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Appendix
Lifelong Reinforcement Learning with Modulating Masks

A Significance Testing

Results obtained from experiments in RL usually produce high variance across seeds (Henderson et al., 2018).
This issue further leads to challenge of reproducible results. To address this concern, a difference test (Colas
et al., 2018), using the Welch t-test and bootstrap confidence interval (BCI) were performed on the main
results, evaluation performance and forward transfer. The tests were carried out at a significance level of
0.05. The BCI tests were run with 10,000 bootstrap iterations.

The outcome of the evaluation performance tests are reported in Tables 7, 8, 9, and 10, while the forward
transfer tests are reported in Tables 11, 12, and 13. The MASKLC was chosen as the method to compare
against for the difference testing. The table cells colored green signify that the test reported enough evidence
to establish an order relationship between compared methods, and vice versa for cells colored red. Also,
when a positive only interval is reported in the BCI test, it signifies that MASKLC has a higher value than
the method compared, and vice versa for negative only interval. The number of samples for the evaluation
performance test is 3, the number of seed runs per method, while the number of samples for the forward
transfer test is 3 multiplied by the number of tasks in each curriculum.

CT8 CT12 CT8 MD
Method p-value BCI p-value BCI p-value BCI
PPO 3.48e-10 [544.80, 563.00] 4.87e-09 [1152.20, 1180.80] 3.19e-04 [414.20, 559.20]
EWCMH 1.52e-01 [-6.20, 67.20] 5.73e-01 [-62.00, 47.00] 2.35e-04 [157.80, 207.60]
MASKRI 8.00e-01 [-4.60, 6.00] 5.74e-02 [2.80, 16.20] 2.28e-04 [169.60, 216.60]
MASKBLC 1.16e-03 [-18.60, -10.80] 1.30e-04 [-17.00, -10.60] 7.17e-03 [50.40, 100.60]

Table 7: Total evaluation performance significance testing for the CT-graph curricula. Welch t-test (p-value)
and bootstrap confidence interval significance difference testing at 5%, for µ1 − µ2, where µ1 is the average total
evaluation performance achieved by MASKLC and µ2 that of the comparisons (rows) in the table. Green colored cells
are statistically significant result where there is enough evidence to establish an order (difference) between µ1 and
µ2, and vice versa cells are colored red.

MG10
Method p-value BCI
PPO 4.16e-07 [1010.67, 1109.96]
EWCMH 4.21e-04 [299.03, 499.05]
MASKRI 5.32e-01 [-79.28, 35.90]
MASKBLC 2.18e-01 [-109.42, 14.67]

Table 8: Total evaluation performance significance
testing for the Minigrid curriculum. Welch t-test (p-
value) and bootstrap confidence interval (BCI) signif-
icance difference testing at 5%, for µ1 − µ2, where µ1
is the average total evaluation performance achieved
by MASKLC and µ2 that of the comparisons (rows)
in the table. Green colored cells are statistically sig-
nificant result where there is enough evidence to es-
tablish an order (difference) between µ1 and µ2, and
vice versa cells are colored red.

CW10
Method p-value BCI
PPO 5.98e-03 [161.63, 268.27]
EWCMH 1.12e-02 [206.87, 301.57]
MASKRI_D 1.18e-02 [195.02, 290.22]
MASKRI_C 6.14e-01 [-46.63, 96.80]
MASKBLC 5.09e-01 [-41.97, 106.07]

Table 9: Total evaluation performance significance testing
for the Continual World curriculum. Welch t-test (p-value)
and bootstrap confidence interval (BCI) significance differ-
ence testing at 5%, for µ1−µ2, where µ1 is the average total
evaluation performance achieved by MASKLC and µ2 that
of the comparisons (rows) in the table. Green colored cells
are statistically significant result where there is enough ev-
idence to establish an order (difference) between µ1 and
µ2, and vice versa cells are colored red.
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Welch test p-value for µ1 − µ2 Confidence Interval for µ1 − µ2
Method Train tasks Test tasks Train tasks Test tasks
IMPALA 4.09e-03 3.26e-05 [7421.60, 9977.69] [8912.31, 10226.61]
Online EWC 2.63e-03 4.94e-05 [6276.49, 9157.50] [7858.06, 9233.60]
P&C 1.28e-03 1.01e-04 [7426.82, 10827.51] [8170.99, 9802.61]
CLEAR 6.25e-01 5.77e-03 [-1468.47, 3087.61] [2982.40, 4946.90]
MASKRI 9.78e-01 9.23e-01 [-1474.67, 1156.01] [-1844.39, 2830.19]
MASKBLC 4.99e-01 6.67e-01 [-871.74, 2481.94] [-846.61, 2214.05]

Table 10: ProcGen Total evaluation performance: Welch t-test and bootstrap confidence interval significance
difference testing at 5%, for µ1 − µ2, where µ1 is the average total evaluation performance achieved by MASKLC and
µ2 that of the comparisons (rows) in the table. Green colored cells are statistically significant result where there is
enough evidence to establish an order (difference) between µ1 and µ2, and vice versa cells are colored red.

