
NAS-Bench-x11 and the Power of Learning Curves

Shen Yan∗1, Colin White∗2, Yash Savani3, Frank Hutter4,5
1 Michigan State University, 2 Abacus.AI, 3 Carnegie Mellon University,

4 University of Freiburg, 5 Bosch Center for Artificial Intelligence

Abstract

While early research in neural architecture search (NAS) required extreme compu-
tational resources, the recent releases of tabular and surrogate benchmarks have
greatly increased the speed and reproducibility of NAS research. However, two
of the most popular benchmarks do not provide the full training information for
each architecture. As a result, on these benchmarks it is not possible to run many
types of multi-fidelity techniques, such as learning curve extrapolation, that require
evaluating architectures at arbitrary epochs. In this work, we present a method
using singular value decomposition and noise modeling to create surrogate bench-
marks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, that output the
full training information for each architecture, rather than just the final validation
accuracy. We demonstrate the power of using the full training information by
introducing a learning curve extrapolation framework to modify single-fidelity
algorithms, showing that it leads to improvements over popular single-fidelity algo-
rithms which claimed to be state-of-the-art upon release. Our code and pretrained
models are available at https://github.com/automl/nas-bench-x11.

1 Introduction

In the past few years, algorithms for neural architecture search (NAS) have been used to automatically
find architectures that achieve state-of-the-art performance on various datasets [82, 53, 38, 13]. In
2019, there were calls for reproducible and fair comparisons within NAS research [34, 57, 75, 36]
due to both the lack of a consistent training pipeline between papers and experiments with not enough
trials to reach statistically significant conclusions. These concerns spurred the release of tabular
benchmarks, such as NAS-Bench-101 [76] and NAS-Bench-201 [11], created by fully training all
architectures in search spaces of size 423 624 and 6 466, respectively. These benchmarks allow
researchers to easily simulate NAS experiments, making it possible to run fair NAS comparisons
and to run enough trials to reach statistical significance at very little computational cost or carbon
emissions [17]. Recently, to extend the benefits of tabular NAS benchmarks to larger, more realistic
NAS search spaces which cannot be evaluated exhaustively, it was proposed to construct surrogate
benchmarks [60]. The first such surrogate benchmark is NAS-Bench-301 [60], which models
the DARTS [38] search space of size 1018 architectures. It was created by fully training 60 000
architectures (both drawn randomly and chosen by top NAS methods) and then fitting a surrogate
model that can estimate the performance of all of the remaining architectures. Since 2019, dozens of
papers have used these NAS benchmarks to develop new algorithms [67, 55, 73, 64, 59].

An unintended side-effect of the release of these benchmarks is that it became significantly easier to
devise single fidelity NAS algorithms: when the NAS algorithm chooses to evaluate an architecture,
the architecture is fully trained and only the validation accuracy at the final epoch of training is
outputted. This is because NAS-Bench-301 only contains the architectures’ accuracy at epoch 100,

∗Equal contribution. Correspondence to yanshen6@msu.edu, colin@abacus.ai, ysavani@cs.cmu.edu,
fh@cs.uni-freiburg.de.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/automl/nas-bench-x11

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 1

True LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-111 arch 2

True LC
Predicted LC
Predicted
90% region

0 50 100 150 200
Epochs

0.3

0.4

0.5

0.6

0.7

Va
lid

. a
cc

ur
ac

y

NAS-Bench-211 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 50 100 150 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-211 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 25 50 75 100
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Va
lid

. a
cc

ur
ac

y

NAS-Bench-311 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.4

94.5

94.6

94.7

94.8

94.9

95.0

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 1

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

0 20 40
Epochs

94.4

94.5

94.6

94.7

94.8

94.9

95.0

95.1

Va
lid

. a
cc

ur
ac

y

NAS-Bench-NLP11 arch 2

True LC
Predicted mean LC
Predicted LC
Predicted
90% region

Figure 1: Each image shows the true learning curve vs. the learning curve predicted by our surrogate
models, with and without predicted noise modeling. We also plot the 90% confidence interval of the
predicted noise distribution. We plot two architectures each for NAS-Bench-111, NAS-Bench-211,
NAS-Bench-311, and NAS-Bench-NLP11.

and NAS-Bench-101 only contains the accuracies at epochs 4, 12, 36, and 108 (allowing single
fidelity or very limited multi-fidelity approaches). NAS-Bench-201 does allow queries on the entire
learning curve (every epoch), but it is smaller in size (6 466) than NAS-Bench-101 (423 624) or
NAS-Bench-301 (1018). In a real world experiment, since training architectures to convergence is
computationally intensive, researchers will often run multi-fidelity algorithms: the NAS algorithm
can train architectures to any desired epoch. Here, the algorithm can make use of speedup techniques
such as learning curve extrapolation (LCE) [63, 8, 1, 28] and successive halving [35, 14, 32, 29].
Although multi-fidelity techniques are often used in the hyperparameter optimization community [20,
21, 35, 14, 63], they have been under-utilized by the NAS community in the last few years.

In this work, we fill in this gap by releasing NAS-Bench-111, NAS-Bench-311, and NAS-Bench-
NLP11, surrogate benchmarks with full learning curve information for train, validation, and test loss
and accuracy for all architectures, significantly extending NAS-Bench-101, NAS-Bench-301, and
NAS-Bench-NLP [30], respectively. With these benchmarks, researchers can easily incorporate multi-
fidelity techniques, such as early stopping and LCE into their NAS algorithms. Our technique for
creating these benchmarks can be summarized as follows. We use a training dataset of architectures
(drawn randomly and chosen by top NAS methods) with good coverage over the search space,
along with full learning curves, to fit a model that predicts the full learning curves of the remaining
architectures. We employ three techniques to fit the model: (1) dimensionality reduction of the
learning curves, (2) prediction of the top singular value coefficients, and (3) noise modeling. These
techniques can be used in the future to create new NAS benchmarks as well. To ensure that our
surrogate benchmarks are highly accurate, we report statistics such as Kendall Tau rank correlation
and Kullback Leibler divergence between ground truth learning curves and predicted learning curves
on separate test sets. See Figure 1 for examples of predicted learning curves on the test sets.

To demonstrate the power of using the full learning curve information, we present a framework
for converting single-fidelity NAS algorithms into multi-fidelity algorithms using LCE. We apply
our framework to popular single-fidelity NAS algorithms, such as regularized evolution [53], local
search [68], and BANANAS [67], all of which claimed state-of-the-art upon release, showing that
they can be further improved across four search spaces. Finally, we also benchmark multi-fidelity
algorithms such as Hyperband [35] and BOHB [14] alongside single-fidelity algorithms. Overall, our
work bridges the gap between different areas of AutoML and will allow researchers to easily develop
effective multi-fidelity and LCE techniques in the future. To promote reproducibility, we release our
code and we follow the NAS best practices checklist [36], providing the details in Appendix A.

Our contributions. We summarize our main contributions below.

2

Table 1: Overview of existing NAS benchmarks. We introduce NAS-Bench-111, -311, and -NLP11.

Benchmark Size Queryable Based on Full train info
NAS-Bench-101 423k 3 7
NAS-Bench-201 6k 3 3
NAS-Bench-301 1018 3 DARTS 7
NAS-Bench-NLP 1053 7 7
NAS-Bench-ASR 8k 3 3

NAS-Bench-111 423k 3 NAS-Bench-101 3
NAS-Bench-311 1018 3 DARTS 3
NAS-Bench-NLP11 1053 3 NAS-Bench-NLP 3

• We develop a technique to create surrogate NAS benchmarks that include the full training
information for each architecture, including train, validation, and test loss and accuracy learning
curves. This technique can be used to create future NAS benchmarks on any search space.

• We apply our technique to create NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11,
which allow researchers to easily develop multi-fidelity NAS algorithms that achieve higher
performance than single-fidelity techniques.

• We present a framework for converting single-fidelity NAS algorithms into multi-fidelity NAS
algorithms using learning curve extrapolation, and we show that our framework allows popular
state-of-the-art NAS algorithms to achieve further improvements.

2 Related Work

NAS has been studied since at least the late 1980s [43, 26, 62] and has recently seen a resurgence [82,
44, 52, 22, 53, 18]. Weight sharing algorithms have become popular due to their computational
efficiency [2, 38, 10, 79, 77, 51, 78]. Recent advances in performance prediction [65, 46, 59, 74, 39,
69, 55, 67] and other iterative techniques [14, 45] have reduced the runtime gap between iterative
and weight sharing techniques. For detailed surveys on NAS, we suggest referring to [13, 71].

Learning curve extrapolation. Several methods have been proposed to estimate the final validation
accuracy of a neural network by extrapolating the learning curve of a partially trained neural network.
Techniques include fitting the partial curve to an ensemble of various parametric functions [8],
predicting the performance based on the derivatives of the learning curves of partially trained
neural network configurations [1], summing the training losses [54], using the basis functions
as the output layer of a Bayesian neural network [28], using previous learning curves as basis
function extrapolators [4], using the positive-definite covariance kernel to capture a variety of training
curves [63], or using a Bayesian recurrent neural network [15]. While in this work we focus on
multi-fidelity optimization utilizing learning curve-based extrapolation, another main category of
methods lie in bandit-based algorithm selection [35, 14, 29, 19, 40], and the fidelities can be further
adjusted according to the previous observations or a learning rate scheduler [20, 21, 27].

