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A Appendix444

A.1 A Review of Dual-RL445

In this section, we aim to give a self-contained review for Dual Reinforcement Learning. For a more446

thorough read, refer to [40].447

A.1.1 Convex conjugates and f -divergence448

We first review the basics of duality in reinforcement learning. Let f : (0,∞) → R be a convex449

function. The convex conjugate f∗ of f is defined by:450

f∗(y) = supx∈R[⟨x, y⟩ − f(x)] (16)

where ⟨ ⟩ denotes the dot product. The convex conjugates have the important property that f∗ is451

also convex and the convex conjugate of f∗ retrieves back the original function f . Going forward,452

we would be dealing extensively with f -divergences. Informally, f -divergences [] are a measure of453

distance between two probability distributions. Here’s a more formal definition:454

Let f : (0,∞) → R be a convex lower semi-continuous function with f(1) = 0. Let P and Q be455

two probability distributions, then the f -divergence is defined as:456

Df(P || Q) = Ez∼Q

[
f

(
P (z)

Q(z)

)]
(17)

Now, we will do a simple exercise in finding the convex conjugate for this f -divergence (where f is a457

convex function) which will also give us the well-known variational representation of f -divergence.458

We will use it frequently in the subsequent sections.459

Using the definition of convex conjugate and the fact that convex conjugate of f∗ gives back f , we460

have:461

Df(P || Q) = Ez∼Q

[
f

(
P (z)

Q(z)

)]
(18)

= sup
y

Ez∼Q

[
P (z)

Q(z)
y(z)

]
− EQ[f

∗(y(z))] (19)

= sup
y:Z→R

Ez∼P [y(z)]− Ez∼Q[f
∗(y(z))] (20)

Thus Eq 20 derives the variational form for f -divergence. Although deriving the analytical form of462

f∗ is not complicated for most common f -divergences — set the derivative for Eq 16 to zero and find463

out the stationary point, it might be useful to list some common f -divergences and their conjugates464

f∗. We also note an important relation regarding f and f∗: (f∗)
′
= (f ′)−1, where the ′ notation465

denotes first derivative.466

Table 2: List of f -divergences and their convex conjugates

Divergence f(t) f∗(u)

Forward KL − log t −1− log(−u)

Reverse KL t log t e(u−1)

Squared Hellinger (
√
t− 1)2 u

1−u

Pearson χ2 (t− 1)2 u+ u2

4

Total variation 1
2
|t− 1| u

Jensen-Shannon −(t+ 1) log( t+1
2

) + t log t − log (2− eu)
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A.1.2 Duality in Reinforcement Learning467

Duality in reinforcement learning allows a different perspective for solving RL problems, often giving468

off-policy alternatives to typical on-policy approaches. We consider a regularized policy optimization469

objective below:470

max
π

Edπ(s,a)[r(s, a)]− αDf(d
π(s, a) || do(s, a)) (21)

where do is a known state-action visitation distribution. Optimizing over π, at first sight, gives us471

a non-convex problem further complicating the analysis. We can rewrite the problem as a linear472

program (LP) by considering optimization over valid state-action visitations by adding a constraint473

for the optimization:474

max
π,d≥0

Ed(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a)) (22)

s.t d(s, a) = (1− γ)d0(s).π(a|s) + γ
∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s) (23)

where α allows us to weigh policy improvement against conservatism from staying close to the475

state-action distribution dO.476

A careful reader may notice that the above problem is overconstrained. The solution to the477

inner maximization with respect to d is uniquely determined by the |S|×|A| constraints from the478

formulation. The inner optimization, using only the constraints, uniquely determines the visitation479

dπ - the state action visitation of policy π and is independent of the term being optimized 22. The480

gradient with respect to policy π when d is optimized can be shown to be equivalent to the on-policy481

policy gradient (see Section 5.1 from [40]).482

The constraints above are the probability flow equations that a stationary state-action distribution483

must satisfy. Now, how can we go about solving it? Here is where duality comes into play. First,484

we form the lagrangian dual of our original optimization problem, transforming our constrained485

optimization into an unconstrained form. This introduces additional optimization variables - the486

Lagrange multipliers.487

max
π,d≥0

min
Q(s,a)

Es,a∼d(s,a)[r(s, a)]− αDf(d(s, a) || do(s, a))

+
∑

s,a

Q(s, a)


(1− γ)d0(s).π(a|s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)




where Q(s, a) are the Lagrange multipliers for enforcing the equality constraints. We can now do488

some algebraic manipulation on the above equation to further simplify it:489

max
π,d≥0

min
Q(s,a)

Es,a∼d(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a))

+
∑

s,a

Q(s, a)


(1− γ)d0(s).π(a|s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)


 (24)
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= max
π,d≥0

min
Q(s,a)

(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
− αDf(d(s, a) || dO(s, a))

(25)
= max

π(a|s)
min
Q(s,a)

max
d(s,a)≥0

(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
− αDf(d(s, a) || dO(s, a))

(26)

= max
π(a|s)

min
Q(s,a)

max
d(s,a)≥0

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
(r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))/α

]
−Df(d(s, a) || dO(s, a))

(27)

= max
π(a|s)

min
Q(s,a)

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dO

[
f∗((r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))/α)

]
(28)