CT8 CT12 CT8 MD
Method p-value BCI p-value BCI p-value BCI
PPO 9.73e-03 [0.07, 0.54] 5.76e-09 [0.45, 0.84] 1.18e-16 [0.62, 0.87]
EWCMH 2.50e-08 [0.48, 0.91] 3.36e-11 [0.45, 0.77] 1.03e-21 [0.59, 0.78]
MASKBLC 4.23e-03 [-0.33, -0.06] 3.02e-03 [-0.23, -0.05] 1.10e-05 [0.18, 0.42]

Table 11: Forward transfer significance testing for the CT-graph curricula. Welch t-test (p-value) and bootstrap
confidence interval significance difference testing at 5%, for µ1 − µ2, where µ1 is the average total evaluation perfor-
mance achieved by MASKLC and µ2 that of the comparisons (rows) in the table. Green colored cells are statistically
significant result where there is enough evidence to establish an order (difference) between µ1 and µ2, and vice versa
cells are colored red.

MG10
Method p-value BCI
PPO 5.11e-01 [-0.29, 0.58]
EWCMH 5.39e-04 [0.36, 1.21]
MASKBLC 2.03e-03 [-0.84, -0.19]

Table 12: Forward transfer significance testing for
the Minigrid curriculum. Welch t-test (p-value) and
bootstrap confidence interval (BCI) significance dif-
ference testing at 5%, for µ1 − µ2, where µ1 is the
average total evaluation performance achieved by
MASKLC and µ2 that of the comparisons (rows) in
the table. Green colored cells are statistically sig-
nificant result where there is enough evidence to es-
tablish an order (difference) between µ1 and µ2, and
vice versa cells are colored red.

CW10
Method p-value BCI
PPO 6.37e-03 [0.94, 5.93]
EWCMH 6.34e-04 [3.30, 10.29]
MASKBLC 3.66e-01 [-0.34, 0.83]

Table 13: Forward transfer significance testing for the
Continual World curriculum. Welch t-test (p-value) and
bootstrap confidence interval (BCI) significance difference
testing at 5%, for µ1 − µ2, where µ1 is the average total
evaluation performance achieved by MASKLC and µ2 that
of the comparisons (rows) in the table. Green colored cells
are statistically significant result where there is enough ev-
idence to establish an order (difference) between µ1 and
µ2, and vice versa cells are colored red.

B Hyper-parameters

In the experiments across the CT-graph, Minigrid and Continual World, all lifelong RL agents were built
on top of the PPO algorithm. The hyper-parameters for the experiments are presented in Table 14. The
EWCMH and EWCSH lifelong RL methods contain additional hyper-parameters which defines the weight
preservation (consolidation) loss coefficient λ and the weight of the moving average α, for the online esti-
mation of the fisher information matrix parameters following Chaudhry et al. (2018). For Continual World,
α = 0.75 and λ = 1 × 104, while for the CT-graph and Minigrid experiments, α = 0.5 and λ = 1 × 102.
The hyper-parameters for each method were set based on well-established values and preliminary tests. In
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each aforementioned benchmark, the hyper-parameters for the PPO algorithm were kept the same across all
methods to enable fair comparison.

For the ProcGen experiments, the setup reported in Powers et al. (2022) was followed, with each life-
long RL agent built on top of the IMPALA algorithm. The hyper-parameters for the baselines (IMPALA,
Progress & Compress (P&C), ONLINE EWC, and CLEAR) were kept the same as in Powers et al. (2022)
for the experiments are presented in Table 15. ONLINE EWC contains additional hyper-parameter such
as λ = 175 and replay_buffer_size = 1 × 106. For P&C, λ = 3000, replay_buffer_size = 1 × 105, and
num_train_steps_of_progress = 3906. For CLEAR, replay_buffer_size = 5× 106.