NAS benchmarks. NAS-Bench-101 [76], a tabular NAS benchmark, was created by defining
a search space of size 423 624 unique architectures and then training all architectures from the
search space on CIFAR-10 until 108 epochs. However, the train, validation, and test accuracies
are only reported for epochs 4, 12, 36, and 108, and the training, validation, and test losses are not
reported. NAS-Bench-1shot1 [80] defines a subset of the NAS-Bench-101 search space that allows
one-shot algorithms to be run. NAS-Bench-201 [11] contains 15 625 architectures, of which 6 466
are unique up to isomorphisms. It comes with full learning curve information on three datasets:
CIFAR-10 [31], CIFAR-100 [31], and ImageNet16-120 [7]. Recently, NAS-Bench-201 was extended
to NATS-Bench [9] which searches over architecture size as well as architecture topology.

Virtually every published NAS method for image classification in the last three years evaluates on the
DARTS search space with CIFAR-10 [61]. The DARTS search space [38] consists of 1018 neural
architectures, making it computationally prohibitive to create a tabular benchmark. To overcome this
fundamental limitation and query architectures in this much larger search space, NAS-Bench-301 [60]

3

evaluates various regression models trained on a sample of 60 000 architectures that is carefully
created to cover the whole search space. The surrogate models allow users to query the validation
accuracy (at epoch 100) and training time for any of the 1018 architectures in the DARTS search
space. However, since the surrogates do not predict the entire learning curve, it is not possible to run
multi-fidelity algorithms.

NAS-Bench-NLP [30] is a search space for language modeling tasks. The search space consists of
1053 architectures, of which 14 322 are evaluated on Penn Tree Bank [42], containing the training,
validation, and test losses/accuracies from epochs 1 to 50. Since only 14 322 of 1053 architectures
can be queried, this dataset cannot be directly used for NAS experiments. NAS-Bench-ASR [41]
is a recent tabular NAS benchmark for speech recognition. The search space consists of 8 242
architectures with full learning curve information. For an overview of NAS benchmarks, see Table 1.

3 Creating Surrogate Benchmarks with Learning Curves

In this section, we describe our technique to create a surrogate model that outputs realistic learning
curves, and then we apply this technique to create NAS-Bench-111, NAS-Bench-311, and NAS-
Bench-NLP11. Our technique applies to any type of learning curve, including train/test losses and
accuracies. For simplicity, the following presentation assumes validation accuracy learning curves.

3.1 General Technique

Given a search space D, let (xi,yi) ∼ D denote one datapoint, where xi ∈ Rd is the architecture
encoding (e.g., one-hot adjacency matrix [76, 66]), and yi ∈ [0, 1]Emax is a learning curve of validation
accuracies drawn from a distribution Y (xi) based on training the architecture for Emax epochs on
a fixed training pipeline with a random initial seed. Without loss of generality, each learning
curve yi can be decomposed into two parts: one part that is deterministic and depends only on the
architecture encoding, and another part that is based on the inherent noise in the architecture training
pipeline. Formally, yi = E[Y (xi)] + εi, where E[Y (xi)] ∈ [0, 1]Emax is fixed and depends only
on xi, and εi ∈ [0, 1]Emax comes from a noise distribution Zi with expectation 0 for all epochs. In
practice, E[Y (xi)] can be estimated by averaging a large set of learning curves produced by training
architecture xi with different initial seeds. We represent such an estimate as ȳi.

Our goal is to create a surrogate model that takes as input any architecture encoding xi and outputs
a distribution of learning curves that mimics the ground truth distribution. We assume that we are
given two datasets, Dtrain and Dtest, of architecture and learning curve pairs. We use Dtrain (often size
> 10 000) to train the surrogate, and we use Dtest for evaluation. We describe the process of creating
Dtrain and Dtest for specific search spaces in the next section. In order to predict a learning curve
distribution for each architecture, we split up our approach into two separate processes: we train a
model f : Rd → [0, 1]Emax to predict the deterministic part of the learning curve, ȳi, and we train a
noise model pφ(ε | ȳ,x), parameterized by φ, to simulate the random draws from Zi.

Surrogate model training. Training a model f to predict mean learning curves is a challenging
task, since the training datapoints Dtrain consist only of a single (or few) noisy learning curve(s)
yi for each xi. Furthermore, Emax is typically length 100 or larger, meaning that f must predict
a high-dimensional output. We propose a technique to help with both of these challenges: we use
the training data to learn compression and decompression functions ck : [0, 1]Emax → [0, 1]k and
dk : [0, 1]k → [0, 1]Emax , respectively, for k � Emax. The surrogate is trained to predict compressed
learning curves ck (yi) of size k from the corresponding architecture encoding xi, and then each
prediction can be reconstructed to a full learning curve using dk. A good compression model should
not only cause the surrogate prediction to become significantly faster and simpler, but should also
reduce the noise in the learning curves, since it would only save the most important information in the
compressed representations. That is, (dk ◦ ck) (yi) should be a less noisy version of yi. Therefore,
models trained on ck (yi) tend to have better generalization ability and do not overfit to the noise in
individual learning curves.

We test two compression techniques: singular value decomposition (SVD) [16] and variational
autoencoders (VAEs) [25], and we show later that SVD performs better. We give the details of SVD
here and describe the VAE compression algorithm in Appendix C. Formally, we take the singular
value decomposition of a matrix S of dimension (|Dtrain|, Emax) created by stacking together the

4

0 10 20 30 40
Num. components k

100

101

102

Va
lu

e
(im

po
rta

nc
e)

Singular values for LCs
Singular values for
training set of LCs

0 10 20 30 40
Num. components k

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

M
SE

Reconstruction error for LCs
Reconstructed LC,
MSE w.r.t. mean yi

Reconstructed LC,
MSE w.r.t. true (noisy) yi

minimum MSE w.r.t. mean

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

Va
lid

. a
cc

ur
ac

y

Reconstructed vs. real LCs

Ground truth LC
Reconstructed LC, k=1
Reconstructed LC, k=4
Reconstructed LC, k=16

Figure 2: The singular values from the SVD decomposition of the learning curves (LC) (left). The
MSE of a reconstructed LC, showing that k = 6 is closest to the true mean LC, while larger values of
k overfit to the noise of the LC (middle). An LC reconstructed using different values of k (right).

learning curves from all architectures in Dtrain. Performing the truncated SVD on the learning curve
matrix S allow us to create functions ck and dk that correspond to the optimal linear compression
of S. In Figure 2 (left), we see that for architectures in the NAS-Bench-101 search space, there
is a steep dropoff of importance after the first six singular values, which intuitively means that
most of the information for each learning curve is contained in its first six singular values. In
Figure 2 (middle), we compute the mean squared error (MSE) of the reconstructed learning curves
(dk ◦ ck) (yi) compared to a test set of ground truth learning curves averaged over several initial seeds
(approximating E[Y (xi)]). The lowest MSE is achieved at k = 6, which implies that k = 6 is the
value where the compression function minimizes reconstruction error without overfitting to the noise
of individual learning curves. We further validate this in Figure 2 (right) by plotting (dk ◦ ck) (yi)
for different values of k. Now that we have compression and decompression functions, we train
a surrogate model with xi as features and ck (yi) as the label, for architectures in Dtrain. We test
LGBoost [23], XGBoost [5], and MLPs for the surrogate model.

Noise modeling. The final step for creating a realistic surrogate benchmark is to add a noise model,
so that the outputs are noisy learning curves. We first create a new dataset of predicted εi values,
which we call residuals, by subtracting the reconstructed mean learning curves from the real learning
curves in Dtrain. That is, ε̂i = yi − (dk ◦ ck) (yi) is the residual for the ith learning curve. Since the
training data only contains one (or few) learning curve(s) per architecture xi, it is not possible to
accurately estimate the distribution Zi for each architecture without making further assumptions. We
assume that the noise comes from an isotropic Gaussian distribution, and we consider two other noise
assumptions: (1) the noise distribution is the same for all architectures (to create baselines, or for very
homogeneous search spaces), and (2) for each architecture, the noise in a small window of epochs are
iid. In Appendix C, we estimate the extent to which all of these assumptions hold true. Assumption
(1) suggests two potential (baseline) noise models: (i) a simple sample standard deviation statistic,
σ ∈ REmax

+ , where

σj =

√√√√ 1

|Dtrain| − 1

|Dtrain|∑
i=1

ε̂2i,j .

To sample the noise using this model, we sample from N (0, diag(σ)). (ii) The second model
is a Gaussian kernel density estimation (GKDE) model [58] trained on the residuals to create a
multivariate Gaussian kernel density estimate for the noise. Assumption (2) suggests one potential
noise model: (iii) a model that is trained to estimate the distribution of the noise over a window
of epochs of a specific architecture. For each architecture and each epoch, the model is trained to
estimate the sample standard deviation of the residuals within a window centered around that epoch.

Throughout this section, we described two compression methods (SVD and VAE), three surrogate
models (LGB, XGB, and MLP), and three noise models (stddev, GKDE, and sliding window), for a
total of eighteen disctinct approaches. In the next section, we describe the methods we will use to
evaluate these approaches.

5

3.2 Surrogate Benchmark Evaluation

The performance of a surrogate benchmark depends on factors such as the size of the training set
of architecture + learning curve pairs, the length of the learning curves, and the extent to which the
distribution of learning curves satisfy the noise assumptions discussed in the previous section. It is
important to thoroughly evaluate surrogate benchmarks before their use in NAS research, and so we
present a number of different methods for evaluation, which we will use to evaluate the surrogate
benchmarks we create in the next section.