The last step is due to the application of Eq 16 (convex conjugate definition). To see this more clearly490

let y(s, a) = r(s, a) + γ
∑

s′ p(s
′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a). Then,491

max
d≥0

Es,a∼d[y(s, a)]−Df(d(s, a) || do(s, a)) (29)

= max
d≥0

Es,a∼do

[
d(s, a)

dO(s, a)
y(s, a)− f

(
d(s, a)

do(s, a)

)]
(30)

= Edo [f∗(y(s, a))] (31)

Finally, the policy optimization problem is reduced to the solving the following min-max optimization,492

which we will refer to as dual-Q:493

max
π(a|s)

min
Q(s,a)

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]+Es,a∼dO

[
f∗((r(s, a) + γ

∑

s′

p(s′|s, a)π(a|s′)Q(s′, a′)−Q(s, a))/α)

]

(32)
For common f -divergences, table 2 lists the corresponding convex conjugates f∗. Also, note that494

the primal RL problem is convex and due to slater’s condition [3] we can interchange the min-max495

between the Lagrange variable Q and visitation distribution d to max-min.496

In the case of deterministic policy and deterministic dynamics, the above-obtained optimization takes497

a simpler form:498

min
Q(s,a)

max
π(a|s)

(1− γ)

α
Eρ0(s)[Q(s, π(s))] + Es,a∼do [f∗((r(s, a) + γQ(s′, π(s′))−Q(s, a))/α)]

(33)
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Now, we have seen how we can transform a regularized RL problem into its dual-Q form which499

uses Lagrange variables in the form of state-action functions. Interestingly, we can go further to500

transform the regularized RL problem into Lagrange variables (V) that only depend on the state, and501

in doing so we also get rid of the min-max optimization in the dual-Q.502

Consider the regularized RL problem again (Eq 21). This time, we formulate the visitation constraints503

to depend solely on states rather than state-action pairs. We consider α = 1 for sake of exposition.504

Interested readers can derive the result for α ̸= 1 as in the dual-Q case above. Hence, we are505

solving the following constrained optimization problem:506

max
d≥0

Ed(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a)) (34)

s.t
∑

a∈A
d(s, a) = (1− γ)d0(s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′) (35)

As before we construct the Lagrangian dual to this problem. Note that our constraints now solely507

depend on s.508

max
d≥0

min
V (s)

Es∼d(s,a)[r(s, a)]−Df(d(s, a) || do(s, a)) (36)

+
∑

s

V (s)


(1− γ)d0(s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)− d(s, a)


 (37)

Using similar algebraic manipulations we used to obtain dual-Q, we get the dual-V formulation509

for policy optimization:510

max
d(s,a)≥0

min
V (s)

Es,a∼d(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a))

+
∑

s

V (s)


(1− γ)d0(s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)− d(s, a)


 (38)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (39)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)] (40)

+ Es,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (41)

= min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dO

[
f∗(r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s))

]
(42)

In summary, we have two methods for policy optimization given by:511

dual-Q: maxπ minQ(1− γ)Ed0(s),π(a|s)[Q(s, a)]
+ Es,a∼do [f∗(r(s, a) + γ

∑
s′ p(s

′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))]

512

and,513

dual-V: minV (s)(1−γ)Ed0(s)[V (s)]+Es,a∼do [f∗(r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)− V (s))]

514
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The above derivations for dual of RL CoP - dual-Q and dual-V brings out some important515

observations516

• dual-Q and dual-V present off-policy policy optimization solutions for regularized517

RL problems which requires sampling transitions only from the distribution the policy518

state-action visitation is being regularized against.519

• The above property allows us to solve not only RL problems but also imitation problems520

by setting the reward function to be zero everywhere and do to be the expert dataset,521

and also offline RL problems where we want to maximize reward with the constraint522

that our state-action visitation should not deviate too much from the replay buffer (do =523

replay-buffer).524

• dual-V formulation presents a way to solve the RL problem using a single optimization525

rather than a min-max optimization of the Q-CoP or standard RL formulation. V-CoP526

implicitly subsumes greedy policy maximization.527

A.1.3 Recovering the optimal policy in V-CoP528

In the above derivations for dual-Q and dual-V we leveraged the fact that the closed form solution for529

optimizing d is known and it could be written in the form of Eq 29. The value of d∗ can found using530

KKT conditions on Eq 29:531

d∗(s, a)
do(s, a)

= max

(
0, (f ′)−1

(
y(s, a)

α

))
(43)

Using this ratio there are two ways to recover the optimal policy:532

Method 1: Maximum likelihood on expert visitation distribution533

Policy learning can be treated as maximizing the likelihood of optimal actions:534

maxEs,a∼d∗ [πθ(a|s)] (44)

Using importance sampling we can rewrite the optimization above in a more tractable form:535

max
θ

Es,a∼do [w∗(s, a)πθ(a|s)] (45)

This way of policy learning is similar to weighted behavior cloning, but suffers from the issue that536

policy is not optimized at state-actions where the expert does not visit, i.e w∗(s, a) = 0537

Method 2: Reverse KL matching on offline data distribution (Information Projection)538

To allow the policy to be optimized at all that states in the offline dataset we consider an alternate539

objective:540

min
θ

DKL(d
o(s)πθ(a|s) || do(s)π∗(a|s)) (46)

