf, k =10 {0.1,0.001}  {30/60/70, 10}
CIFAR-100 SGD, k = 20 {0.1,0.001}  {30/60/70,10}
SGD {0.1,0.001} {10/20,1}
Split SGDf, k=10 {0.1,0.001} {10/20, 1}
CIFAR-10 SGD', k =20 {0.1,0.001} {10/20,1}
ViT _ SGD {0.1,0.001}  {15/25,5/10}
Split SGDf, k =10 {0.1,0.001}  {15/25,5/10}
CIFAR-100 SGDf, k = 20 {0.1,0.001}  {15/25,5/10}

Table 4: All the experiments in the table are repeated over 5 seeds, namely 11, 13,21, 33, 55. When
the same learning rate is used for all the tasks it is written as a single number. Otherwise, we use
a different learning rate for the tasks following the first and we indicate this as {71, 2.7} in the
table. The batch size is 10 unless stated otherwise. The epoch number follows a similar scheme:
if a different number of epochs is used between the first and remaining tasks we write {e1, ea.7}.
Moreover, if the learning rate is decayed while learning a task we write the decay schedule in the place
of the epoch number as {s1/s2/... /e1, st 1/s2.1/ ... /ea.7}, which means that the first learning
learning rate is decayed after s} epochs and then again s?, until reaching the final epoch e;. Similarly,
for the remaining tasks, the learning rate is decayed after s3 .- epochs and then again 3., and so on
until reaching the final epoch es.7.

1 — € of the total energy. In this way, the size of the ‘protected subspace’ depends on the task, and in
particular on the geometry of the optimum.

B.0.2 HESSIAN COMPUTATION AND EIGENDECOMPOSITION

The loss Hessian matrix plays a key role in our theoretical framework, and thus its computation is
necessary to our experiments. However, the Hessian matrix has a high memory cost, i.e. O(P?) (P
being the size of the network). Moreover, SGD' uses the principal eigenvectors of the Hessian, and
the eigendecomposition operation has complexity O(P?). For the MLP network we can compute
the full Hessian matrix in = 160s and its eigendecomposition in ~ 960s For the CNN and the
Transformer networks, we cannot compute the full Hessian matrix. However, we can still obtain its
principal eigenvectors through iterative methods such as power iteration or the Lanczos method and
the Hessian-vector product (Yao et al., 2018a; Xu et al., 2018). Golmant et al. (2018) has publicly
provided an implementation of these methods for Pytorch neural networks, which we have adapted to
our scope. We use a random subset of the data to compute the Hessian and/or its eigenvectors. For all
the experiments we fix the subset size to 1000 samples.
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C ADDITIONAL RESULTS

C.1 EXTENDED RESULTS

In this section we present the results of the experiments in their entirety. We adopt the same structure
of Section 5 of the paper.

C.1.1 EXPERIMENTS SECTION 5.2

With the first set of experiments, we investigate the empirical validity of Theorems 3-4. In the paper,
we show the equivalence of GPM, OGD and SGD' when the analysis assumptions are met. Here we
further examine GPM and OGD.

Measuring the violation of the constraint Corollary 1 and 2 establish zero forgetting guarantees
for OGD and GPM under Assumption 1-2. We directly measure the degree of violation of the
null-forgetting constraint (Equation 4) on the RMNIST dataset for both methods and compare them
with vanilla SGD. The score used is simply:

t—1
_AT(L *
VNC(t) = AT(; Y HI)A,
o=1
The null-forgetting constraint is satisfied if V NC(t) = 0 for all ¢. The results, reported in Table 5,
agree with our theoretical intuition: GPM and OGD consisently achieve lower degrees of violation of

the null-forgetting constraint.

Table 5: Violation of null-forgetting constraint (Equation 4).