We evaluate both the predicted mean learning curves and the predicted noise distributions using held-
out test sets Dtest. To evaluate the mean learning curves, we compute the coefficient of determination
(R2) [70] and Kendall Tau (KT) rank correlation [24] between the set of predicted mean learning
curves and the set of true learning curves, both at the final epoch and averaged over all epochs.
To measure KT rank correlation for a specific epoch n, we find the number of concordant, P ,
and discordant, Q, pairs of predicted and true learning curve values for that epoch. The number
of concordant pairs is given by the number of pairs, ((ŷi,n, yi,n), (ŷj,n, yj,n)), where either both
ŷi,n > ŷj,n and yi,n > yj,n, or both ŷi,n < ŷj,n and yj,n < yi,n. We can then calculate KT = P−Q

P+Q .
While these metrics can be used to compare surrogate predictions and have been used in prior
work [60], the rank correlation values are affected by the inherent noise in the learning curves - even
an oracle would have R2 and KT values smaller than 1.0 because architecture training is noisy. In
order to give reference values, we also compute the KT of the set of true learning curves averaged
over 2, 3, or 4 independent random seeds.

The next metric to be used in Section 3.3 is the Kullback Leibler (KL) divergence between the ground
truth distribution of noisy learning curves, and the predicted distribution of noisy learning curves on
a test set. Since we can only estimate the ground truth distribution, we assume the ground truth is an
isotropic Gaussian distribution. Then we measure the KL divergence between the true and predicted
learning curves for architecture i by the following formula:

DKL(yi||ŷi) =
1

2Emax

[
log
|Σŷi
|

|Σyi
|
− Emax + (µyi − µŷi)

TΣ−1ŷi
(µyi − µŷi) + tr

{
Σ−1ŷi

Σyi

}]
where Σ{yi,ŷi} is a diagonal matrix with the entries Σ{yi,ŷi}k,k representing the sample variance of
the k-th epoch, and µ{yi,ŷi} is the sample mean for either learning curves {yi, ŷi}.
The final metric is the probability of certain anomalies which we call spike anomalies. Even if the
KL divergences between the surrogate benchmark distributions and the ground-truth distributions are
low, anomalies in the learning curves can still throw off NAS algorithms. For example, there may
be anomalies that cause some learning curves to have a much higher maximum validation accuracy
than their final validation accuracy. In order to test for these anomalies, first we compute the largest
value x such that there are fewer than 5% of learning curves whose maximum validation accuracy is
x higher than their final validation accuracy, on the real set of learning curves. Then, we compute the
percentage of surrogate learning curves whose maximum validation accuracy is x higher than their
final validation accuracy. The goal is for this value to be close to 5%.

3.3 Creating NAS-Bench-111, -211, -311, and -NLP11

Now we describe the creation of NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11. We
also create NAS-Bench-211 purely to evaluate our technique (since NAS-Bench-201 already has
complete learning curves). Our code and pretrained models are available at https://github.com/
automl/nas-bench-x11. As described above, we test two different compression methods (SVD,
VAE), three different surrogate models (LGB, XGB, MLP), and three different noise models (stddev,
GKDE, sliding window) for a total of eighteen distinct approaches. See Appendix C for a full ablation
study and Table 2 for a summary using the best techniques for each search space. See Figure 1 for a
visualization of predicted learning curves from the test set of each search space using these models.

First, we describe the creation of NAS-Bench-111. Since the NAS-Bench-101 tabular benchmark [76]
consists only of accuracies at epochs 4, 12, 36, and 108 (and without losses), we train a new set of
architectures and save the full learning curves. Similar to prior work [12, 60], we sample a set of
architectures with good overall coverage while also focusing on the high-performing regions exploited

6

https://github.com/automl/nas-bench-x11
https://github.com/automl/nas-bench-x11

Table 2: Evaluation of the surrogate benchmarks on test sets. For NAS-Bench-111 and NAS-Bench-
NLP11, we use architecture accuracies as additional features to improve performance.

Benchmark Avg. R2 Final R2 Avg. KT Final KT Avg. KL Final KL

NAS-Bench-111 0.529 0.630 0.531 0.645 2.016 1.061
NAS-Bench-111 (w. accs) 0.630 0.853 0.611 0.794 1.710 0.926
NAS-Bench-311 0.779 0.800 0.728 0.788 0.905 0.600
NAS-Bench-NLP11 0.327 0.292 0.449 0.416 - -
NAS-Bench-NLP11 (w. accs) 0.906 0.882 0.862 0.820 - -

by NAS algorithms. Specifically, we sample 861 architectures generated uniformly at random, 149
architectures generated by 30 trials of BANANAS, local search, and regularized evolution, and all
91 architectures which contain fewer than five nodes, for a total of 1101 architectures. We kept our
training pipeline as close as possible to the original pipeline. See Appendix C for the full training
details. We find that SVD-LGB-window and SVD-LGB-GKDE achieve the best performance. Since
the tabular benchmark already exists, we can substantially improve the accuracy of our surrogate by
using the accuracies from the tabular benchmark (at epochs 4, 12, 36, 108) as additional features
along with the architecture encoding. This substantially improves the performance of the surrogate,
as shown in Table 2. The large difference between the average KT and last epoch KT values show
that the learning curves are very noisy (which is also evidenced in Figure 1). On a separate test set
that contains two seeds evaluated per architecture, we show that the KT values for NAS-Bench-111
are roughly equivalent to those achieved by a 1-seed tabular benchmark (Appendix Table 4).

Next, we create NAS-Bench-311 by using the training data from NAS-Bench-301, which consists of
40 000 random architectures along with 26 000 additional architectures generated by evolution [53],
Bayesian optimization [3, 67, 47], and one-shot [38, 72, 10, 6] techniques in order to achieve good
coverage over the search space. SVD-LGB-GKDE achieves the best performance. The GKDE
model performing well is consistent with prior work that notes DARTS is very homogeneous [75].
NAS-Bench-311 achieves average and last epoch KT values of 0.728 and 0.788, respectively. This is
comparable to the last epoch KT of 0.817 reported by NAS-Bench-301 [60], despite optimizing for
the full learning curve rather than only the final epoch. Furthermore, our KL divergences in Table 2
surpasses the top value of 16.4 reported by NAS-Bench-301 (for KL divergence, lower is better). In
Appendix Table 5, we show that the mean model in NAS-Bench-311 achieves higher rank correlation
even than a set of learning curves averaged over four random seeds, by using a separate test set from
the NAS-Bench-301 dataset which evaluates 500 architectures with 5 seeds each. We also show that
the percentage of spike anomalies for real vs. surrogate data (defined in the previous section) is 5%
and 7.02%, respectively.

Finally, we create NAS-Bench-NLP11 by using the NAS-Bench-NLP dataset consisting of 14 322
architectures drawn uniformly at random. Due to the extreme size of the search space (1053),
we achieve an average and final epoch KT of 0.449 and 0.416, respectively. Since there are no
architectures trained multiple times on the NAS-Bench-NLP dataset [30], we cannot compute the
KL divergence or additional metrics. To create a stronger surrogate, we add the first three epochs
of the learning curve as features in the surrogate. This improves the average and final epoch KT
values to 0.862 and 0.820, respectively. To use this surrogate, any architecture to be predicted with
the surrogate must be trained for three epochs. Note that the small difference between the average
and last epoch KT values indicates that the learning curves have very little noise, which can also be
seen in Figure 1. This technique can be used to improve the performance of other surrogates too,
such as NAS-Bench-311. For NAS-Bench-311, we find that adding the validation accuracies from
the first three epochs as additional epochs, improves the average and final epoch KT from 0.728 and
0.788 to 0.749 and 0.795, respectively.

We also create NAS-Bench-211 to further evaluate our surrogate creation technique (only for evalua-
tion purposes, since NAS-Bench-201 already has complete learning curves). We train the surrogate
on 90% of architectures from NAS-Bench-201 (14 062 architectures) and test on the remaining 10%.
SVD-LGB-window achieves the best performance. The average and final KT values are 0.701 and
0.842, respectively, which is on par with a 1-seed tabular benchmark (see Table 6). We also show that
the percentage of spike anomalies for real vs. surrogate data (defined in the previous section) is 5%
and 10.14%, respectively.

7

4 The Power of Learning Curve Extrapolation

Now we describe a simple framework for converting single-fidelity NAS algorithms to multi-fidelity
NAS algorithms using learning curve extrapolation techniques. We show that this framework is able
to substantially improve the performance of popular algorithms such as regularized evolution [53],
BANANAS [67], and local search [68, 48].

A single-fidelity algorithm is an algorithm which iteratively chooses an architecture based on its
history, which is then fully trained to Emax epochs. To exploit parallel resources, many single-
fidelity algorithms iteratively output several architectures at a time, instead of just one. In Algo-
rithm 1, we present pseudocode for a generic single-fidelity algorithm. For example, for local search,
gen_candidates would output the neighbors of the architecture with the best accuracy in history.

Our framework makes use of learning curve extrapolation (LCE) techniques [8, 1] to predict the final
validation accuracies of all architecture choices after only training for a small number of epochs. See
Algorithm 2. After each iteration of gen_candidates, only the architectures predicted by LCE() to
be in the top percentage of validation accuracies of history are fully trained. For example, when the
framework is applied to local search, in each iteration, all neighbors are trained to Efew epochs, and
only the most promising architectures are trained up to Emax epochs. This simple modification can
substantially improve the runtime efficiency of popular NAS algorithms by weeding out unpromising
architectures before they are fully trained.