Hyper-parameter CT8 / CT12 / CT8 MD MG10 CW10
Learning rate 0.00015 0.00015 0.0005
Optimizer RMSprop RMSprop Adam
Discount factor 0.99 0.99 0.99
Gradient clip 5 5 5
Entropy 0.1 0.1 0.005
GAE 0.99 0.99 0.97
Rollout length 128 128 5120
Num. of workers 4 4 1
PPO ratio clip 0.1 0.1 0.2
PPO optim. epochs 8 8 16
PPO optim. mini batch 64 64 160
Train steps per task 102,400 256,000 10.24M
Train iterations per task:

trainsteps
rollout×workers

200 500 2000

Eval. interval 10 20 200
Eval. episodes 10 10 10

Table 14: Hyper-parameters for curricula in the CT-graph (CT8, CT12, CT8 Multi Depth), Minigrid (MG10) and
Continual World (CW10) environments.

Hyper-parameter Value
Num. of workers 64
Batch size 32
Rollout length 20
Entropy 0.01
Learning rate 4× 10−4

Optimizer RMSprop
Gradient clip 40
Discount factor 0.99
Num. of cycles (repeat curriculum) 5
Num. of train step per task per cycle 5M
Num. of eval episodes 10
Eval. interval 0.25M train steps

Table 15: Hyper-parameters for the curriculum in the ProcGen environment.

C Network Specifications

The policy network specification for the CT-graph (i.e., CT8, CT12, and CT8 multi depth) and Minigrid
(i.e., MG10 ) curricula is presented in Table 16, with ReLU activation function employed. The output of the
actor layer produces logits of a categorical distribution.
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Layer Input units Output units
Linear 1 (shared) - 200
Linear 2 (shared) 200 200
Linear 3 (shared) 200 200
Linear (actor output) 200 3
Linear (value output) 200 1

Table 16: Network specification of policy network across all methods for CT-graph and Minigrid curricula. Note,
for multi head EWC network, the are multiple Linear (actor output) corresponding to the number of tasks.

For the Continual World (i.e, CW10 ) curriculum, the policy network specification is presented in Table 17,
with Tanh activation function employed. The output of the actor layer produces the mean and standard
deviation of a gaussian distribution.The output of the standard deviation actor output layer is clipped within
the range [-0.6931, 0.4055].

Layer Input units Output units
Linear (actor body 1) - 128
Linear (actor body 2) 128 128
Linear (actor output, mean) 128 3
Linear (actor output, log std) 128 3
Linear (value body 1) - 128
Linear (value body 2) 128 128
Linear (value output) 128 1

Table 17: Network specification of policy network across all methods for Continual World curriculum. Note, for
multi head EWC network, the are multiple Linear (actor output) corresponding to the number of tasks.

For the ProcGen environment, the input observation is an RGB image with shape 3×64×64 and 15 discrete
actions. ReLU activation was employed in the network. The policy specification for the network across all
methods is presented in Table 18

Layer Input channels/units Output channels/units Kernel Stride Pad
Conv 1 (shared) 3 32 [8, 8] 4 0
Conv 2 (shared) 32 64 [4, 4] 2 0
Conv 3 (shared) 64 64 [3, 3] 1 0
Flatten 4× 4× 64 1024 - - -
Linear 1 (shared) 1024 512 - - -
Linear (actor output) 528 15 - - -
Linear (value output) 528 1 - - -

Table 18: Network specification for the ProcGen experiments. Note, the number of input units for the actor and
value output heads changes to 528 because the one-hot action vector (i.e., size 15) and reward scalar (i.e., size 1)
from the previous time step is concatenated to the output of Linear 1.

Note that across all multi-head EWC experiments, the policy network contains multiple actor output layer
corresponding to the number of tasks.

C.1 Backbone Network Initialization for Modulatory Masking Methods

Across all experiments, the weights of the backbone network for the modulatory masking methods were
initialized using the signed Kaiming constant method, introduced in Ramanujan et al. (2020). The constant
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±c is the standard deviation of the Kaiming normal (distribution) initialization method, and could vary from
layer to layer in the network. Furthermore, the bias parameters were disabled for the backbone networks in
the masking methods, following the setup in Wortsman et al. (2020).

D Environments

D.1 CT-graph

The configurable tree graph (CT-graph) (Soltoggio et al., 2019; 2023) is a sparse reward, discrete action space
environment with configurable parameters that define the search space. The environment is represented as
a graph, where each node is a state represented as a 12 × 12 gray scale image. There exist a number of
state/node types in the environment, which are start (H), wait (W), decision (D), end/leaf (E), and fail (F)
state. Each environment instance contains one home state, one fail states, and a number of wait, decision
and end states. The goal of an agent is to navigate from the home state to one of the end states designated
as the goal — the agent receives a reward of 1 when it enters the goal state, but 0 at every other time step.
If the agent takes an incorrect action in any state, the agent transitions to the fail state, after which an
environment reset takes it back to the home state.