The objective can be written in a form suitable for optimization as follows:541

min
θ

DKL(d
o(s)πθ(a|s) || do(s)π∗(a|s)) = min

θ
Es∼do(s),a∼πθ

[
log

πθ(a|s)
π∗(a|s)

]
(47)

= min
θ

Es∼do(s),a∼πθ

[
log

πθ(a|s)d∗(s)do(s)πo(a|s)
π∗(a|s)d∗(s)do(s)πo(a|s)

]

(48)

= min
θ

Es∼do(s),a∼πθ

[
log

πθ(a|s)
πo(a|s) − log(w∗(s, a)) + log

d∗(s)
do(s)

]

(49)
= min

θ
Es∼do(s),a∼πθ

[log(πθ(a|s))− log(πo(a|s))− log(w∗(s, a))]

(50)
This method recovers the optimal policy at the states present in the dataset but requires learning542

another policy πo(a|s) which can be obtained by behavior cloning the replay buffer.543
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A.2 Positivity constraints in Dual RL544

We have ignored an important consideration in the derivation of dual-RL methods in Section A.1.2 –545

the constraint that the distribution d we are optimizing for in Q-CoP and V-CoP must be positive.546

Although this does not affect derivation for dual-Q as it is overconstrained and the distribution is547

guaranteed to be unique, it is imperative we consider this constraint in the dual-V setting. We will548

now modify the derivation for dual-V to incorporate these constraints.549

max
d≥0

Ed(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a)) (51)

s.t
∑

a∈A
d(s, a) = (1− γ)d0(s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′) (52)

We arrive at the following equation using the steps in Section A.1.2 (see Equation 39).550

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (53)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼dO

[
d(s, a)

dO(s, a)
(r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s))

]
− Es,a∼dO

[
f(

d(s, a)

dO(s, a)
)

]

(54)

Let w(s, a) = d(s,a)
dO(s,a)

and r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)− V (s) be denoted by y(s, a). We have,551

min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)] + Es,a∼dO [w(s, a)(y(s, a))]− Es,a∼dO [f(w(s, a))] (55)

We now direct the attention to the inner maximization and find a closed-form solution under the552

constraint that d(s, a) ≥ 0.553

max
d(s,a)

max
λ≥=0

Es,a∼dO [w(s, a)(y(s, a))]− Es,a∼dO [f(w(s, a))] +
∑

s,a

λ(s, a)w(s, a) (56)

where λ is the Lagrangian dual parameter than ensures the positivity constraint. Since strong duality554

holds, we can use the KKT constraints to find the solutions w∗(s, a) and λ∗(s, a).555

Primal feasibility: w∗ ≥ 0 ∀ s, a556

Dual feasibility: λ∗ ≥ 0 ∀ s, a557

Stationarity: dO(s, a)(f ′(w∗(s, a)) + y(s, a) + λ∗(s, a)) = 0 ∀ s, a558

Complementary Slackness: w∗(s, a)λ∗(s, a) = 0 ∀ s, a559

Using stationarity we have the following:560

f ′(w∗(s, a)) = y(s, a) + λ∗(s, a) ∀ s, a (57)

Now using complementary slackness only two cases are possible w∗(s, a) > 0 or λ∗(s, a) > 0.561

Combining both cases we arrive at the following solution for this constrained optimization:562

w∗(s, a) = max
(
0, f ′−1

(y(s, a))
)

(58)

We refer to the resulting function after plugging the solution for w∗ back as f∗
p .563

f∗
p (s, a) = w∗(s, a)(y(s, a))− f(w∗(s, a)) (59)

Note that we get the original conjugate f∗ back if we do not consider the positivity constraints. i.e564

f∗(s, a) = f ′−1
(y(s, a))(y(s, a))− f(f ′−1

(y(s, a))) (60)
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Finally, we have the following optimization to solve for dual-V when considering the positivity565

constraints:566

dual-V (with positivity constraints): minV (s)(1−γ)Ed0(s)[V (s)]+Es,a∼dO

[
f∗
p (y(s, a))

]

567

A.3 Dual Connections to Reinforcement Learning568

Our first result shows that Conservative Q-learning [34], an offline RL method primarily understood569

to prevent overestimation by learning a lower bounded Q function is actually a dual-Q method. The570

lemma below formalizes the above statement:571

Lemma 5. Conservative Q-Learning (CQL) is the dual of Q-CoP with the generator function572

f = (t− 1)2 (Pearson χ2) and when the regularization distribution is the replay buffer (dO = dR).573

In other words, CQL eventually solves the regularized RL problem (Q-CoP) in its dual form where574

the regularization is a particular form of f -divergence. This unification indicates that its better575

performance compared to the family of behavior-regularized offline RL methods [42, 12, 53], which576

solve the Q-CoP using approximate dynamic programming is likely due to the choice of f -divergence577

and more amenable optimization afforded by the dual formulation. The dual-Q formulation has been578

previously studied for online RL by the name AlgaeDICE [41] but not evaluated in the context of579

offline RL. Lemma 5 also suggests that CQL is a special case of AlgaeDICE.580

Leveraging the dual form of V-CoP converts the policy improvement problem from a min-max581

two-player game to a single optimization, thus potentially making the optimization easier to solve [40].582

We also note that an additional step needs to be performed to recover policies in dual-V which583

requires solving a supervised learning problem (see Appendix A.1.3). We first show that Extreme584