Any LCE technique can be used, and in our experiments in Section 5, we use weighted probabilistic
modeling (WPM) [8] and learning curve support vector regressor (LcSVR) [1]. The first technique,
WPM [8], is a function that takes a partial learning curve as input, and then extrapolates it by fitting
the learning curve to a set of parametric functions, using MCMC to sample the most promising fit.
The second technique, LcSVR [1], is a model-based learning curve extrapolation technique: after
generating an initial set of training architectures, a support vector regressor is trained to predict the
final validation accuracy from the architecture encoding and partial learning curve.

Algorithm 1 Single-Fidelity Algorithm
1: initialize history
2: while t < tmax :
3: arches = gen_candidates(history)
4: accs = train(arches, epoch=Emax)
5: history.update(arches, accs)
6: Return arch with the highest acc

Algorithm 2 LCE Framework
1: initialize history
2: while t < tmax :
3: arches = gen_candidates(history)
4: accs = train(arches, epoch=Efew)
5: sorted_by_pred = LCE(arches, accs)
6: arches = sorted_by_pred[:top_n]
7: accs = train(arches, epoch=Emax)
8: history.update(arches, accs)
9: Return arch with the highest acc

5 Experiments

In this section, we benchmark single-fidelity and multi-fidelity NAS algorithms, including popular ex-
isting single-fidelity and multi-fidelity algorithms, as well as algorithms created using our framework
defined in the previous section. In the experiments, we use our three surrogate benchmarks defined in
Section 3, as well as NAS-Bench-201.

NAS algorithms. For single-fidelity algorithms, we implemented random search (RS) [34], local
search (LS) [68, 48], regularized evolution (REA) [53], and BANANAS [67]. For multi-fidelity
bandit-based algorithms, we implemented Hyperband (HB) [35] and Bayesian optimization Hyper-
band (BOHB) [14]. For all methods, we use the original implementation whenever possible. See
Appendix D for a description, implementation details, and hyperparameter details for each method.
Finally, we use our framework from Section 4 to create six new multi-fidelity algorithms: BANANAS,
LS, and REA are each augmented using WPM and LcSVR. This gives us a total of 12 algorithms.

Experimental setup. For each search space, we run each algorithm for a total wall-clock time
that is equivalent to running 500 iterations of the single-fidelity algorithms for NAS-Bench-111 and

8

NAS-Bench-311, and 100 iterations for NAS-Bench-201 and NAS-Bench-NLP11. For example, the
average time to train a NAS-Bench-111 architecture to 108 epochs is roughly 103 seconds, so we set
the maximum runtime on NAS-Bench-111 to roughly 5 · 105 seconds. We run 30 trials of each NAS
algorithm and compute the mean and standard deviation.

Results. We evaluate BANANAS, LS, and REA compared to their augmented WPM and SVR
versions in Figure 3 (NAS-Bench-311) and Appendix D (all other search spaces). Across four search
spaces, we see that WPM and SVR improve all algorithms in almost all settings. The improvements
are particularly strong for the larger NAS-Bench-111 and NAS-Bench-311 search spaces. We also
see that for each single-fidelity algorithm, the LcSVR variant often outperforms the WPM variant.
This suggests that model-based techniques for extrapolating learning curves are more reliable than
extrapolating each learning curve individually, which has also been noted in prior work [69].

105 106

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

Figure 3: LCE Framework applied
to single-fidelity algorithms on NAS-
Bench-311.

In Figure 4, we compare single- and multi-fidelity algorithms
on four search spaces, along with the three SVR-based al-
gorithms from Figure 3. Across all search spaces, an SVR-
based algorithm is the top-performing algorithm. Specifically,
BANANAS-SVR performs the best on NAS-Bench-111, NAS-
Bench-311, and NAS-Bench-NLP11, and LS-SVR performs
the best on NAS-Bench-201. Note that HB and BOHB may
not perform well on search spaces with low correlation be-
tween the relative rankings of architectures using low fidelities
and high fidelities (such as NAS-Bench-101 [76] and NAS-
Bench-201 [11]) since HB-based methods will predict the final
accuracy of partially trained architectures directly from the
last trained accuracy (i.e., extrapolating the learning curve as a
constant after the last seen accuracy). On the other hand, SVR-
based approaches use a model that can learn more complex
relationships between accuracy at an early epoch vs. accuarcy
at the final epoch, and are therefore more robust to this type
of search space.

In Appendix D, we perform an ablation study on the epoch at
which the SVR and WPM methods start extrapolating in our framework (i.e., we ablate Efew from
Algorithm 2). We find that for most search spaces, running SVR and WPM based NAS methods by
starting the LCE at roughly 20% of the total number of epochs performs the best. Any earlier, and
there is not enough information to accurately extrapolate the learning curve. Any later, and the LCE
sees diminishing returns because less time is saved by early stopping the training.

6 Societal Impact

Our hope is that our work will make it quicker and easier for researchers to run fair experiments and
give reproducible conclusions. In particular, the surrogate benchmarks allow AutoML researchers to
develop NAS algorithms directly on a CPU, as opposed to using a GPU, which may decrease the
carbon emissions from GPU-based NAS research [50, 17]. In terms of our proposed NAS speedups,
these techniques are a level of abstraction away from real applications, but they can indirectly impact
the broader society. For example, this work may facilitate the creation of new high-performing NAS
techniques, which can then be used to improve various deep learning methods, both beneficial (e.g.
algorithms that reduce CO2 emissions), or harmful (e.g. algorithms that produce deep fakes).

7 Conclusions, Limitations, and Guidelines

In this work, we released three benchmarks for neural architecture search based on three popular
search spaces, which substantially improve the capability of existing benchmarks due to the avail-
ability of the full learning curve for train/validation/test loss and accuracy for each architecture.
Our techniques to generate these benchmarks, which includes singular value decomposition of the
learning curve and noise modeling, can be used to model the full learning curve for future surrogate
NAS benchmarks as well.

9

105

Runtime (seconds)

10−3

10−2

Va
lid

. r
eg

re
t

NAS-Bench-111 CIFAR10

BANANAS
BANANAS-SVR
BOHB
HB
LS

LS-SVR
REA
REA-SVR
RS

105 106

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS
BANANAS-SVR
HB
LS

LS-SVR
REA
REA-SVR
RS

105 106

Runtime (seconds)

101

Pe
rp

le
xi

ty
 re

gr
et

NAS-Bench-NLP11 PTB

BANANAS
BANANAS-SVR
HB
LS

LS-SVR
REA
REA-SVR
RS

104 105

Runtime (seconds)
10−3

10−2

10−1

Va
lid

. r
eg

re
t

NAS-Bench-201 CIFAR10

BANANAS
BANANAS-SVR
BOHB
HB
LS

LS-SVR
REA
REA-SVR
RS

104 105

Runtime (seconds)

10−2

10−1

Va
lid

. r
eg

re
t

NAS-Bench-201 CIFAR100

BANANAS
BANANAS-SVR
BOHB
HB
LS

LS-SVR
REA
REA-SVR
RS

104 105 106

Runtime (seconds)

10−2

10−1

Va
lid

. r
eg

re
t

NAS-Bench-201 ImageNet16-120

BANANAS
BANANAS-SVR
BOHB
HB
LS

LS-SVR
REA
REA-SVR
RS

Figure 4: NAS results on six different combinations of search spaces and datasets. For every setting,
an SVR augmented method performs best.

Furthermore, we demonstrated the power of the full learning curve information by introducing a
framework that converts single-fidelity NAS algorithms into multi-fidelity NAS algorithms that make
use of learning curve extrapolation techniques. This framework improves the performance of recent
popular single-fidelity algorithms which claimed to be state-of-the-art upon release.

While we believe our surrogate benchmarks will help advance scientific research in NAS, a few
guidelines and limitations are important to keep in mind. As with prior surrogate benchmarks [60],
we give the following two caveats. (1) We discourage evaluating NAS methods that use the same
internal techniques as those used in the surrogate model. For example, any NAS method that
makes use of variational autoencoders or XGBoost should not be benchmarked using our VAE-XGB
surrogate benchmark. (2) As the surrogate benchmarks are likely to evolve as new training data
is added, or as better techniques for training a surrogate are devised, we recommend reporting
the surrogate benchmark version number whenever running experiments. (3) When creating new
surrogate benchmarks, before use in NAS, it is important to give a thorough evaluation such as the
evaluation methods described in Section 3.2.

We also note the following strengths and limitations for specific benchmarks. Our NAS-Bench-111
surrogate benchmark gives strong mean performance even with just 1 101 architectures used as
training data, due to the existence of the four extra validation accuracies from NAS-Bench-101 that
can be used as additional features. We hope that all future tabular benchmarks will save the full
learning curve information from the start so that the creation of an after-the-fact extended benchmark
is not necessary.

Although all of our surrogates had strong mean performance, the noise model was strongest only for
NAS-Bench-311, which had a training dataset of size 60k, as evidenced especially because of the rate
of spike anomalies, described in Section 3.2. This can be mitigated by adding more training data.

