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This supplement provides additional experimental results to enhance the main paper. In Section
we offer more implementation details. In Section we present additional experimental results.
In Section [3] we use more in-the-wild data to compare and verify the effectiveness of ReBaR on
extremely challenging real-world problems.

1 IMPLEMENTATION DETAILS

In our experiments, our backbone network is initialized by the HRNet model weights pre-trained on
the MPII (Andriluka et al., 2014) dataset for 2D key point detection tasks.

Part Segmentation Map

To obtain segmentation maps for the auxiliary supervision of the body attention map and part atten-
tion map in the AGE module, segmentation labels are required for each part of the original image.
However, labeling the original image is a time-consuming and costly process. Luckily, we can utilize
the SMPL model to obtain the vertex coordinates in the camera coordinate system that correspond
to each image. Using weak perspective transformation techniques (Kissos et al.,[2020), we can then
generate the 2D vertex coordinates in the pixel coordinate system that are needed to generate the
segmentation map. This method enables us to obtain the necessary segmentation maps without the
need for costly and manual labeling of the original image.

Torso Plane and Relative Depth

As shown in figure|l| we select the shoulder, hip, and pelvis points on the human torso to establish
the frontal, lateral, and transverse planes of the torso. The center points of the skin regions of each
joint are defined as the actual joint positions, and joint axes are defined by bringing equations greater
than O into the plane as positive directions, and the depth value is calculated based on the distance
from the point to the plane. This is used as a basic fact label for relative depth, and explicit plane
consistency constraints are constructed.

Loss Weight
In all experiments covered in this paper, we weight the loss of keypoints and SMPL parameters five
times more than other losses.

Data Augmentation
In all the experiments in the paper, except that Table 2 does not use any augmentation on the Agora
dataset, other experiments use the same data augmentation method as PARE.

Auxiliary Loss

In the process of training ReBaR, we respectively use global 2D/3D keypoints, body/part attention
map and relative depth supervision to assist the network to learn body-aware part features. For
the supervision of body/part attention, we only supervise on the COCO-EFT dataset, and reset the
weight of L ;.4 in the loss function to 0 on the mix and 3DPW datasets.For the Agora dataset, we
do not supervise the relative depth.
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Figure 1: Illustration of the calculation of the relative depth from the torso plane. Shows the
torso points for constructing the torso planes and the relative depth of the right hand.

2 EXPERIMENTS

In this section, we supplement more experimental results and ablation experiments to verify the
effectiveness of ReBaR.

Method Elbow Wrist Head

MIE,| MIJE,l MIE.| | MJE,] MIE,| MIE.| | MIE.] MIJE,] MIE.]
PARE 33.7 27.5 55.0 42.6 36.1 80.5 29.5 33.9 70.6
ReBaR 27.9 27.9 48.5 36.1 35.5 75.6 20.5 30.0 48.1
Method Ankle Knee Neck

MIE,| MIJE,l MIE.| | MJE,] MIE,| MIE.| | MIE.] MIJE,] MIE.]
PARE 46.3 47.8 82.2 27.7 26.7 47.5 18.2 273 46.8
ReBaR 35.0 36.6 71.0 21.8 17.9 40.4 15.3 24.1 36.0

Table 1: Part-by-part performance comparison on the 3DPW-Test. All methods have been
trained on dataset with 3DPW.

Per-part Evaluation

To validate the effectiveness of our method, we conducted more comprehensive evaluation exper-
iments and reported the MPJPE metrics for each body part on each axis in Table [I} Compared to
PARE, our method achieved a significant improvement of about 8mm on most parts, while the im-
provement of the shoulder in the z-axis is relatively small. Notably, our method achieved the most
significant improvement on the Head, which dropped by 23.5mm in the z-axis. Some body parts such
as the ankle and neck also showed substantial improvement, with a drop of 11.2mm and 10.8mm in
the z-axis, respectively.

Analysis of BAR Module

BAR is the core part of ReBaR. Its role is to construct body perception component features and
establish connections between components, so as to infer the posture of occluded parts through more
reasonable visible information. This also makes ReBaR have a better ability to alleviate the depth
blur problem than existing methods. As shown in Figure we directly associate the component
features of PARE and cannot correctly infer the correct posture of the occluded forearm (such as the
wrong posture of the forearm bending forward), but after adding the body reference condition, the
model infers Relatively correct posture, although its depth information is not very accurate, and then
with the help of relative torso depth constraints, ReBaR accurately infers the posture of the arms
behind it. In addition, we also found that in some extremely challenging actions, the body reference
condition can greatly improve the stability of the root node. As shown in Figure [2] in the inverted



Under review as a conference paper at ICLR 2024

(a) Input (b) WTF (c) W ATT-RFeat+tMLP (d) Full model

= s o
ATT-RFeat (c) Full model

-~

T

(@) Input_(b) W/o

Figure 2: The role of BAR module and ATT-RFeat. For the first two rows, from left to right: input
image, PARE+transformer, PARE+BAR, and the result of the full model. For the last line, from left
to right: input image, w/o ATT-Rfeat, and the result of the full model.
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3DPW-AIl
Method MJE| PAMIE| V2V|
Baseline (Kocabas et al.,[2021)  91.0 56.7 108.2

Baseline w TF 91.5 55.7 108.6
Baseline w HMR-RFeat+TF 90.1 55.0 106.1
ReBaR w/o Lsp 89.4 55.8 106.7
ReBaR w/o Lap 90.6 54.8 107.2
ReBaR w/o Lip 89.0 54.2 105.7
ReBaR 88.6 53.7 105.3

Table 2: Ablation study of ReBaR on 3DPW. All methods are trained on COCO-EFT-PART.

action, because PARE independently predicts the root joint, it causes an error in the global rotation
direction. However, our method ReBaR accurately predicts a reasonable direction through the root
feature of body perception, avoiding the problem of random rotation of the human body in video
capture.