The size and complexity (search space) of each environment (graph) instance is determined by a set of
configuration parameters — hence the term "configurable in the name". Two majors parameters in the CT-
graph are the branch b and depth d that defines the branch (i.e., the width or number of decision actions
at a decision state) and depth (i.e., the length) of the instantiated graph. The combination of the b and d
determine how many end states exist in a each environment instance. Also, b determines the action space
of an instance — defined as b + 1. The search space grow exponentially as b and d increase. Thus, the
benchmark can be set up to the appropriate complexity to test the limits of RL algorithms.

A task is defined by setting one of the leaf states as a desired goal state that can be reached only via one
trajectory.

For the CT8 curriculum, a graph instance with parameter b = 2 and d = 3 was employed — 23 end states.
The 8 tasks comprise of each end state designated as the goal/reward location per task. For the CT12
curriculum, two graph instances with 4 (b = 2 and d = 2) and 8 (b = 2 and d = 2) different end/reward
states were combined. Additionally, the 8-task graph has a longer path to the reward that introduces
variations in both the transition and reward functions. The CT12 curriculum was based on an interleave
of the tasks from both graph instances (i.e., task 1 in 4-tasks, task 1 in 8-tasks, task 2 in 4-tasks, task 2 in
8-tasks, task 3 in 4-tasks, and so on). See Figure 11 for a graphical representation of the 8-tasks and 4-tasks
CT-graph. Lastly, the CT8 multi depth curriculum was composed of the first two end/goal states in each of
the following graph instance: (i) b = 2 and d = 2, (ii) b = 2 and d = 3, (iii) b = 2, d = 4, (iv) b = 2, d = 5.

With a branching factor (breadth) b of 2 across all CT-graph curricula, the action space was defined as 3
(i.e., b + 1).
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Figure 11: CT-graph environments. States are: home (H), wait (W), decision (D), end (E), fail (F). Three actions
at W and D nodes determine the next state. (Left) CT8: a depth-3 graph with three sequential decision states (D).
Reward probability 1/37 = 1/2187 reward/episodes. (Right) A depth-2 graph with 4 leaf states (CT4) that combined
with CT8 results in the CT12 curriculum.
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D.2 Minigrid

Similar to the CT-graph, the Minigrid (Chevalier-Boisvert et al., 2018) is a sparse reward, discrete action
navigation environment that consists of a number of predefined partially observable tasks with varying levels
of complexity. The environment is setup as a grid world (with fast execution) where an agent is required
to navigate to a goal location while avoiding obstacles such as walls, lava, moving balls, etc. It consist
of a number of pre-defined grid worlds with several sub-variants defined by changing the random number
generator seed. For all Minigrid experiments in this work, the default grid encoding was employed, with each
state represented using a tensor of shape 7× 7× 3. The agent only get a reward slightly under 1 (depending
on the number of steps taken as defined in Equation 4) when it arrives at the goal location, and a reward of
0 at every other state/time step:

goal_reward = 1− 0.9× es

ms
(4)

where es defines the number of steps taken to navigate to the goal (a green color square), ms is the maximum
number of steps the agent is allowed to take in an episode. For MG10 curriculum, five pre-defined grid-worlds
with two seed instances/variants (seed 860 and 861 was employed) per environment (hence 10 tasks) was
employed. They are: SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3, LavaCrossingS9N1,
LavaCrossingS9N2. Figure 12 presents a visual illustration of the 5 grid worlds from which the tasks are
derived. Note that when an agent steps a on lava (depicted in orange in the figure), the episode is terminated.

Figure 12: Visual representation of the 10 tasks in the MG10 curriculum. From left to right, two variants of each
class: SimpleCrossingS9N1, SimpleCrossingS9N2, SimpleCrossingS9N3, LavaCrossingS9N1, LavaCrossingS9N2.

Although the default action space in Minigrid is 7, the action space was set to 3 (turn left, turn right, and
move forward) in this work as only navigational capabilities were required by the agents across all tasks in
the MG10 curriculum (i.e., other actions such as pick object, drop object, toggle and done actions were not
necessary). Furthermore, the reduced action space eased the exploration demands across all methods when
learning each task.