Since the NAS-Bench-NLP11 surrogate benchmark achieves significantly stronger performance when
the accuracy of the first three epochs are added as features, we recommend using this benchmark
by training architectures for three epochs before querying the surrogate. Therefore, benchmarking
NAS algorithms are slower than for NAS-Bench-111 and NAS-Bench-311, but NAS-Bench-NLP11
still offers a 15× speedup compared to a NAS experiment without this benchmark. We still release
the version of NAS-Bench-NLP11 that does not use the first three accuracies as features but with
a warning that the observed NAS trends may differ from the true NAS trends. We expect that the
performance of these benchmarks will improve over time, as data for more trained architectures
become available.

10

Acknowledgments and Disclosure of Funding

Work done while the first three authors were working at Abacus.AI. FH acknowledges support by the
European Research Council (ERC) under the European Union Horizon 2020 research and innovation
programme through grant no. 716721, BMBF grant DeToL, and TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under GA No 952215. We thank Kaicheng Yu for
his discussions with this project.

References
[1] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture

search using performance prediction. In ICLR Workshop, 2018.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Under-
standing and simplifying one-shot architecture search. In ICML, 2018.

[3] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In NeurIPS, 2011.

[4] Akshay Chandrashekaran and Ian R Lane. Speeding up hyper-parameter optimization by
extrapolation of learning curves using previous builds. In ECML-PKDD, 2017.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[6] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Drnas:
Dirichlet neural architecture search. In ICLR, 2021.

[7] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as
an alternative to the cifar datasets. In arXiv:1707.08819, 2017.

[8] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning curves. In IJCAI,
2015.

[9] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-bench: Benchmarking nas
algorithms for architecture topology and size. In PAMI, 2021.

[10] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
CVPR, 2019.

[11] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[12] Katharina Eggensperger, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Efficient
benchmarking of hyperparameter optimizers via surrogates. In AAAI, 2015.

[13] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
In JMLR, 2019.

[14] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. In ICML, 2018.

[15] Matilde Gargiani, Aaron Klein, Stefan Falkner, and Frank Hutter. Probabilistic rollouts for
learning curve extrapolation across hyperparameter settings. arXiv preprint arXiv:1910.04522,
2019.

[16] Gene Golub and William Kahan. Calculating the singular values and pseudo-inverse of a matrix.
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis,
2(2):205–224, 1965.

[17] Karen Hao. Training a single ai model can emit as much carbon as five cars in their lifetimes.
MIT Technology Review, 2019.

11

[18] Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, and Debadeepta
Dey. Efficient forward architecture search. In NeurIPS, 2019.

[19] Yimin Huang, Yujun Li, Hanrong Ye, Zhenguo Li, and Zhihua Zhang. An asymptotically
optimal multi-armed bandit algorithm and hyperparameter optimization. arXiv preprint
arXiv:2007.05670, 2020.

[20] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff Schneider, and Barnabas
Poczos. Multi-fidelity gaussian process bandit optimisation. In NeurIPS, 2016.

[21] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Poczos. Multi-fidelity
bayesian optimisation with continuous approximations. In JMLR, 2017.

[22] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In NeurIPS, 2018.

[23] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NeurIPS, 2017.

[24] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[25] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[26] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex systems, 4(4):461–476, 1990.

[27] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast Bayesian
Optimization of Machine Learning Hyperparameters on Large Datasets. In AISTATS, 2017.

[28] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve
prediction with bayesian neural networks. In ICLR, 2017.

[29] Aaron Klein, Louis Tiao, Thibaut Lienart, Cedric Archambeau, and Matthias Seeger.
Model-based asynchronous hyperparameter and neural architecture search. arXiv preprint
arXiv:2003.10865, 2020.

[30] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,
and Evgeny Burnaev. Nas-bench-nlp: neural architecture search benchmark for natural language
processing. arXiv preprint arXiv:2006.07116, 2020.

[31] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[32] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin
Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning. In MLSys
Conference, 2020.

[33] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradi-
ent algorithms for neural architecture search. In Proceedings of the International Conference
on Learning Representations (ICLR), 2021.

[34] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
In UAI, 2019.

[35] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A novel bandit-based approach to hyperparameter optimization. In JMLR, 2018.

[36] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture
search. In JMLR, 2020.

[37] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018.

12

[38] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
ICLR, 2019.

[39] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised
neural architecture search. In NeurIPS, 2020.

[40] Neeratyoy Mallik and Noor Awad. Dehb: Evolutionary hyperband for scalable, robust and
efficient hyperparameter optimization. In IJCAI, 2021.

[41] Abhinav Mehrotra, Alberto Gil C. P. Ramos, Sourav Bhattacharya, Łukasz Dudziak, Ravichan-
der Vipperla, Thomas Chau, Mohamed S Abdelfattah, Samin Ishtiaq, and Nicholas Donald
Lane. Nas-bench-asr: Reproducible neural architecture search for speech recognition. In ICLR,
2021.

[42] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Annual conference of the international speech
communication association, 2010.

[43] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using
genetic algorithms. In ICGA, volume 89, pages 379–384, 1989.

[44] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep
architectures. arXiv preprint arXiv:1704.08792, 2017.

[45] Vu Nguyen, Sebastian Schulze, and Michael Osborne. Bayesian optimization for iterative
learning. In NeurIPS, 2020.

[46] Xuefei Ning, Wenshuo Li, Zixuan Zhou, Tianchen Zhao, Yin Zheng, Shuang Liang, Huazhong
Yang, and Yu Wang. A surgery of the neural architecture evaluators. arXiv preprint
arXiv:2008.03064, 2020.

[47] Changyong Oh, Jakub M Tomczak, Efstratios Gavves, and Max Welling. Combinatorial
bayesian optimization using the graph cartesian product. arXiv preprint arXiv:1902.00448,
2019.

[48] T Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter AN Bosman. Local search
is a remarkably strong baseline for neural architecture search. In International Conference on
Evolutionary Multi-Criterion Optimization, 2021.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2019.

[50] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[51] Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, and Jianlong Fu. Cream of the crop:
Distilling prioritized paths for one-shot neural architecture search. In NeurIPS, 2020.

[52] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural
architecture search via parameter sharing. In ICML, 2018.

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In AAAI, 2019.

[54] Binxin Ru, Clare Lyle, Lisa Schut, Mark van der Wilk, and Yarin Gal. Revisiting the
train loss: an efficient performance estimator for neural architecture search. arXiv preprint
arXiv:2006.04492, 2020.

[55] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Neural architecture search
using bayesian optimisation with weisfeiler-lehman kernel. In ICLR, 2021.

13

[56] Michael Ruchte, Arber Zela, Julien Siems, Josif Grabocka, and Frank Hutter. Naslib: a modular
and flexible neural architecture search library, 2020.

[57] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating
the search phase of neural architecture search. In ICLR, 2020.

[58] David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley
& Sons, 2015.

[59] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. In NeurIPS, 2020.

[60] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Nas-bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777, 2020.

[61] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-
bench-301 and the case for surrogate benchmarks for neural architecture search: Openreview
response, 2021.

[62] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[63] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization.
arXiv preprint arXiv:1406.3896, 2014.

[64] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. Npenas: Neural predictor guided
evolution for neural architecture search. arXiv preprint arXiv:2003.12857, 2020.

[65] Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In ECCV, 2020.

[66] Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In NeurIPS, 2020.

[67] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In AAAI, 2021.

[68] Colin White, Sam Nolen, and Yash Savani. Local search is state of the art for nas benchmarks.
In UAI, 2021.

[69] Colin White, Arber Zela, Binxin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? arXiv preprint arXiv:2104.01177, 2021.

[70] Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20:557–580, 1921.

[71] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Zhengsu Chen, Lanfei Wang,
An Xiao, Jianlong Chang, Xiaopeng Zhang, et al. Weight-sharing neural architecture search: A
battle to shrink the optimization gap. arXiv preprint arXiv:2008.01475, 2020.

[72] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In ICLR, 2019.

[73] Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. In ICML, 2021.

[74] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsupervised architecture
representation learning help neural architecture search? In NeurIPS, 2020.

[75] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard.
In ICLR, 2020.

[76] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In ICML, 2019.

14

[77] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. Greedynas:
Towards fast one-shot nas with greedy supernet. In CVPR, 2020.

[78] Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann. Landmark regularization: Ranking guided
super-net training in neural architecture search. In CVPR, 2021.

[79] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank
Hutter. Understanding and robustifying differentiable architecture search. In ICLR, 2020.

[80] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting
one-shot neural architecture search. In ICLR, 2020.

[81] Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang, Yujing Wang, Hui Xue, Chen Zhang,
and Yaming Yang. Deeper insights into weight sharing in neural architecture search. arXiv
preprint arXiv:2001.01431, 2020.

[82] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR,
2017.

[83] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Our abstract and introduction accurately reflect our
paper.

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] We discuss the ethics guidelines in Section 6.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not
include theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We did not include
theoretical results.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We included all
code, data, and instructions at https://github.com/automl/nas-bench-x11.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All training details are specified in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Our experiments (Section 5) report error bars with respect
to random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We report the compute time and
resources used in Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the creators

of all code, data, and models used.
(b) Did you mention the license of the assets? [Yes] We mention the licenses in Section D.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] We include new surrogate benchmarks at https://github.com/automl/
nas-bench-x11.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We did not use or release any datasets with personal data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] The data we are using does not contain personal
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not run experiments with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] We did not run experiments with human
subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not run experiments with human
subjects.