The Role of Attention-guided Reference Feature

Figure [3] illustrates the qualitative improvement of our method in challenging cases such as severe
occlusion, challenging poses, and depth ambiguity. This demonstrates the importance of body-aware
part features encoding and utilizing visual information around parts and Attention-guided reference
feature to address depth ambiguity and self-occlusion issues.

Ablation Experiments With Attention-guided Reference Features

To evaluate the effectiveness of the body-aware regressor module, we conducted a set of comparative
experiments. We used the global feature of the HMR model as a reference and directly associated
it with the part feature to regress the SMPL model parameters using the same transformers. The
results, as shown in Table 2] indicate that the global reference encoding only marginally improves the
PAMIE metric compared to PARE. However, when we replaced the HMR feature with the Attention-
guided reference feature of the AGE module, the model’s performance significantly improved. This
demonstrates the importance of using Attention-guided referenced feature for inferring part poses.

Ablation Experiments With Auxiliary Constraints

In this experiment, we use HR-W32 as the backbone and train all comparison methods on the small
COCO-2014-EFT (22K) dataset (a subset of the COCO-EFT dataset). We first combine PARE with
Transformers and evaluate the performance on the 3DPW dataset. Table [2] shows that integrating
both techniques slightly reduces PAMIJE but increases MJE and PVE. In contrast, our proposed Re-
BaR significantly improves PARE, indicating that learning Attention-guided reference feature sub-
stantially contributes to the performance gain. Furthermore, we validate the auxiliary constraints,
i.e., 2D keypoints Lop, 3D keypoints Lsp, and relative depth L rp, which bring different levels of
improvement to our proposed Attention-guided reference feature. Compared to the unconstrained
HMR-feature and single-information supervised body-feature, establishing dependencies between
2D and 3D information in space can better construct stable reference conditions, thereby greatly
improving joint prediction accuracy. The relative depth constraint provides greater weight on the
depth axis and endows the model with the ability to perceive front-back relationships (positive out-
side the torso plane and negative otherwise), thereby alleviating the depth blur problem, which is an
ability that pure 3D keypoint constraints do not possess. The results in Table [2] show that all losses
contribute to improved performance.

Compared To Video-based Methods

We also compared our method to the state-of-the-art video-based methods. TableE] shows the results,
which demonstrate that our method outperforms these methods by a significant margin even without
additional temporal information from the video.

3  MORE QUALITATIVE COMPARISONS

In this section, we provide more qualitative comparison results. Visualize PARE (Kocabas et al.,
2021)), CLIFF (Li et al.|[2022)) and ReBaR results on images and challenging video files respectively
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Figure 3: The role of Attention-guided reference feature. From left to right: input image, body
attention map, the result of discarding Attention-guided reference feature, and the result of the full
model.
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3DPW-Test
Method MIE| V2V]
HMMR (Kanazawa et al.[[2018)) 1165 726
Doersch et al. (Doersch & Zisserman, 2019) - 74.7
Sun et al. (Sun et al., 2019) - 69.5
TCMR (Choit et al.| [2021) 105.3  100.7
VIBE (Kocabas et al., |2020) 82.7 51.9
MAED (Wan et al., [2021) 79.1 45.7
ReBaR - 609.1 41.8

Table 3: Evaluation on 3DPW-Test. ReBaR achieves the best results without using the Euro filter.”-
” means no data provided.

for comparison. The image data includes two public datasets of 3DPW (Von Marcard et al., [2018)
and LSPET (Johnson & Everingham| 2011}, which contain problems such as occlusion, direction
blur, and depth blur. Video files are downloaded directly from the internet and include challenging
action sequences such as yoga, hip-hop and more.

Qualitative Comparison of Image As shown in Figure f] our method outperforms PARE and
CLIFF in almost all cases on the motion dataset LSPET. Especially under the problem of depth
ambiguity and self-occlusion, thanks to the body-aware part features encoding, ReBaR can infer the
spatial relationship between the occluded part and the body from the local visual cues around the
part and the relevant global information of the whole body, Thereby improving the estimation ac-
curacy. More interestingly, we found that PARE can barely determine the body orientation in some
handstand situations, which we believe is due to PARE disconnecting the limbs and independently
predicting the global rotation part. However, ReBaR avoids this problem nicely by using body ref-
erence conditions and limb dependencies.

Qualitative Comparison of Challenging Videos

As shown in Figure[5] we intercept some video frames for qualitative comparison. It is not difficult
to find that in challenging action sequences such as hip-hop and yoga, the effects of PARE and
CLIFF have dropped significantly, which shows that neither completely independent part prediction
methods nor pure global prediction methods can handle actual complex movements in real-world
applications. But ReBaR showed good results in handling these challenging actionse.
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Figure 4: Qualitative comparison of image. From left to right: input image, PARE, CLIFF and
ReBaR.
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Figure 5: Qualitative comparison of video. From up to down: PARE, CLIFF and ReBaR.
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