D.3 Continual World

The Continual World (Wołczyk et al., 2021) is a benchmark for lifelong/continual RL derived from the
Meta-World environment (Yu et al., 2020) — a benchmark consisting of 50 distinct simulated robotic tasks
developed using the MuJoCo physics simulator (Todorov et al., 2012). The CW10 curriculum in the bench-
mark comes from 10 tasks selected from the Meta World, with the goal of having a high variance in forward
transfer across tasks. The 10 tasks (see Figure 13) are: hammer-v2, push-wall-v2, faucet-close-v2, push-
back-v2, stick-pull-v2, handle-press-side-v2, push-v2, shelf- place-v2, window-close-v2, peg-unplug-side-v2.
The input/state space of each task is a 39 dimension vector representation (consisting of proprioceptor in-
formation of the robotic arm as well as position of the objects and goal location in the environment), with
an action space of 4 that defines the movement of the robotic arm. The reward function is defined based on
a multi-component structure where the agent is reward for achieve sub-goals (i.e., reaching objects, gripping
objects, and placing objects or a subset of these) within each task. In addition to the reward, another metric
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Figure 13: Visual representation of the 10 tasks CW10 (Wołczyk et al., 2021)

called success metric is used to measure performance — where the agent gets a 1 if it solves the overall task
or 0 otherwise.

Note that when the Continual World benchmark was released, the authors used what is now termed version
1 (v1) environments in the Meta-World. However, the Meta-World v1 environments contained some issues
in the reward function 1 which was fixed in the updated v2 environments. Therefore, the experiments in the
paper employed the use of the v2 environment for each task in the Continual World.

D.4 ProcGen

The ProcGen (Cobbe et al., 2020) is a discrete action benchmark that consist of 16 visual diverse video
game tasks that are procedurally generated and computationally fast to run, with the aim of evaluating
generalization ability of RL agents. It was proposed as a replacement of the Atari games benchmark, while
being computationally faster to simulate than Atari. The benchmark was adapted for lifelong RL by (Powers
et al., 2022) which introduced a lifelong RL curriculum based on a subset of the ProcGen games. The selected
games are Climber, Dodgeball, Ninja, Starpilot, Bigfish, and Fruitbot as shown in Figure 14. The input
observation are RGB images of dimension 64 × 64 × 3, along with 15 possible discrete actions. Also, the
reward function and scales (range of values) are different for each task in the curriculum.

Climber Dodgeball Ninja Starpilot Bigfish Fruitbot

Figure 14: A snapshot of the tasks in the ProcGen curriculum. The texture, objects, RGB color, structure are
procedurally generated.

Due to the procedural nature of the environment, each game contains several levels and the properties of
each game instance (such as objects, texture maps, layout, enemies etc) can be procedurally generated, thus
ensuring high variance within each game. The procedural nature of the environment facilitates testing of
lifelong RL agents in unseen environments, thus evaluating also generalization capabilities. Variation in
tasks exists across the state and transition distributions.

E Additional Analysis

E.1 Modulatory Mask Similarities

If similarities in tasks allow for our approach to exploit a linear combination of masks, it is reasonable to
ask whether masks do reflect such similarity. We consider the two cases of: (1) MaskRI where each mask

1as discussed in https://github.com/rlworkgroup/metaworld/issues/226 and https://github.com/awarelab/continual_
world/issues/2
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is initialized randomly and (2) MaskLC where each mask is a combination of a random mask and known
masks. The analysis was conducted on masks learned in the CT8 curriculum.

Figure 15 shows that, despite task similarities, random initialization of masks results in dissimilar masks. This
result is expected as independent gradient optimizations will lead generally to different solutions. However,
the linear combination of previously known masks is exploited in the tuning of new masks as we observed
that the last two mask are significantly more similar to each other than the first two.

CT8

MASKRI MASKLC MASKBLC

MG10

CW10

Figure 15: Pairwise mask distances between tasks (i.e., each plot computed as the L2 norm of the difference between
task masks) in the first layer of the policy network for each modulatory masking method. Despite tasks having
similarities in the CT-graph, Mingrid and Continual World curricula, in MASKRI (Left), the learned masks across
tasks show no correlation, MASKLC (Middle) and MASKLC (Right) show mask correlation across tasks (benefiting
from knowledge re-use).

E.2 Linear Combination Coefficients

In Section 6.1, Figure 7 showed a summary of the linear combination co-efficients of the input and output
layers of the MASKLC network after training. For completeness, this section presents the co-efficients for all
layers in the network, across the CT8, CT12, CT8 multi depth, MG10, CW10 curricula. The co-efficients
are presented in Figures 16 and 17.
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CT8

CT12

CT8
MD

MG10

Figure 16: Per layer coefficients β in MaskLC after training on the CT8, CT12, CT8 multi depth, and MG10
curricula.

CW10

Figure 17: Per layer coefficients β in MaskLC after training on the CW10 curriculum.
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F Additional Results

F.1 EWC Single versus Multi-Head Policy Network

As highlighted in Section 5, the results for the EWC lifelong RL agents presented were based on multi-head
(multiple output layers) policy networks, while other methods employed a single head policy network. This is
because the EWC single head network EWCSH performed sub-optimally. In the CT-graph CT8 curriculum,
Figure 18 presents the continual evaluation comparison between the EWCSH and EWCMH.
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Figure 18: Continual evaluation comparison of EWC single head and multi-head policy networks in the CT8
curriculum.