Q-Learning (X-QL) [15], a method for both online and offline RL based on the principle of implicit585

maximization in the value function space using Gumbel regression, can be reduced to a dual-V586

problem with a semi-gradient update rule (i.e stop-gradient (r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)))587

when f is set to be the reverse-KL regularization. Here, implicit maximization refers to finding the588

extreme values of a distribution using only samples from the distribution. This insight obtained589

through duality, allows us to propose a class of algorithms extending X-QL, by choosing different590

functions f which we show below to result in a family of implicit maximizers.591

Lemma 6. Extreme Q-Learning (X-QL) is the dual of V-CoP with f -divergence set to be the reverse592

Kullback-Liebler divergence with a semi-gradient update rule.593

Figure 2: A family of implicit maximizers arising from semi-gradient dual reinforcement learning corresponding
to different f-divergences. 10000 datapoints are sampled from 1-D bounded gaussian distribution D and v is
inferred using Equation 62. As τ → 1 (see legend) we obtain more accurate estimates for the supremum of the
support.

A family of implicit maximizers: Consider the λ-parameterized semi-gradient dual-V objective594

below:595

min
V (s)

(1− λ)EdO(s)[V (s)] + λEs,a∼dO

[
f∗
p

([
Q̂(s, a)− V (s))

]
,
)]

(61)

where Q̂(s, a) = r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′) with hat denoting stop-gradient. More generally596

for any random variable X with distribution D,597

min
v

(1− λ)Ex∼D[v] + λEx∼D

[
f∗
p (x− v)

]
. (62)
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We show through Lemma 7 below and a simple example 2 that the semi-gradient form of dual-V598

optimization naturally gives rise to a family of implicit maximizers. Intuitively, this is because599

the second term in Eq 62 is minimized in value as v increases and saturates once v = max(x ∈600

support(D)) while the first term is minimized for smaller v. This is opposed to specially curated601

implicit maximizers found in offline RL methods [32]. Gumbel regression becomes a special case of602

this family. We list some of the loss functions for value function updates with different f -divergences603

in Appendix A.3.1. We also highlight that the full-gradient variant of the dual-V framework for604

offline RL has been studied extensively in OptiDICE [35].605

Lemma 7. Let X be a real-valued random variable with bounded support and the supremum of the606

support is x∗. Then optimizing equation 62, the solution vλ satisfies the following properties607

lim
λ→1

vλ = x∗ and ∀ λ1 < λ2 ∈ (0, 1), vλ1 ≤ vλ2 . (63)

A generalized policy iteration view of semi-gradient dual-V: dual-V framework presents608

optimization difficulties when using full-gradients [4]. X-QL shows that stable learning can be609

achieved using the semi-gradient form. Our insight into implicit maximizers suggests that using610

semi-gradients brings the dual-V framework closer to generalized policy-iteration framework. The611

update of V in its semi-gradient dual form acts as an implicit policy optimizer and the estimation of612

Q̂(s, a) by regressing to r(s, a)+γ(V (s′)) is akin to a policy evaluation step, bridging the connection613

to generalized policy iteration.614

Proofs for this section:615

Lemma 5. Conservative Q-Learning (CQL) is the dual of Q-CoP with the generator function616

f = (t− 1)2 (Pearson χ2) and when the regularization distribution is the replay buffer (dO = dR).617

Proof. We show that CQL [34], a popular offline RL method is also a special case of dual-Q for618

offline RL. Consider an f -divergence with the generator function f = (t− 1)2. The dual function f∗619

is given by f∗ = ( t
2

4 + t). With the f -divergence our Q-CoP can be written as:620

(1− γ)

α
Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

[
y(s, a, r, s′)2

4α2
+

y(s, a, r, s′)
α

]
(64)

=
(1− γ)

α
Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

[
y(s, a, r, s′)

α

]
+ Es,a∼dO

[
y(s, a, r, s′)2

4α2

]
(65)

Let’s simplify the first two terms:621

1

α


(1− γ)Ed0,π(a|s)[Q(s, a)] + Es,a∼dO


r(s, a) + γ

∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)






(66)

=
1

α


(1− γ)Ed0,π(a|s)[Q(s, a)] + Es,a∼dO


γ
∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)


− Es,a∼dO [Q(s, a)] +(((((((Es,a∼dO [r(s, a)]




(67)

=
1

α

[
(1− γ)

∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s,a

dO(s, a)
∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)− Es,a∼dO [Q(s, a)]

]

(68)
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=
1

α

[
(1− γ)

∑

s,a

d0(s)π(a|s)Q(s, a) + γ⟨dO, PπQ⟩ − Es,a∼dO [Q(s, a)]

]
(69)

=
1

α

[
(1− γ)

∑

s,a

d0(s)π(a|s)Q(s, a) + γ⟨Pπ
∗ d

o, Q⟩ − Es,a∼do [Q(s, a)]

]
(70)

=
1

α


(1− γ)

∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s,a

π(a|s)Q(s, a)
∑

s′,a′

p(s|s′, a′)d(s′, a′)− Es,a∼do [Q(s, a)]




(71)

=
1

α


∑

s,a

(d0(s) + γ
∑

s′a,′

p(s|s′, a′)d(s′, a′))π(a|s)Q(s, a)− Es,a∼do [Q(s, a)] + Es,a∼do [r(s, a)]