16

https://github.com/automl/nas-bench-x11
https://github.com/automl/nas-bench-x11
https://github.com/automl/nas-bench-x11

A NAS Best Practices Checklist

In the past few years, the NAS community has called for improving the reproducibility and fairness
in experimental comparisons [34, 76, 75]. Recently, a NAS best practices checklist was released [36].
We answer each question from this checklist below.

1. Best Practices for Releasing Code

For all experiments you report:

(a) Did you release code for the training pipeline used to evaluate the final architectures?
[N/A] We used the training pipelines from NAS-Bench-101, NAS-Bench- 301, and
NAS-Bench-NLP, and the code for all three are already publicly available.

(b) Did you release code for the search space [N/A] We used the search spaces from
NAS-Bench-101, NAS-Bench- 301, and NAS-Bench-NLP, and the code for all three
are already publicly available.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as
random seeds? [N/A] As with prior work that use NAS-Bench-101, NAS-Bench- 301,
and NAS-Bench-NLP, our final evaluation pipeline is identical to the training pipeline.
Since we averaged over 30 trials of each experiment, we did not report random seeds.

(d) Did you release code for your NAS method? [Yes] Our code is available at https:
//github.com/automl/nas-bench-x11.

(e) Did you release hyperparameters for your NAS method, as well as random seeds?
[Yes] Our code includes runner files with the same hyperparameters and seeds from
our paper.

2. Best practices for comparing NAS methods

(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,
including the same dataset (with the same training-test split), search space and code
for training the architectures and hyperparameters for that code? [Yes] This is true
automatically because we only used NAS benchmarks, which fix the training and
evaluation protocols.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? [Yes] This is true automatically because
we only used NAS Benchmarks, which fix the training and evaluation protocols.

(c) Did you run ablation studies? [Yes] In Sections 4 and D.2, we run ablation studies
for the our LCE framework. In Section C, we run ablation studies for our surrogate
benchmarks.

(d) Did you use the same evaluation protocol for the methods being compared? [Yes] This
is true automatically because we only used NAS Benchmarks, which fix the training
and evaluation protocols.

(e) Did you compare performance over time? [Yes] We did compare performance over
time.

(f) Did you compare to random search? [Yes] We did compare to random search.
(g) Did you perform multiple runs of your experiments and report seeds? [Yes] We ran 30

trials for each experiment.
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We did

use NAS benchmarks.

3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this
required? [Yes] We did report information on tuning hyperparameters, including an
ablation study in Section D.2.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? [Yes] Our results include the end-to-end NAS time.

(c) Did you report all the details of your experimental setup? [Yes] We include all details
of our experimental setup.

17

https://github.com/automl/nas-bench-x11
https://github.com/automl/nas-bench-x11

B Related Work Continued

In this section, we give a more detailed discussion of related work (a superset of the related work
discussed in Section 2).

NAS has been studied since at least the late 1980s [43, 26, 62] and has recently seen a resur-
gence [82, 44, 52, 22, 53, 18]. Early techniques included reinforcement learning [82, 52], regularized
evolution [53], and Bayesian optimization [22]. Recently, weight sharing [52, 38] has become a pop-
ular approach to substantially speed up the runtime of NAS. In this approach, an over-parameterized
supernetwork is trained, which can represent all architectures in the search space. Then all architec-
tures in the search space can be evaluated using the shared weights. Some work has claimed that the
shared weights are sometimes not effective at ranking architectures [57, 80, 81], however, weight
sharing techniques still achieve strong overall NAS performance [79, 33].

Recently, many works have been devoted to performance prediction [65, 46, 59, 74, 39, 69, 55, 67]
and multi-fidelity techniques [14] which has reduced the runtime gap between iterative and weight
sharing techniques. For detailed surveys on NAS, see [13, 71]. The most widely used type of search
space in prior work is the cell-based search space [83, 37], where the architecture search is over a
relatively small directed acyclic graph representing an architecture.

Learning curve extrapolation. Several methods have been proposed to estimate the final validation
accuracy of a neural network by extrapolating the learning curve of a partially trained neural network.
Techniques include, fitting the partial curve to an ensemble of parametric functions [8], predicting the
performance based on the partial trained neural network configurations [1], summing the training
losses [54], using the basis functions as the output layer of a Bayesian neural network [28], using
previous learning curves as basis function extrapolators [4], using the positive-definite covariance
kernel to capture a variety of training curves [63], or using a Bayesian recurrent neural network [15].
While in this work we focus on multi-fidelity optimization utilizing learning curve-based extrapolation,
another main category of methods lie in bandit-based algorithm selection [35, 14, 29, 19, 40], and
the fidelities can be further adjusted according to the previous observations or a learning rate
scheduler [20, 21, 27].

NAS benchmarks. NAS-Bench-101 [76], a tabular NAS benchmark, was created by defining
a search space of size 423 624 unique architectures and then training all architectures from the
search space on CIFAR-10 until 108 epochs. However, the train, validation, and test accuracies
are only reported for epochs 4, 12, 36, and 108, and the train/valid/test losses are not reported.
NAS-Bench-1shot1 [80] defines a subset of the NAS-Bench-101 search space that allows one-shot
algorithms to be run. NAS-Bench-201 [11] contains 15 625 architectures, of which 6 466 are unique
up to isomorphisms. It comes with full learning curve information on three datasets: CIFAR-
10 [31], CIFAR-100 [31], and ImageNet16-120 [7]. Recently, NAS-Bench-201 was extended to
NATS-Bench [9] which searches over architecture size as well as architecture topology.

Virtually every published NAS method for image classification in the last 3 years evaluates on the
DARTS search space with CIFAR-10 [61]. The DARTS search space [38] consists of 1018 neural
architectures, making it computationally prohibitive to create a tabular benchmark. To overcome this
fundamental limitation and query architectures in this much larger search space, NAS-Bench-301 [60]
evaluates various regression models trained on a sample of 60 000 architectures that is carefully
created to cover the whole search space. The surrogate models allow users to query the validation
accuracy (at epoch 100) and training time for any of the 1018 architectures in the DARTS search
space. However, since the surrogates do not predict the entire learning curve, it is not possible to run
multi-fidelity algorithms.

NAS-Bench-NLP [30] is a search space for language modeling tasks. The search space consists of
1053 LSTM-like architectures, of which 14 322 are evaluated on Penn Tree Bank [42], containing
the training, validation, and test losses/accuracies from epochs 1 to 50. Since only 14 322 of 1053

architectures can be queried, this dataset cannot be directly used for NAS experiments. NAS-Bench-
ASR [41] is a recent tabular NAS benchmark for speech recognition. The search space consists of
8 242 architectures with full learning curve information. For an overview of NAS benchmarks, see
Table 1. We give a more detailed discussion of all related work in Appendix B.

18

xᵢxᵢ yᵢyᵢ uᵢuᵢ

ûᵢûᵢ

êê11êê22

NNêê

𝒩(0, Σ)𝒩(0, Σ)𝜎₂𝜎₂ ……v₁v₁
𝜎₁𝜎₁

𝜎ₖ𝜎ₖ
……

……

µ-Modelµ-Model

Σ-ModelΣ-Model

v₂v₂v₂v₂ vₖvₖ

k<Nk<NNN

Figure 5: A summary of our approach to create surrogate benchmarks that output realistic learning
curves. Compression and decompression functions are learned using the training set of learning
curves (in the figure, SVD is shown, but a VAE can also be used). The compression also helps to
de-noise the learning curves. A model (µ-model) is trained to predict the compressed (de-noised)
learning curves given the architecture encoding. A separate model (Σ-model) is trained to predict
each learning curve’s noise distribution, given the architecture encoding and predicted compressed
learning curve. A realistic learning curve can then be outputted by decompressing the predicted
learning curve and sampling noise from the noise distribution.

C Details from Section 3

In this section, we give more details from Section 3, and we present a full ablation study.

Recall the following notation, repeated from Section 3. Given a search space D, let (xi,yi) ∼ D
denote one datapoint, where xi ∈ Rd is the architecture encoding, and yi ∈ [0, 1]Emax is a learning
curve of validation accuracies drawn from a distribution Y (xi) based on training the architecture
for Emax epochs on a fixed training pipeline with a random initial seed. For each learning curve
yi, we have yi = E[Y (xi)] + εi, where E[Y (xi)] ∈ [0, 1]Emax is fixed and depends only on
xi, and εi ∈ [0, 1]Emax comes from a noise distribution Zi with expectation 0 for all epochs. In
practice, E[Y (xi)] can be estimated by averaging a large set of learning curves produced by training
architecture xi with different initial seeds. We represent such an estimate as ȳi. As explained in
Section 3, we split the surrogate model creation into two parts: we train a model f : Rd → [0, 1]Emax

to predict the deterministic part of the learning curve, ȳi, and we train a noise model pφ(ε | ȳ,x),
parameterized by φ, to simulate the random draws from Zi. See Figure 5 for a summary of our entire
surrogate creation method (assuming SVD).