F.2 Train plot for all methods

In the lifelong training plots reported in Section 5, only the masking methods were presented for the sake
of clarity and readability. The plots in Figure 19 present the lifelong training plots containing all methods
across the CT-graph, Minigrid and Continual World curricula.

F.3 Per Task Forward Transfer

In the main text, the forward transfer metric was reported as the averaged across seed runs and tasks in the
CT-graph, Minigrid and Continual World curricula. The reported information is expanded in this section to
show the forward transfer metric per task (averaged across seed runs only), and reported in Tables 19, 20,
21, 22, and 23. The average across tasks is reported in the last column of each table. As noted in the main
text, the tasks are learned independently of other tasks in MaskRI, thus they are omitted in the tables.

Tasks
Method 1 2 3 4 5 6 7 8 Avg
PPO -0.03 0.62 -0.28 -0.19 0.06 0.58 0.17 0.23 0.15
EWCMH -0.04 0.11 -0.91 -0.67 -0.06 -0.05 -0.22 -0.04 -0.23
MASKLC 0.34 0.81 0.73 0.62 0.13 0.28 0.65 0.15 0.46
MASKBLC 0.34 0.81 0.75 0.73 0.64 0.66 0.72 0.69 0.67

Table 19: Forward transfer per task in the CT8 curriculum, averaged across seed runs.

F.4 ProcGen: Per Task Forward Transfer Metric

The per task forward transfer metric for all methods except MASKRI in the ProcGen curriculum is presented
in Table 24. Note that MASKRI was omitted because the method does not inherently foster forward transfer
as each task is learned independently of other tasks (i.e., for each task, a separate modulatory mask is
independently initialized and optimized for the task).
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Figure 19: Lifelong training plots for all methods and baselines in CTgraph (CT), Minigrid (MG) and Continual
World (CW) curricula: (a) CT8, (b) CT12, (c) CT8 multi depth, (d) MG10, and (e) CW10.

Tasks
Method 1 2 3 4 5 6 7 8 9 10 11 12 Avg
PPO -0.02 0.30 -0.04 -0.46 -0.33 0.12 -0.46 -0.49 -0.38 0.48 -0.17 -0.36 -0.15
EWCMH -0.10 -0.22 0.05 0.21 -0.02 -0.49 0.30 -0.44 -0.12 -0.89 0.13 0.24 -0.11
MASKLC 0.50 0.77 0.47 0.83 0.18 0.75 -0.05 0.74 0.66 0.34 0.48 0.36 0.50
MASKBLC 0.50 0.75 0.57 0.79 0.55 0.59 0.45 0.74 0.76 0.58 0.77 0.72 0.65

Table 20: Forward transfer per task in the CT12 curriculum, averaged across seed runs.

G Learned Modulating Masks and Memory Requirements

In the current study, the binarization process, key to reduce memory use, was successful in the discrete
benchmarks and only after performing the linear combination in MaskLC and MaskBLC. Binarized masks
resulted in poor performance in the continuous value Continual World benchmark, and if binarization was
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Tasks
Method 1 2 3 4 5 6 7 8 Avg
PPO -0.10 -0.14 -0.23 0.10 0.31 0.31 0.14 0.00 0.05
EWCMH -0.05 0.06 0.30 0.28 0.23 0.00 0.00 -0.00 0.10
MASKLC 0.45 0.54 0.76 0.87 0.94 0.89 0.95 0.87 0.79
MASKBLC 0.45 0.55 0.73 0.79 0.83 0.51 0.00 0.00 0.48

Table 21: Forward transfer per task in the CT8 multi depth curriculum, averaged across seed runs.

Tasks
Method 1 2 3 4 5 6 7 8 9 10 Avg
PPO 0.00 -1.34 -0.17 0.40 -0.20 0.41 -0.55 -1.83 -0.96 0.25 -0.40
EWCMH -0.01 -2.05 -1.60 -1.47 -0.65 -0.58 -0.10 -0.62 -2.27 -0.99 -1.04
MASKLC 0.17 -0.48 -0.17 0.10 0.60 -0.14 -0.71 -1.01 -1.43 0.56 -0.25
MASKBLC 0.17 -0.24 0.37 0.47 0.56 0.25 0.48 -0.30 0.31 0.68 0.27

Table 22: Forward transfer per task in the MG10 curriculum, averaged across seed runs.

performed before the linear combination. Further studies could investigate this issue in more detail. It is
possible that binarized masks could result in good performance if only the head layer was made continuous,
thus ensuring smoothness in the output.