(72)

=
1

α

[∑

s,a

do(s)π(a|s)Q(s, a)− Es,a∼do [Q(s, a)] + Es,a∼do [r(s, a)]

]
(73)

=
1

α
[Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] (74)

where Pπ denotes the policy transition operator, Pπ
∗ denotes the adjoint policy transition operator.622

Removing constant terms (Equation 67) with respect to optimization variables we end up with the623

following form for dual-Q:624

1

α
[Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] + Es,a∼do

[
y(s, a, r, s′)2

4α2

]
(75)

Hence the dual-Q optimization reduces to:625

max
π

min
Q

α [Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] + Es,a∼do

[
y(s, a, r, s′)2

4

]
(76)

This equation matches the unregularized CQL objective (Equation 3 in [34]).626

Lemma 6. Extreme Q-Learning (X-QL) is the dual of V-CoP with f -divergence set to be the reverse627

Kullback-Liebler divergence with a semi-gradient update rule.628

Proof. We show that the Extreme Q-Learning [] framework is a special case of the dual framework,629

specifically the dual-V using the semi-gradient update rule.630

Consider setting the f -divergence to be the KL divergence in the dual V framework, the regularization631

distribution and the initial state distribution to be the replay buffer distribution (dO = dR and632

d0 = dR). The conjugate of the generating function for KL divergence is given by f∗(t) = et−1.633

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
f∗
([

r(s, a) + γ
∑

s′

p(s′|s, a)V (s′)− V (s))

]
/α

)]
(77)

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
exp(

([
r(s, a) + γ

∑

s′

p(s′|s, a)V (s′)− V (s))

]
/α− 1

)]

(78)
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A popular approach for stable optimization in temporal difference learning is the semi-gradient update634

rule which has been studied in previous works []. In this update strategy, we fix the targets for the635

temporal difference backup. Our target in the above optimization is given by:636

Q̂(s, a) = r(s, a) + γ
∑

s′

p(s′|s, a)V (s′) (79)

The update equation for V is now given by:637

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
exp(

([
Q̂(s, a)− V (s))

]
/α− 1

)]
(80)

where hat denotes the stop-gradient operation. We approximate this target by using638

mean-squared regression with the single sample unbiased estimate as follows:639

min
Q

Es,a,s′∼dR

[
(Q(s, a)− (r(s, a) + V (s′)))2

]
(81)

The procedure is now equivalent to Extreme-Q learning and is a special case of the dual-V640

framework.641

642

A.3.1 A family of implicit maximizers643

Lemma 7. Let X be a real-valued random variable with bounded support and the supremum of the644

support is x∗. Then optimizing equation 62, the solution vλ satisfies the following properties645

lim
λ→1

vλ = x∗ and ∀ λ1 < λ2 ∈ (0, 1), vλ1 ≤ vλ2 . (63)

Proof. We analyze the behavior of the following optimization of interest.646

min
v

(1− λ)Ex∼D[v] + λEx∼D

[
f∗
p (x− v)

]
(82)

f∗
p (t) is given by (using the result derived in A.2):647

f∗
p (t) = −f

(
max(f

′−1
(t), 0)

)
+ tmax

(
f

′−1
(t), 0

)
(83)

The function f∗
p admits two different behaviors given by:648

f∗
p =

{
−f(f

′−1
(t)) + tf

′−1
(t) = f∗(t), if f

′−1
(t) > 0

−f(0), otherwise

where f∗ is the convex conjugate of f -divergence and is strictly increasing with t. We note other649

properties related to f function for f -divergences: f∗, f ′, (f ′)−1 is strictly increasing, f(0+) > 0650

and (f ′)−1(t) > 0 when t > 0 and 0 otherwise.651

We analyze the second term in Eq 82. It can be expanded as follows:652

λ

∫

x:(f ′ )−1(x−v)>0

p(x)f∗(x− v)dx− λ

∫

x:(f ′ )−1(x−v)<0

f(0)p(x)dx (84)

From the properties of f , we use the fact that (f
′
)−1(x− v) > 0 when x− v > 0 or equivalently653

x > v.654

λ

∫

x>v

p(x)f∗(x− v)dx− λ

∫

x≤v

f(0)p(x)dx (85)
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The first term in the above equation decreases monotonically and the second term increases655

monotonically (thus the combined terms decrease) as v increases until v = x∗ (supremum of656

the support of the distribution) after which the equation assumes a constant value of −λf(0).657

Going back to our original optimization in Equation 82, the first term decreases monotonically with v.658

As λ → 1, the minimization of the second term takes precedence, with increasing v until saturation659

(v = x∗). We can go further to characterize the effect of λ on solution vλ of the equation. The660

solution of the optimization can be written in closed form as:661

(1− λ)

λ
= Ex∼D

[
f∗
p

′
(x− v)

]
(86)

Using the fact that f∗
p

′
is non-decreasing, we can show that the right-hand term in the equation above662

increases as v decreases. This in turn implies that for all λ1, λ2 such that λ1 ≤ λ2 we have that663

vλ1 ≤ vλ2 .664

665

A.4 Dual Connections to Imitation Learning666

A.4.1 Offline imitation learning with expert data only667

A new method for offline imitation learning: Analogous to dual-Q (offline imitation), we can668

leverage the dual-V (offline imitation) setting which avoids the min-max optimization given by:669