In Section 3, we described singular value decomposition (SVD) as a technique to create the compres-
sion and decompression functions ck : [0, 1]Emax → [0, 1]k and dk : [0, 1]k → [0, 1]Emax , respectively,
for k � Emax, which aid in the creation of a model f . Now we describe our second technique for
compression and decompression: a variational autoencoder (VAE) [25]. The VAE has the benefit
over SVD that it is a non-linear dimensionality reduction technique. However, it is harder to train as it
has more hyperparameters, as opposed to SVD which only has k as a parameter. We fit a VAE model
to the learning curves. We used a simple PyTorch [49] implementation of VAE which has four fully
connected layers of 512 nodes, separated by ReLU, in both the encoder and decoder architecture.
Finally, we add dropout of 0.2 and the Adam optimizer. We constrain the dimension of the bottleneck
latent space the same amount as with SVD: k = 5. This creates a non-linear dimensionality reduction
model. In Table 3, we see that the VAE does not perform as well as SVD.

As mentioned in Section 3, we try three different models for the main µ-model (which predicts the
compressed learning curves from the architecture encodings): LGBoost [23], XGBoost [5], and a
standard multilayer perceptron (MLP). For LGBoost and XGBoost, we use the default parameters
reported from NAS-Bench-301 [60]. For MLP, we use one layer with 64 nodes, with SGD with
learning rate 0.001. We also tried five layers, which performed worse.

19

−2 0 2
Residual value

0

100

200

300

400

500

600

700

Co
un

t

Residual histograms
Epoch 0
Epoch 20
Epoch 40
Epoch 60
Epoch 80

0 10 20 30 40
Epochs

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

co
rre

la
tio

n

Autocorrelation of LCs (ACF)
90% confidence
interval
autocorrelation

0 25 50 75 100
Epochs

−3

−2

−1

0

1

2

St
d.

 d
ev

Std. dev of LCs

arch sample 1
arch sample 2
90% confidence
interval

Figure 6: A plot of the residuals across all architectures for five different epochs (left). We see that
the distributions are roughly Gaussian. A plot of the autocorrelation function (ACF) averaged over
all training learning curves (middle). We see that there is only a small amount of autocorrelation.
A plot of the 90% confidence intervals of the residuals at each epoch (right). All plots use the
NAS-Bench-301 learning curve training set.

Finally, we consider three different noise models as described in Section 3. Recall that we create a
new dataset of predicted εi values, which we call residuals, by subtracting the reconstructed mean
learning curves from the real learning curves in Dtrain. That is, ε̂i = yi − (dk ◦ ck) (yi) is the
residual for the ith learning curve. Our three noise models are based on two different assumptions:
(1) the noise distribution is the same for all architectures, and (2) for each architecture, the noise
in a small window of epochs are iid. Now we evaluate these assumptions. In Figure 6 (left), we
plot the residuals from the NAS-Bench-301 training set at five different epochs, showing that the
distributions are roughly Gaussian, across all architectures. Recall that noise model (i) is a simple
standard deviation statistic computed for each epoch independently, across all architectures. In
Figure 6 (middle), we plot the autocorrelation function (ACF) averaged over all training learning
curves on NAS-Bench-301. We see that there is very little autocorrelation in the learning curves,
which justifies the use of the first noise model. Recall that our second noise model uses Gaussian
kernel density estimation (GKDE) [58] across all learning curves. This is essentially the same as the
first noise model but with the ability to capture the small amount of autocorrelation present. Finally,
recall that our our third noise model does not assume that the residual distribution is similar across all
architectures. Instead, it estimates the standard deviation for each epoch using a sliding window of
size 10 across the epochs for each architecture. See Figure 6 (right) for the 90% confidence intervals
of the residuals at each epoch on NAS-Bench-301. Although the sliding window noise model has
the benefit of capturing different distributions for different architectures, we see that the standard
deviation steadily decreases as the epoch number increases, meaning that the noise in a small window
of epochs are not perfectly iid.

In Table 3, we run a full ablation study by testing all eighteen combinations of {SVD, VAE}, {LGB,
XGB, MLP}, and {GKDE, STD, window} for NAS-Bench-111 and NAS-Bench-311. Recall that,
as explained in Section 3, the first four metrics evaluate only the prediction of the mean learning
curves using a held-out test set, so the noise model has no effect on the first four metrics (average R2,
final R2, average KT, and final KT). For the final two metrics (average KL and final KL), we use a
test set of learning curves consisting of five seeds of architectures, so that we can estimate the KL
divergence between the real learning curve distribution and the predicted distribution. Note that none
of the NAS-Bench-NLP architectures were trained more than once, so we are unable to test the noise
models for NAS-Bench-NLP11. Across NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11,
we see that SVD-LGB performs substantially better than all of the other options for the model.

Surrogate training details. Finally, we give more details for the surrogate training. For NAS-
Bench-111, as discussed in Section 3, we created a new set of trained architectures with the full
learning curve information. We kept the training pipeline nearly the same as in the orginal NAS-
Bench-101 repository. However, instead of the TPU v2 acceleator as in the original work, we used an
RTX 3070. We needed to change the batch size from 256 to 200 to account for this hardware change,
which we found had a negligible affect on the final accuracy. We trained 1101 new architectures
and used this new set as the new “ground-truth” when training and evaluating NAS-Bench-111. As

20

Table 3: Evaluation of the surrogate benchmarks on test sets, with all combinations of models. For
NAS-Bench-111 and NAS-Bench-NLP11, we use architecture accuracies as additional features to
improve performance. As explained in Section C, no architectures in the NAS-Bench-NLP dataset
were trained more than once, so we do not compute KL divergence for NAS-Bench-NLP11.

Benchmark Avg. R2 Final R2 Avg. KT Final KT Avg. KL Final KL

NAS-Bench-111

SVD-LGB-GKDE 0.630 0.853 0.611 0.794 1.641 0.516
SVD-LGB-STD 0.630 0.853 0.611 0.794 2.768 0.383
SVD-LGB-window 0.630 0.853 0.611 0.794 24.402 3.303
SVD-XGB-GKDE 0.329 0.378 0.408 0.429 2.743 0.580
SVD-XGB-STD 0.329 0.378 0.408 0.429 4.867 0.503
SVD-XGB-window 0.329 0.378 0.408 0.429 38.457 16.172
SVD-MLP-GKDE 0.195 0.065 0.330 0.290 4.599 0.762
SVD-MLP-STD 0.195 0.065 0.330 0.290 8.417 0.848
SVD-MLP-window 0.195 0.065 0.330 0.290 82.180 15.711
VAE-LGB-GKDE 0.267 0.218 0.462 0.617 3.788 0.829
VAE-LGB-STD 0.267 0.218 0.462 0.617 6.866 0.972
VAE-LGB-window 0.267 0.218 0.462 0.617 53.866 19.820
VAE-XGB-GKDE 0.311 0.272 0.453 0.559 3.828 0.828
VAE-XGB-STD 0.311 0.272 0.453 0.559 6.940 0.969
VAE-XGB-window 0.311 0.272 0.453 0.559 55.654 19.614
VAE-MLP-GKDE 0.218 0.007 0.386 0.369 4.583 0.844
VAE-MLP-STD 0.218 0.007 0.386 0.369 8.386 1.001
VAE-MLP-window 0.218 0.007 0.386 0.369 83.481 19.091

NAS-Bench-311

SVD-LGB-GKDE 0.779 0.800 0.728 0.788 0.503 0.548
SVD-LGB-STD 0.779 0.800 0.728 0.788 0.919 1.036
SVD-LGB-window 0.779 0.800 0.728 0.788 1.566 4.083
SVD-XGB-GKDE 0.522 0.546 0.607 0.654 1.783 3.272
SVD-XGB-STD 0.522 0.546 0.607 0.654 3.271 5.958
SVD-XGB-window 0.522 0.546 0.607 0.654 5.282 19.432
SVD-MLP-GKDE 0.564 0.549 0.573 0.603 15.727 29.057
SVD-MLP-STD 0.564 0.549 0.573 0.603 28.833 52.515
SVD-MLP-window 0.564 0.549 0.573 0.603 45.071 167.140
VAE-LGB-GKDE 0.431 0.447 0.568 0.616 5.995 13.486
VAE-LGB-STD 0.431 0.447 0.568 0.616 11.015 24.836
VAE-LGB-window 0.431 0.447 0.568 0.616 17.510 79.773
VAE-XGB-GKDE 0.397 0.427 0.577 0.624 6.520 16.739
VAE-XGB-STD 0.397 0.427 0.577 0.624 11.978 30.368
VAE-XGB-window 0.397 0.427 0.577 0.624 18.883 97.485
VAE-MLP-GKDE 0.509 0.520 0.584 0.619 13.545 33.851
VAE-MLP-STD 0.509 0.520 0.584 0.619 24.770 61.455
VAE-MLP-window 0.509 0.520 0.584 0.619 38.593 196.246

NAS-Bench-NLP11

SVD-LGB 0.906 0.882 0.862 0.820 - -
SVD-XGB 0.849 0.865 0.786 0.735 - -
SVD-MLP 0.120 0.108 0.292 0.275 - -
VAE-LGB 0.789 0.795 0.802 0.747 - -
VAE-XGB 0.826 0.838 0.797 0.739 - -
VAE-MLP 0.150 0.160 0.315 0.300 - -

21

Table 4: NAS-Bench-111 rank correlations computed on a separate test set with architectures trained
for two different random seeds each. This allows the comparison with the rank correlation of an
independent set of ground truth architectures. We find that the NAS-Bench-111 mean model is on par
with the ground truth.

Benchmark Avg. R2 Final R2 Avg. KT Final KT

NAS-Bench-111 0.557 0.541 0.660 0.860
Ground truth (1 seed) 0.593 0.920 0.619 0.873

Table 5: NAS-Bench-311 rank correlations computed on a separate test set with architectures trained
for five different random seeds each. This allows the comparison with sets of learning curves averaged
over multiple seeds. We find that the NAS-Bench-311 mean model performs better than a 4-seed
mean.