A different approach to reduce memory consumption is to take advantage of the apparent equal representa-
tions of known masks (as shown in Figure 7). If the advantage of previous knowledge can be represented as
an average of previous masks, it is possible to modify the algorithm to maintain only a moving average of
all previous masks. In such a case, the algorithm will combine a new mask with the average of all previous
masks. This extreme version of the algorithm is memory efficient, but may under-perform in curricula where
coefficients are tuned to be diverse as in the CW10 benchmark (Figure 7 right-most column). Building on
this idea, a limited number of template masks can be used instead of a single average mask. Each template
can be a running average of a cluster of tasks, simply determined by L2 distances of masks, that will ensure
good forward transfer while maintaining scalability.

One further approach to reduce memory is to experiment with high level of sparsity in the masks (Equations 1
and 3). Increasing the threshold (currently set to 0), or applying top k-winners as in (Wortsman et al., 2020)
for supervised learning, may lead to a meta optimization process where significantly smaller masks maintain
acceptable levels of performance. In summary, while more work is required to improve the memory efficiency
of the proposed approaches, the success of the linear combination methods suggests venues of research to
reduce memory consumption, while the performance advantages justify further research of masking methods
in LRL.

H Time taken to reach X% of Optimal (Target) Performance

From the training plots in Figure 19, the time taken or training efficiency (i.e., number of training steps) per
task to achieve a certain level of performance (i.e., X% of the optimal performance) can be derived. Note
that if an agent fails to achieve the specified performance level during a task training, then the agent is said
to have failed that task. In the CT-graph and Minigrid curricula, a target of 75% of the optimal performance
was used to conduct the analysis, while 50% was employed in the Continual World curriculum. The results
of the analysis are reported in Tables 25, 26, 27, 28, and 29.
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Tasks
Method 1 2 3 4 5 6 7 8 9 10 Avg
PPO -0.87 -1.27 -1.06 0.25 -0.00 -13.79 -2.07 -1.42 -12.70 -7.68 -4.06
EWCMH -3.01 -1.44 -9.47 0.00 -0.00 -17.60 -2.22 -1.42 -30.07 -8.65 -7.39
MASKLC -1.91 -0.68 0.12 0.63 -0.00 0.54 -0.08 -0.10 -0.44 -1.36 -0.33
MASKBLC -1.91 -0.89 -0.23 0.40 -0.00 -1.84 -0.15 -0.63 -0.34 -0.51 -0.61

Table 23: Forward transfer per task in the CW10 curriculum, averaged across seed runs.

0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg
0-Climb.. – – – – – – –
1-Dodge.. -0.9 – – – – – -0.9
2-Ninja 2.6 -3.3 – – – – -0.3
3-Starp.. -0.7 1.5 0.1 – – – 0.3
4-Bigfi.. 1.7 -3.6 -1.3 -0.4 – – -0.9
5-Fruit.. 3.1 -0.9 -1.0 0.5 -0.2 – 0.3
Avg 1.2 -1.6 -0.7 0.0 -0.2 – -0.2

(a) IMPALA

0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg
0-Climb.. – – – – – – –
1-Dodge.. 0.0 – – – – – 0.0
2-Ninja 1.6 -2.2 – – – – -0.3
3-Starp.. -0.8 2.7 -0.2 – – – 0.6
4-Bigfi.. 1.7 -3.4 0.1 -0.6 – – -0.5
5-Fruit.. 0.6 -2.2 0.0 0.5 0.7 – -0.1
Avg 0.6 -1.3 -0.0 -0.0 0.7 – -0.1

(b) ONLINE EWC
0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg

0-Climb.. – – – – – – –
1-Dodge.. 0.0 – – – – – 0.0
2-Ninja 3.2 0.1 – – – – 1.6
3-Starp.. -4.0 1.1 2.3 – – – -0.2
4-Bigfi.. 1.5 0.4 -0.2 0.3 – – 0.5
5-Fruit.. -0.8 1.2 -1.9 0.3 0.9 – -0.0
Avg -0.0 0.7 0.1 0.3 0.9 – 0.3

(c) P&C

0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg
0-Climb.. – – – – – – –
1-Dodge.. 0.0 – – – – – 0.0
2-Ninja 0.5 -4.9 – – – – -2.2
3-Starp.. 0.0 1.4 -0.6 – – – 0.3
4-Bigfi.. -0.8 -1.5 0.2 -0.2 – – -0.6
5-Fruit.. 1.0 -1.1 -0.9 0.0 -0.4 – -0.3
Avg 0.1 -1.5 -0.4 -0.1 -0.4 – -0.5