IV-Learn or dual-V (offline imitation from expert-only data):670

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dE [f∗ ([T0V (s, a)− V (s))] /α)] (87)

We propose dual-V (offline imitation) to be a new method arising out of this framework which we671

leave for future exploration.672

Proofs for this section:673

Corollary 1. dual-Q is equivalent to Implicit Behavior Cloning [7] when r(s, a) = 0 ∀ (S,A)674

and dO(s, a) = dE(s, a) and f is set to be the total variation divergence.675

Equation 10 suggests that intuitively IQ-learn trains an energy-based model in the form of Q where676

it pushes down the Q-values for actions predicted by current policy and pushes up the Q-values677

at the expert state-action pairs. This becomes more clear when the divergence f is chosen to be678

Total-Variation (f∗ = I), IQ learn reduces to:679

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE


γ
∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)


 (88)

=


(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE


γ
∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)




− Es,a∼dE [Q(s, a)]

(89)

Let’s simplify the first two terms:680

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE

[
γ
∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)

]
(90)

= (1− γ)
∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s,a

dE(s, a)
∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′) (91)
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= (1− γ)
∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s′,a′

∑

s,a

dE(s, a)p(s′|s, a)π(a′|s′)Q(s′, a′) (92)

= (1− γ)
∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s′,a′

π(a′|s′)Q(s′, a′)(
∑

s,a

dE(s, a)p(s′|s, a)) (93)

= (1− γ)
∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s′,a′

π(a′|s′)Q(s′, a′)(
∑

s,a

dE(s, a)p(s′|s, a)) (94)

= (1− γ)
∑

s,a

d0(s)π(a|s)Q(s, a) + γ
∑

s,a

π(a|s)Q(s, a)(
∑

s′,a′

dE(s′, a′)p(s|s′, a′)) (95)

=
∑

s,a

(1− γ)d0(s)π(a|s)Q(s, a) + π(a|s)Q(s, a)(
∑

s′,a′

dE(s′, a′)p(s|s′, a′)) (96)

=
∑

s,a

π(a|s)Q(s, a)


(1− γ)d0(s) + γ

∑

s′,a′

dE(s′, a′)p(s|s′, a′)


 (97)

=
∑

s,a

π(a|s)Q(s, a)dE(s) (98)

where the last step is due to the steady state property of the MDP (Bellman flow constraint).681

Therefore IQ-Learn/dual-Q for offline imitation (in the special case of TV divergence) simplifies to682

(from Equation 89):683

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE


γ
∑

s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)




− Es,a∼dE [Q(s, a)]

(99)
= min

Q
EdE(s),π(a|s)[Q(s, a)]− Es,a∼dE [Q(s, a)] (100)

The gradient w.r.t for the above optimization matches the gradient update of Implicit Behavior684

Cloning [7] with Q as the energy-based model.685

A.5 Off-policy imitation learning (under coverage assumption)686

First, we show that is easy to see why choosing the f -divergence to be reverse KL makes it possible687

to get an off-policy objective for imitation learning in the dual framework. We start with the Q-CoP688

for imitation learning using the reverse KL-divergence (r(s, a) = 0 and do = dE):689

max
d(s,a)≥0,π(a|s)

−DKL(d(s, a) || dE(s, a))

s.t d(s, a) = (1− γ)ρ0(s).π(a|s) + γπ(a|s)
∑

s′,a′

d(s′, a′)p(s|s′, a′). (101)

Under the assumption that the replay buffer visitation (denoted by dR) covers the expert visitation690

(dR > 0 wherever dE>0) [37], which we refer to as the coverage assumption, the reverse KL691

divergence can be expanded as follows:692

DKL(d(s, a) || dE(s, a)) = Es,a∼d(s,a)

[
log

d(s, a)

dE(s, a)

]
= Es,a∼d(s,a)

[
log

d(s, a)

dE(s, a)

dR(s, a)

dR(s, a)

]

(102)

= Es,a∼d(s,a)

[
log

d(s, a)

dR(s, a)
+ log

dR(s, a)

dE(s, a)

]
(103)

= Es,a∼d(s,a)

[
log

dR(s, a)

dE(s, a)

]
+DKL(d(s, a) || dR(s, a)). (104)
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Hence the Q-CoP can now be written as:693

max
d(s,a)≥0,π(a|s)

Es,a∼d(s,a)

[
− log

dR(s, a)

dE(s, a)

]
−DKL(d(s, a) || dR(s, a)) (105)

s.t d(s, a) = (1− γ)ρ0(s).π(a|s) + γ
∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s). (106)

Now, in the optimization above the first term resembles the reward function and the second term694

resembles the divergence constraint with a new distribution dR(s, a) in the original regularized RL695

primal (Eq 22). Hence we can obtain respective dual-Q and dual-V in the setting for off-policy696

imitation learning using the reward function as rimit(s, a) = − log dR(s,a)
dE(s,a)

and the new regularization697

distribution as dR(s, a). Using T π
rimit and T rimit to denote backup operators under new reward698

function rimit, we have699

dual-Q for off-policy imitation (coverage assumption):700

max
π(a|s)

min
Q(s,a)

(1− γ)Eρ0(s),π(a|s)[Q(s, a)] + Es,a∼dR [f∗(T π
rimitQ(s, a)−Q(s, a))]. (107)

