
Under review as a conference paper at ICLR 2024

A DETAILED EXPERIMENTAL SETUP FOR MAP GENERATION

A.1 PSEUDOCODE

Algorithm 3: GenCO Penalized generator training for GANs.
1: Initialize generator parameters ✓gen;
2: Initialize adversary parameters ✓adv;
3: Input: distribution of the true dataset (ctrue ⇠ pdata(c)), GAN’s objective L(✓gen, ✓adv);
4: for epoch e do

5: for batch b do

6: Sample a noise ✏;
7: Sample true examples from dataset ctrue ⇠ pdata(c);
8: Sample fake examples using cfake ⇠ G(✏; ✓gen);
9: Transform cfake into the coefficients of the optimization problem: c = g(cfake);

10: Solve: x⇤ = argminx2⌦ cT z;
11: Backpropagate r✓gen

⇥
L(cfake; ✓gen, ✓adv) + �cTx⇤⇤ to update ✓gen;

12: Backpropagate r✓adv [�L(cfake; ✓gen, ✓adv) + L(creal; ✓gen, ✓adv)] to update ✓adv;
13: end for

14: end for

Algorithm 3 provides a detailed description of the GenCO framework in our penalty formulation
and utilized in section 4.2. In this process, we sample both real and synthetic data, drawing from the
true data distribution and the generator G respectively (lines 7–8). Subsequently, the synthetic data
undergoes a fixed mapping (e.g. ResNet in our experiments), called cost neural net (or cost NN), to
obtain coefficients for the optimization problem, specifically the edge weights for the Shortest Path.
Following this, we invoke a solver that provides us with a solution and its associated objective (lines
10–11). We then proceed to update the parameters of the generator G using both the GAN’s objective
and the solver’s objective. Finally, we refine the parameters of the adversary (discriminator) in
accordance with the standard GAN’s objective.

A.2 SETTINGS

We employ ResNet as the mapping g(·) from Algorithm 3, which transforms an image of a map into
a 12⇥ 12 grid representation of a weighted directed graph: g : <96⇥96⇥3 ! <12⇥12. The first five
layers of ResNet18 are pre-trained (75 epochs, Adam optimizer with lr=5e � 4) using the dataset
from Pogančić et al. (2020), comprising 10,000 labeled pairs of image–grid (refer to the dataset
description below). Following pretraining, we feed the output into the Shortest Path solver, using
the top-left point as the source and the bottom-right point as the destination. The resulting objective
value from the Shortest Path corresponds to f .

Dataset The dataset used for training in the Shortest Path problem with k = 12 comprises
10,000 randomly generated terrain maps from the Warcraft II tileset Pogančić et al. (2020) (adapted
from Guyomarch (2017)). These maps are represented on a 12⇥ 12 grid, with each vertex denoting
a terrain type and its associated fixed cost. For example, a mountain terrain may have a cost of 9,
while a forest is assigned a cost of 1. It’s important to note that in the execution of Algorithm 3, we
don’t directly utilize the actual (ground truth) costs, but rather rely on ResNet to generate them.

A.3 ARCHITECTURE

We employ similar DCGAN architecture taken from Zhang et al. (2020) (see fig. 3 therein). Input
to generator is 128 dimensional vector sampled from Gaussian noise centered around 0 and with a
std of 1. Generator consists of five (256–128–64–32–16) blocks of transposed convolutional layers,
each with 3 ⇥ 3 kernel sizes and batch normalization layers in between. Discriminator follows by
mirroring the same architecture in reverse fashion. The discriminator mirrors this architecture in
reverse order. The entire structure is trained using the WGAN algorithm, as described inZhang et al.
(2020).