Ir Algorithm ‘ VNC(t)
GPM 0.004 4+ 0.004

le=> OGD 0.0001 4+ 0.0004
SGD 0.27 £ 0.10
GPM 0.14 +£0.11

le=? OGD 0.25 £ 0.05
SGD 0.59 +£0.07

Verifying the underlying assumptions Next, we check the underlying assumptions of both GPM
and OGD. Through our analysis we show that GPM relies on a block-diagonal approximation of the
loss Hessian matrix. In order to evaluate the validity of the assumption we define a block-diagonality

score:
E¢ij)¢p | Mij]

B¢ jyep |Mij|’

where we use B to denote the set of entries in the diagonal blocks, and M is any matrix. Notice that

a perfectly block-diagonal matrix will score © (M) = 1. For non block-diagonal matrices the score

has no lower bound. On random matrices, the score evaluates to —0.001 (4-0.02), over 1000 trials. In

Table 6 (left), we record the average score for the Hessian matrix H} of different tasks when training

with GPM, both in the high and low learning rate cases. The average is taken over seeds and tasks.
Importantly, the results reveal that the assumption is not met in practice.

OM) =1-

OGD effectively adopts the outer-product Hessian H (Equation 9), which has been shown to be a
good approximation of the Hessian matrix towards the end of training (Singh et al., 2021) - and thus
is automatically satisfied under Assumption 1. We verify this assumption by computing the spectral
similarity of the Hessian and its outer-product component. We define the spectral similarity between
two matrices as follows:

<A7 B> F
G6(A,B)= ——————
|All7 Bl
where (-, -) p denotes the Frobenius inner product and || - |  denotes the Frobenius norm. This score

is equal to 1 for two equivalent matrices, while, for dissimilar matrices it can be arbitrarily low. We
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Figure 6: Convolutional networks: Average forgetting £(t) of SGD and SGD' with varying values of
k on Split CIFAR-100 for ResNet-18.
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Figure 7: Vision Transformers: Average forgetting £(t) of SGD and SGD' with varying values of &
on Split CIFAR-100 for Vision Transformer.

test the score on pairs of random matrices, and obtain an average of —0.0002 (4-0.01) over 1000
trials. In Table 6 (right) we report the score &(HY, H}), averaged over tasks and seeds. For both
the high and low learning rate case the score is around 0.7.

Table 6: Validity of the assumptions underlying GPM (left) and OGD (right).

Ir | D(H}) Ir | 6(HY, HY)

le™® | —0.04 £0.12 le=5 | 0.70 £0.08
le=? | —0.11£0.13 le=2 | 0.6940.02

C.1.2 EXPERIMENTS SECTION 5.3

The second set of experiments is aimed at testing the validity of our analysis on other architectures.
We employ CNNs and Transformers, as described in Section B. Figure 6 and 7 show the average
forgetting on Split CIFAR-100 for tasks 1 to 20 (previous results only considered the first 10 tasks for
brevity). Moreover, we could compute up to the first 40 eigenvectors for the ResNet, and we include
the results in Figure 6.

Next, we report a comprehensive view of the results on Split CIFAR-10 in Table 7. Similarly to Split
CIFAR-100, we observe the average forgetting increasing overall with ¢. Importantly, both the CNN
and the Transformer record significantly lower levels of forgetting when trained with SGD', once
again supporting the validity of our theoretical results.
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Table 7: £(t) on Split CIFAR-10.

Algorithm ‘ £(2) £(3) E(4) E(5)

SGD 0.0127 £0.0200  0.0186 £+ 0.0196  0.0375 + 0.0515  0.0285 4+ 0.0267
ResNet SGDT-10 0.0100 £ 0.0177  0.0092 £ 0.0145  0.0201 £ 0.0198  0.0261 £ 0.0313

SGD'-20 | 0.0094 +0.0169 0.0076 4 0.0167 0.0171 +£0.0172 0.0213 4 0.0262

SGD 0.0306 £0.0329  0.0249 £0.0383  0.0476 £ 0.0669  0.0264 £ 0.0282
ViT SGD-10 | 0.012240.0153  0.0073 4+ 0.0147  0.0081 +0.0161  0.0057 & 0.0118

SGD'-20 0.0126 £0.0173  0.0061 £0.0160 0.0077 £0.0154 0.0048 £ 0.0110

Additionally, we report average accuracy on both Split CIFAR-10 (Table 8) and Split CIFAR-100

(Table 9).