This choice of KL divergence leads us to a reduction of another method, OPOLO [57] for off-policy701

imitation learning to dualQ which we formalize in the lemma below:702

Lemma 8. dual-Q for off-policy imitation learning reduces to OPOLO [57], with the f -divergence703

set to the reverse KL divergence when r(s, a) = 0 ∀S,A, dO = dE and under the assumption that704

the replay data distribution covers the expert data distribution.705

Analogously we have dual-V for off-policy imitation (coverage assumption):706

min
V (s)

(1− γ)Eρ0(s)[V (s)] + Es,a∼dR [f∗(T rimitV (s, a)− V (s))]. (108)

We note that the dual-V framework for off-policy imitation learning under coverage assumptions707

was studied in the imitation learning work SMODICE [37].708

B Off-policy imitation learning with relaxed coverage709

We now derive our proposed method for imitation learning with arbitrary data. The derivation for the710

dual-Q setting is shown below. dual-V derivation can be done similarly.711

Lemma 3. (dual-Q for off-policy imitation (relaxed coverage assumption)) Imitation learning712

using off-policy data can be solved by optimizing the following modified dual objective for Q-CoP713

with r(s, a) = 0 ∀S,A and f -divergence considered between distributions dRmix := βd(s, a) + (1−714

β)dR(s, a) and dE,R
mix := βdE(s, a) + (1− β)dR(s, a), and is given by:715

max
π(a|s)

min
Q(s,a)

β(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE,R
mix

[
f∗
p (T π

0 Q(s, a)−Q(s, a))
]

− (1− β)Es,a∼dR [T π
0 Q(s, a)−Q(s, a)] (14)

Proof.

max
π,d≥0

min
Q(s,a)

αEs,a∼d[r(s, a)]−Df(d
R
mix || dE,R

mix)

+ α
∑

s,a

Q(s, a)


(1− γ)d0(s).π(a|s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)




We can use the same algebraic machinery as before (Section A.1.2) to get an unconstrained tractable716

optimization problem:717
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max
π,d≥0

min
Q(s,a)

αEs,a∼d(s,a)[r(s, a)]−Df(d
R
mix || dE,R

mix)

+ α
∑

s,a

Q(s, a)


(1− γ)d0(s).π(a|s) + γ

∑

s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)


 (109)

= max
π,d≥0

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ αEs,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix) (110)

= max
π,d≥0

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ αEs,a∼d

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]

+ (1− α)Es,a∼dR

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

(111)

Imitation from Arbitrary data (dualQ, no positivity constraints)

= max
π(a|s)

min
Q(s,a)

max
d≥0

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dR
mix

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(112)

718

Note that the inner maximization with respect to d has the constraint that d ≥ 0. This constraint was719

not necessary for the previous settings for dual-Q problems we have discussed. In this setting, to720

get a tractable closed form we replace the optimization variable from d to dRmix with the constraint721

that d ≥ 0. This prevents the optimization to result in values for dRmix which has d < 0. Ignoring this722

constraint (d ≥ 0) results in the following dual-optimization for imitation from arbitrary data.723

max
π(a|s)

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dE,R
mix

[
f∗(r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))

]

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(113)

To incorporate the positivity constraints we begin on the inner maximization w.r.t dRmix and consider724

the terms dependent on dRmix below.725
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max
dR
mix,d≥0

Es,a∼dR
mix

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

(114)

Let p(s, a) = (1−α)ρR(s,a)
αρE(s,a)+(1−α)ρR(s,a)

, y(s, a) = r(s, a)+γ
∑

s′ p(s
′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)726

and w(s, a) =
dR
mix(s,a)

dE
mix(s,a)

. We construct the lagrangian dual to incorporate the constraint d ≥ 0 in its727

equivalent form w(s, a) ≥ p(s, a) and obtain the following:728

max
w(s,a)

max
λ≥0

Es,a∼dE,R
mix

[w(s, a)y(s, a)]− EdE,R
mix

[f(w(s, a))] +
∑

s,a

λ(w(s, a)− p(s, a)) (115)

Since strong duality holds, we can use the KKT constraints to find the solutions w∗(s, a) and λ∗(s, a).729

Primal feasibility: w∗(s, a) ≥ p(s, a) ∀ s, a730

Dual feasibility: λ∗ ≥ 0 ∀ s, a731

Stationarity: dE,R
mix(s, a)(f

′(w∗(s, a)) + y(s, a) + λ∗(s, a)) = 0 ∀ s, a732

Complementary Slackness: (w∗(s, a)− p(s, a))λ∗(s, a) = 0 ∀ s, a733

Using stationarity we have the following:734

f ′(w∗(s, a)) = y(s, a) + λ∗(s, a) ∀ s, a (116)

Now using complementary slackness only two cases are possible w∗(s, a) > p(s, a) or λ∗(s, a) > 0.735

Combining both cases we arrive at the following solution for this constrained optimization:736

w∗(s, a) = max
(
p(s, a), f ′−1

(y(s, a))
)

(117)

We can still find a closed-form solution for the inner optimization, in the case when d ≥737

0, although a bit more involved (See Appendix for the proof). Let y(s, a) = r(s, a) +738

γ
∑

s′ p(s
′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a). Also let p(s, a) = (1−α)ρR(s,a)