14

Under review as a conference paper at ICLR 2024

B GANS WITH COMBINATORIAL CONSTRAINTS

In the generative adversarial networks (GAN) setting, the generative objectives are measured by
the quality of a worst-case adversary, which is trained to distinguish between the generator’s output
and the true data distribution. Here, we use the combinatorial solver to ensure that the generator’s
output is always feasible and that the adversary’s loss is evaluated using only feasible solutions.
This not only ensures that the pipeline is more aligned with the real-world deployment but also that
the discriminator doesn’t have to dedicate model capacity to detecting infeasibility as indicating a
solution is fake and instead dedicate model capacity to distinguishing between real and fake inputs,
assuming they are all valid. Furthermore, we can ensure that the objective function is optimized by
penalizing the generator based on the generated solutions’ objective values:

Lgen(G(✏; ✓gen)) = E✏ [log(1� f✓adv (G(✏; ✓gen)))] (4)

where f✓adv is an adversary (a.k.a. discriminator) and putting this in the context of equation 2 leads
to:

min
✓gen

Lgen(S(G̃(✏; ✓gen))) = E✏

h
log(1� f✓adv (S(G̃(✏; ✓gen))))

i
(5)

where G̃ is unconstrained generator and S is a surrogate combinatorial solver as described above.
Here, we also have adversary’s learnable parameters ✓adv . However, that part does not depend on
combinatorial solver and can be trained as in usual GAN’s. The algorithm is presented in pseu-
docode 4.

Algorithm 4: GenCO GenCO in the constrained generator setting
Initialize generator parameters ✓gen;
Initialize adversary parameters ✓adv;
for epoch e do

for batch b do

Sample problem ✏;
Sample true examples from dataset xtrue ⇠ pdata(x);
Sample linear coefficients c ⇠ G(✏; ✓gen);
Solve x⇤ = argmaxx2⌦ cTx;
Backpropagate r✓genLgen(x⇤; ✓gen) to update generator (equation 5);
Backpropagate r✓adv [log(f✓adv (xtrue))� Lgen(x⇤; ✓gen)] to update adversary;

end for

end for

C GENCO – VQVAE

The formulation below spells out the VQVAE training procedure. Here, we simply train VQVAE on
a dataset of known objective coefficients, which solves the problem at hand. A variant of this also
puts the decision-focused loss on the generated objective coefficients, running optimizer gsolver on
the objective coefficients to get a solution and then computing the objective value of the solution.

LELBO(c, ✓, E) = Eq✓(z|c)[log p✓(c|z)]� � ·DKL(q✓(z|c)||p(z)) + � · ksg(ek)� ze,✓k22 (6)

Here z is an embedding vector, c is the objective coefficients, log p✓(c|z) is a loss calculated via the
mean squared error between the decoder output and the original input objective coefficients, q✓(z|c)
is the encoder, p(z) is the prior, and sg(·) is the stop gradient operator, E is a discrete codebook that
is used to quantize the embedding.

Loptimization = Ec⇠p✓(c|z) [fobj(gsolver(c; y))] (7)

The algorithm below maximizes a combination of the losses in Equation equation 6 and Equa-
tion equation 7.

15

Under review as a conference paper at ICLR 2024

Algorithm 5: Constrained generator Training for VQVAE
Input:Training data distribution D over problem info y and known high-quality objective

coefficients c, regularization weight �, linear surrogate solver gsolver, nonlinear objective
fobjective.

Output:Trained encoder fenc, decoder fdec, and codebook E

Initialize the parameters of the encoder fenc, decoder fdec, and the codebook
E = {e1, e2, . . . , eK} with K embedding vectors;

for t = 1 to T do

Sample y, c from the distribution D;
Compute the encoder output ze = fenc(y, c);
Find the nearest embedding vector zq = argmine2E kze � ek22;
Compute the quantization loss Lquant = kze � zqk22;
Compute the reconstruction c̃ = fdec(y, zq);
Compute the reconstruction loss Lrecon = kc� c̃k22;
GenCo Variant: Compute the optimization loss Lopt = fobjective(gsolver(c̃, y));
Compute the total loss: Ltotal = Lrecon + �1Lquant + �2Lopt;
Update the parameters of the encoder, decoder, and codebook to minimize Ltotal;

end

16