Table 8: Average accuracy a(t) on Split CIFAR-10. We limit the learning of each task after the first

one to 1 epoch.

Algorithm ‘ a(1) a(2) a(3) a(4) a(5)
SGD 0.942+0.01 0.777£0.15 0.714+0.14 0.654+0.11 0.685 +£0.16
ResNet SGD'-10 0.942+0.01 0.778£0.15 0.713£0.16 0.656 £0.16 0.675+0.17
SGD'-20 0.9424+0.01 0.779+0.16 0.720+£0.15 0.664+0.15 0.684+£0.17
SGD 0.903 £0.003 0.766 £0.08 0.739£0.07 0.693+0.04 0.7233 £0.10
ViT SGD'-10 | 0.903 +0.003 0.785+0.09 0.751+0.09 0.713+0.10 0.7264 + 0.09
SGDT-20 | 0.903 £0.003 0.783+£0.10 0.7480+0.09 0.705+0.11 0.719 £0.10

Table 9: Final average accuracy a(T") on Split CIFAR-100, compared to the average current task
accuracy a; across tasks. We limit the learning of each task after the first one to 10 epochs.

Algorithm ‘ a(T) ag
SGD 0.2215+0.09 0.5068 £ 0.10
R SGD-10 | 0.2366 +0.09  0.4660 + 0.11

esNet

SGD'-20 | 0.248740.09  0.4185+0.11
SGD-40 | 0.254240.08 0.3703 £0.12
SGD 0.2258 £0.09 0.4789 £ 0.09
ViT SGD'-10 | 0.2452+0.09  0.4089 £ 0.11
SGD'-20 | 0.2577 +£0.06 0.3726 & 0.12

Importantly, the average accuracy reflects the balance of forgetting and intransigence in the network.
Lower forgetting comes at the cost of a lower capacity for learning new tasks. On the contrary, a very
plastic network performs well on the current task while performing poorly on the old ones. In Table 9
we compare the accuracy on the current task a; ; to the final average accuracy of the network. SGD
always outperforms SGD' on the current task, however it achieves the lowest average accuracy. This
compromise between forgetting and intransigence, or equivalently between plasticity and stability,
is better portrayed in Figure 8, where we show the average accuracy and forgetting of SGD' on
Rotated-MNIST as we vary the parameter €, controlling the fraction of spectral energy left of the
memory for each task. Simply, e = 0 corresponds to fixing k = P, and ¢ = 1 corresponds to fixing
k = 0. Importantly, the extremes achieve lower average accuracy.

C.1.3 EXPERIMENTS SECTION 5.1

The last set of experiments is aimed at assessing the validity of the analysis.
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Figure 8: Average final accuracy a(T) and forgetting £(T') of SGD' on Rotated-MNIST varying e.
For each task, a (1 — ¢€) fraction of the spectral energy of the Hessian matrix is stored in memory,
thus through € we dynamically control the memory size.

Approximations of forgetting First, we evaluate the quality of two approximations of forgetting,
namely a second order Taylor approximation (Equation 2) and the approximation derived from
Assumptions 1-2 (Equation 3). Table 10 extends the results shown in Table 1 to the case o =t — 1,
which isolates the contribution of a single update to forgetting. We observe the same trend in both
cases, with the second order term in the Taylor expansion providing a stable estimate of forgetting
across a wider region of the parameter space. In Table 11 we report the error of the average forgetting

Table 10: Approximation error, Equation 2, on Rotated-MNIST.