αρE(s,a)+(1−α)ρR(s,a)
.739

max
π(a|s)

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dE,R
mix

[
max

(
p(s, a), (f ′)−1 (y(s, a))

)
y(s, a)− αf

(
max

(
p(s, a), (f ′)−1 (y(s, a))

))]

(118)

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑

s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(119)

Thus, the closed-form solution with the positivity constraints requires us to estimate the ratio p(s, a)740

which is possible by learning a discriminator. We observed in our experiments that ignoring the741

positivity constraints still resulted in a performant method while having the benefits of being simple.742

A similar derivation can be done in V-space to obtain an analogous result.743

C Implementation and Experiment Details744

Environments: In this work for benchmarking we use 4 MuJoCo (licensed under CC BY 4.0)745

locomotion environments: Hopper, Walker2d, HalfCheetah, and Ant. .746

Offline datasets: In this task, we use offline dataset of environments interactions from D4RL [8].747

We consider the following MuJoCo environments: Our dataset composition for ‘random+expert’748
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is similar to SMODICE [37] where we use a mixture of a small number of expert trajectories749

(≤ 200 trajectories) and a large number of low-quality trajectories from the “random-v2” dataset750

(1 million transitions). We similarly create another offline dataset ‘medium+expert’ consisting751

of 200 expert trajectories and 1 million medium-quality transitions from the “medium-v2”. The752

‘random+few-expert’ dataset is similar to the ‘random+expert’ dataset except that only 30 expert753

trajectories are present in the offline dataset.754

Expert dataset The offline dataset for imitation consists of 1000 transitions obtained from the755

“expert-v2” dataset for the respective environment.756

Baselines: We compare our proposed methods against 4 representative methods for offline imitation757

learning with suboptimal data – SMODICE [37], RCE [6], ORIL [59] and IQLearn [14]. We do not758

compare to DEMODICE [29] as SMODICE was shown to be competitive in [37]. SMODICE759

is an imitation method emerging from the dual framework but under an restrictive coverage760

assumption. ORIL adapts GAIL [21] to the offline setting by using an offline RL algorithm for policy761

optimization. RCE baseline in the paper combine RCE (Eysenbach et al., 2021), the state-of-art762

online example-based RL method, and TD3-BC. ORIL and RCE share the same state-action based763

discriminator as in SMODICE, and TD3-BC [11] as the offline RL algorithm. All the approaches764

only have access to expert state-action trajectory.765

We use the author’s open-source implementations of baselines SMODICE, RCE, ORIL766

available at https://github.com/JasonMa2016/SMODICE. We use the author-provided767

hyperparameters (similar to those used in [37]) for all MuJoCo locomotion environments. IQ-Learn768

was tested on our expert dataset by following authors implementation found here: https:769

//github.com/Div99/IQ-Learn. We tested two IQ-Learn loss variants: ’v0’ and ’value’770

as found in their hyperparameter configurations and took the best out of the two runs.771

Policy Optimization: We use Method 1 in Section A.1.3 for policy update.772

C.1 Hyperparameters773

Hyperparameters for our proposed offpolicy imitation learning method ReCOIL are shown in Table 3.774

Hyperparameter Value
Policy updates npol 1
Policy learning rate 3e-5
Value learning rate 3e-4
Temperature α 0.1
f -divergence χ2

Table 3: Hyperparameters for ReCOIL.
775

D Experimental Results776

D.1 The failure of ADP-based traditional off-policy algorithms777

Figure 3 shows that methods like SAC, SACfD deteriorate increasingly with increasing action778

dimension when bootstrapped with off-policy data. Figure 4 shows that traditional ADP methods779

suffer from overestimation during training.780
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Figure 3: Despite the promise of off-policy methods, current methods based on ADP such as SAC fail when the
dimension of action space, denoted by A, increases even when helpful data is added to their replay buffer. On
other hand, dual-Q methods are able to leverage off-policy data to increase their learning performance
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Figure 4: SAC and SACfD suffer from overestimation when off-policy data is added to the replay buffer. We
hypothesize this to cause instabilities during training while dualQ has no overestimation.

D.2 Does ReCOIL allow for better estimation of agent visitation distribution?781

We consider two didactic environments which demonstrate the failures of method that either do not782

utilize off-policy data (IQ-Learn) or relies on a coverage assumption (SMODICE). ReCOIL is able to783

perfectly infer agent’s visitation when replay buffer covers agent ground truth visitation perfectly784

(Fig 5) and is able to outperform baselines when the replay buffer has imperfect coverage over the785

agent’s ground truth visitation (Fig 6).786
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Figure 5: The replay buffer distribution covers the agent policy visitation distribution. Using ReCOIL, we are
perfectly able to infer the agent policy visitation whereas a method that only relies on expert data or the replay
data with the coverage assumption fails. Results are averaged over 100 seeds.
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Figure 6: Replay buffer consists of data that visits near the initial state (0,0), a setting commonly observed when
training RL agents. We estimate agent’s policy visitation and observe ReCOIL to outperform both methods
which rely on expert data only or use the replay data with coverage assumption

D.3 Benchmarking performance of ReCOIL on MuJoCo tasks787

We show learning curves for ReCOIL in Figure 7 below.788
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Figure 7: ReCOIL performs competitively in the setting of learning to imitate from diverse offline data. The
results are averaged over 5 seeds
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