(d) CLEAR
0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg

0-Climb.. – – – – – – –
1-Dodge.. -0.8 – – – – – -0.8
2-Ninja 2.1 -2.0 – – – – 0.1
3-Starp.. -2.2 3.0 -4.8 – – – -1.3
4-Bigfi.. 2.3 -2.1 2.0 -2.3 – – 0.0
5-Fruit.. -1.9 -0.9 2.6 -1.8 -0.8 – -0.5
Avg -0.1 -0.5 -0.0 -2.0 -0.8 – -0.5

(e) MASK LC

0-Climb.. 1-Dodge.. 2-Ninja 3-Starp.. 4-Bigfi.. 5-Fruit.. Avg
0-Climb.. – – – – – – –
1-Dodge.. -0.3 – – – – – -0.3
2-Ninja 2.2 -2.1 – – – – 0.0
3-Starp.. -1.4 4.4 -5.0 – – – -0.6
4-Bigfi.. 0.1 0.0 2.6 -2.8 – – -0.0
5-Fruit.. 1.2 -0.0 1.6 -1.9 0.3 – 0.3
Avg 0.4 0.6 -0.2 -2.3 0.3 – -0.1

(f) MASK BLC

Table 24: ProcGen transfer metrics.

Tasks (step× 103)
Method 1 2 3 4 5 6 7 8 Avg
PPO 23 6 30 Fail 35 5 23 16 Fail
EWCMH 23 36 54 54 46 40 44 30 41
MASKRI 20 28 21 20 25 30 28 21 24
MASKLC 20 7 8 13 39 30 13 28 20
MASKBLC 20 8 6 7 14 12 9 8 10

Table 25: Number of training steps taken to achieve 75% optimal (target) performance per task in the CT8
curriculum. Steps rounded to the nearest thousand.

Tasks (steps× 103)
Method 1 2 3 4 5 6 7 8 9 10 11 12 Avg
PPO 8 6 6 Fail 14 18 18 Fail Fail 11 40 Fail Fail
EWCMH 9 33 13 25 14 41 9 47 52 69 30 31 31
MASKRI 8 23 8 27 9 33 8 24 24 39 35 21 22
MASKLC 8 6 8 6 14 8 18 9 15 22 21 25 13
MASKBLC 8 6 5 6 6 11 8 7 9 14 8 9 8

Table 26: Number of training steps taken to achieve 75% optimal (target) performance per task in the CT12
curriculum. Steps rounded to the nearest thousand.
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Tasks (step× 103)
Method 1 2 3 4 5 6 7 8 Avg
PPO 8 8 31 26 Fail Fail Fail Fail Fail
EWCMH 8 12 18 25 Fail Fail Fail Fail Fail
MASKRI 7 8 22 18 Fail Fail Fail Fail Fail
MASKLC 7 6 7 5 6 10 4 13 7
MASKBLC 7 6 7 6 16 Fail Fail Fail Fail

Table 27: Number of training steps taken to achieve 75% optimal (target) performance per task in the CT8 multi
depth curriculum. Steps rounded to the nearest thousand.

Tasks (steps× 103)
Method 1 2 3 4 5 6 7 8 9 10 Avg
PPO 29 118 54 19 23 91 36 92 Fail 79 Fail
EWCMH 28 Fail 142 127 46 Fail 31 47 Fail Fail Fail
MASKRI 22 38 49 37 18 Fail 23 23 63 Fail Fail
MASKLC 22 71 55 37 2 Fail 41 64 Fail 47 Fail
MASKBLC 22 60 26 18 3 113 8 38 42 28 36

Table 28: Number of training steps taken to achieve 75% optimal (target) performance per task in the MG10
curriculum. Steps rounded to the nearest thousand.

Tasks (steps× 106)
Method 1 2 3 4 5 6 7 8 9 10 Avg
PPO 5.4 0.1 2.5 0.1 Fail Fail Fail Fail 6.5 0.1 Fail
EWCMH 0.7 Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail
MASKRI_D Fail Fail Fail Fail Fail Fail Fail Fail Fail 0.1 Fail
MASKRI_C 6.2 0.1 0.1 0.1 Fail 2.8 0.1 0.1 2.8 0.1 Fail
MASKLC 6.2 0.1 0.1 0.1 0.1 1.9 0.1 0.1 0.1 0.1 0.9
MASKBLC 6.2 0.1 0.1 0.1 0.1 1.9 0.1 0.1 0.3 0.1 0.9

Table 29: Number of training steps taken to achieve 50% optimal (target) performance per task in the CW10
curriculum. Steps rounded to the hundred thousand.
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