Ir ‘ 1t order 2" order Taylor Eo(t) ‘ 10; — 6,
o € le7® | 0.434+0.30 0.26+0.16 0.15+0.15 0.30+0.30 | 1.23+0.51
1,t —1] le”? | 2.33+1.87 1.49+1.31 1554+1.32 2264185 | 8.1942.56
o—1t—1 le7® | 0.16 £0.07 0.19+0.09 0.05+0.02 0.018+£0.02 | 0.714+0.13
o le72 | 0.39+£0.06 0.09+0.05 0.134+0.05 0.334+0.05 | 5.484+0.17

estimate given by Equation 3 on Rotated MNIST for different values of ¢. Interestingly, we notice
that the error is not monotonic, although forgetting constantly increases.

Table 11: Equation 3 approximation error on Rotated-MNIST.

tIr \ IE(t) — 1)) E(t)

5 le=® | 0.047+0.01 0.024+0.01
le 2 | 0.062+0.07 0.36+0.06

3 le=® | 0.049 +0.005 0.122 +0.02
le=2 | 0.744+0.1050 1.27+0.06

4 le=® | 0.073+0.02 0.255=+0.03
le—2 1.174+0.24 2.45 +0.23

5 le | 0.068+0.05 0.48+0.07
le—2 0.80 £0.13 3.09+0.14
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Finally, we evaluate the quality of the estimates of forgetting for the ResNet experiments on Split
CIFAR-100. In order to do so, we employ low rank approximations of the Hessian matrix, obtained
through iterative methods. In Table 12 and 13 we report results for multiple rank values, r =
10, 20, 30, 40. Overall, the forgetting approximation quality increases with the rank.

Table 12: Approximation error, Equation 2, on Split CIFAR-100.

r | 1% order 27 order Taylor E(t) 16: — 6,|]

10 | 0.63£0.31 0.54+£0.38 0.60£0.30 0.57£0.39 2.15+0.89
20 | 0.63£0.31 0.50+£0.37 0.54£0.30 0.57£0.39 2.15£0.89
30 ] 0.63+0.31 041+030 0.42+0.26 0.57+=0.39 2.15+0.89
40 | 0.63£0.31 0.27+0.20 0.21+0.16 0.57£0.39 2.15+0.89

Table 13: Equation 3 approximation error on Split CIFAR-100.

rlIE@-EWl Ew)

10| 0.37£0.17 0.57£0.13
20 | 0.36+0.16 0.57+0.13
30| 0.34+0.14 0.57+0.13
40 | 0.30+0.11 0.57£0.13

Perturbation analysis In Section 5.1 we propose a tool to measure the range of validity of the
assumptions of our analysis, named perturbation analysis. Here, we present the detailed results of the
perturbation analysis, for all the tasks in the Rotated MNIST setting. These can be found in Figure 9.

Task 1 Task 2 Task 3 Task 4 Task 5

A
A Eigen-index

Figure 9: Perturbation score s(r) on all the tasks of the Rotated-MNIST challenge, learned with SGD.
The dashed green line highlights the value of r for which the score converges to 1 (marked by the
dashed brown line).

Next, to further complement these results, we additionally provide results for ResNet18 in the
Split-CIFAR100 setting in Figure 10 and that for ViT in Figure 11.

The observations from our perturbation analysis on Rotated-MNIST largely extend to these latter
settings. Notice that, as the network size increases, the perturbation score converges to 1 for higher
values of r (marked by the dashed green line). There is more noise in some of the plots, which can be
attributed to the fact that for these bigger networks, we are relying on the power method to obtain the
top eigenvectors, unlike the exact Hessian computation in the case of Rotated-MNIST.
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Figure 10: Perturbation score s(r) on all the tasks of the Split CIFAR-100 challenge, learned with
the dashed brown line).
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10 Task 1 Task 2 Task 3 Task 4 Task 5
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Figure 11: Perturbation score s(r) on all the tasks of the Split CIFAR-10 challenge, learned with
SGD. The dashed green line highlights the value of r for which the score converges to 1 (marked by
the dashed brown line).
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