Benchmark Avg. R2 Final R2 Avg. KT Final KT

NAS-Bench-311 0.731 0.845 0.637 0.718
Ground truth (1 seed) 0.534 0.782 0.508 0.641
Ground truth (mean of 2 seeds) 0.651 0.835 0.555 0.683
Ground truth (mean of 3 seeds) 0.690 0.859 0.579 0.704
Ground truth (mean of 4 seeds) 0.710 0.870 0.592 0.712

explained in Section 3, the accuracies from the original NAS-Bench-101 benchmark were used as
features to improve the performance of our surrogate, but not used as ground truth. In Table 4, we
show that the KT values for NAS-Bench-111 are roughly equivalent to those achieved by a 1-seed
tabular benchmark.

For NAS-Bench-311, training was straightforward. We used the original NAS-Bench-301 dataset,
which already achieves good coverage [60], and we did not use any additional features. In Table
5, we show that the mean model in NAS-Bench-311 achieves higher rank correlation even than
a set of learning curves averaged over four random seeds, by using a separate test set from the
NAS-Bench-301 dataset which evaluates 500 architectures with 5 seeds each.

For NAS-Bench-NLP11, as described earlier, it is challenging to create an accurate surrogate bench-
mark because there are only 14 322 evaluated architectures for a search space of total size 1053.
Therefore, we used two techniques to improve performance. First, we used a subset of the search
space, restricting the architectures to a maximum of 12 nodes (reducing the size to 1022), and we
added the validation accuracies from the first three epochs of training each architecture, as features.
These two techniques were shown to substantially improve the performance of NAS-Bench-NLP11,
as shown in Table 2. On an RTX 3070, training architectures from NAS-Bench-NLP takes about 90
seconds per epoch. Although adding in the first three epochs substantially improves the accuracy
of our surrogate benchmark, it comes at the cost of query time. While NAS-Bench-111 and NAS-
Bench-311 take under one second to query, a query to NAS-Bench-NLP11 now requires training an
architecture for three epochs. Note that this is still a 15× speedup over performing NAS directly
without a surrogate benchmark.

We also create NAS-Bench-211 to further evaluate our surrogate creation technique (since NAS-
Bench-201 already has complete learning curves). We train the surrogate on 90% of architectures
from NAS-Bench-201 (14 062 architectures) and test on the remaining 10%. SVD-LGB-window
achieves the best performance. The rank correlation values are on par with a 1-seed tabular benchmark
(see Table 6).

D Details from Section 5 (Experiments)

In this section, we give more details from Section 5, and we present more experiments.

Our work uses existing NAS Benchmarks. In Table 7, we report the licenses for each one.

22

Table 6: NAS-Bench-211 rank correlations computed on a test set with architectures trained for three
different random seeds each. This allows the comparison with sets of learning curves averaged over
multiple seeds. We find that the NAS-Bench-211 mean model performs on par with 1-seed ground
truth.

Benchmark Avg. R2 Final R2 Avg. KT Final KT

NAS-Bench-211 0.893 0.958 0.701 0.842
Ground truth (1 seed) 0.866 0.999 0.646 0.916
Ground truth (mean of 2 seeds) 0.900 0.999 0.679 0.926

Table 7: Licenses for the datasets that we use.
Dataset License URL

NAS-Bench-101 Apache 2.0 https://github.com/google-research/nasbench
NAS-Bench-201 MIT https://github.com/D-X-Y/NAS-Bench-201
NAS-Bench-301 Apache 2.0 https://github.com/automl/nasbench301
NAS-Bench-NLP None https://github.com/fmsnew/nas-bench-nlp-release

D.1 LCE Results

Next, we give the LCE results for four search spaces, which is an extension of the results from
Figure 3. That is, we test the improvement of three different single-fidelity algorithms when used
with our LCE framework from Section 4, using WPM or SVR as the LCE techniques. We see that
across all search spaces, for each single-fidelity algorithm, WPM and SVR both give improvements
over the original algorithm, and SVR tends to give the larger improvement compared to WPM. In
Figures 4 and 7, an earlier version of the NAS-Bench-NLP11 noise model was used. We also added
slight clipping for NAS-Bench-111 and -311 to reduce the number of spike anomalies as described in
Section 3.3.

D.2 Ablation study.

We evaluate the effect of different fidelities on NAS-Bench-311. In Figure 8, we plot the validation
regret of the SVR and WPM-based algorithms after 2 × 106 seconds, varying the initial fidelity
(epoch) from which the learning curve is extracted, from 10 to 40. That is, the leftmost points run
LCE by extrapolating from epoch 10 to epoch 100, and the rightmost points run LCE by extrapolating
from epoch 40 to epoch 100. Note that there is a tradeoff between time saved (from only evaluating
to 10 epochs vs 40) and accuracy of LCE (extrapolating from 10 epochs is more challenging than
from 40 epochs). We see that overall, epoch 20 performs the best. Notably, BANANAS-SVR and
REA-SVR (two of the best-performing algorithms across all search spaces) achieve top performance
at epoch 20.

D.3 NAS algorithm descriptions and details

We give a description and implementation details for each NAS algorithm from Section 5. Note that
all algorithms were implemented in NASLib [56], keeping the implementation as close as possibe to
the original implementation.

• Random search. Random search is a simple baseline which draws architectures at random
and then returns the architecture with the lowest validation error. Note that multiple papers
have shown that random search is competitive with other NAS algorithms [34, 57].

• Local search. Another baseline, local search has been shown to perform surprisingly
well [68, 48], even on the DARTS search space [60]. It works by iteratively evaluating
all architectures in the neighborhood of the current best architecture found so far. The
neighborhood is defined as the set of architectures which differ by one operation or edge. We
used the implementation from NASLib [56]. Notably, this is slightly different from the White
et al. [68] implementation which may explain the worse performance on NAS-Bench-311.

23

https://github.com/google-research/nasbench
https://github.com/D-X-Y/NAS-Bench-201
https://github.com/automl/nasbench301
https://github.com/fmsnew/nas-bench-nlp-release

105

Runtime (seconds)

10−3

10−2

Va
lid

. r
eg

re
t

NAS-Bench-111 CIFAR10

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

105 106

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

105 106

Runtime (seconds)

100

101

Va
lid

. r
eg

re
t

NAS-Bench-N11 PTB

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

105

Runtime (seconds)
10−3

10−2

Va
lid

. r
eg

re
t

NAS-Bench-201 CIFAR10

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

105

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-201 CIFAR100

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

105 106

Runtime (seconds)

10−2

Va
lid

. r
eg

re
t

NAS-Bench-201 ImageNet16-120

BANANAS
BANANAS-WPM
BANANAS-SVR
LS
LS-WPM
LS-SVR
REA
REA-WPM
REA-SVR

Figure 7: LCE Framework applied to single-fidelity algorithms on NAS-Bench-111, NAS-Bench-311,
NAS-Bench-NLP11, and NAS-Bench-201.

10 15 20 25 30 35 40
Fidelities (epochs)

10−2

4 × 10−3

6 × 10−3

Va
lid

. r
eg

re
t

NAS-Bench-311 CIFAR10

BANANAS-WPM
BANANAS-SVR
LS-WPM

LS-SVR
REA-WPM
REA-SVR

Figure 8: Different fidelities and their effect on NAS performance on NAS-Bench-311. The wall-clock
time [s] is set to 2e6. The result are reported across 30 seeds.

24

• BANANAS. This algorithm [67] is based on Bayesian optimization using an ensemble of
three MLPs as the model. We use the code directly from the original repository. We set the
encoding to the adjacency matrix encoding instead of the path encoding. A predictor (trained
on all architectures evaluated so far) chooses k architectures which are then evaluated. In
our experiments, the candidate pool is created by mutating the top four architectures ten
times each (two times for each of the edit distance from one to five), and we set k = 20.

• Regularized evolution. This algorithm [53] is based on evolution. It consists of iteratively
mutating the best architectures out of a sample of all architectures evaluated so far. A
mutation is defined as randomly changing one operation or edge. We used the NAS-Bench-
101 [76] implementation, changing the population size from 50 to 20.

• Hyperband. This algorithm [35] is based on random search with successive halving. It is
based on successive halving, in which architectures are iteratively trained at a low fidelity,
and then only the best-performing architectures are trained for longer in the next iteration,
until the maximum number of epochs is reached. Hyperband performs multiple rounds of
successive halving at different initial fidelities. We use the hpbandster implementation,
adapted to NASLib [56].

• Bayesian optimization Hyperband. This algorithm [14] is based on combining Hyperband
with Bayesian optimization. It starts the same way as Hyperband, but in the later rounds, for
each fidelity a KDE model is trained using the trained architectures from previous rounds.
Then the best architectures are chosen using Bayesian optimization with the model. We use
the hpbandster implementation, adapted to NASLib [56].

25

	Introduction
	Related Work
	Creating Surrogate Benchmarks with Learning Curves
	General Technique
	Surrogate Benchmark Evaluation
	Creating NAS-Bench-111, -211, -311, and -NLP11

	The Power of Learning Curve Extrapolation
	Experiments
	Societal Impact
	Conclusions, Limitations, and Guidelines
	NAS Best Practices Checklist
	Related Work Continued
	Details from Section 3
	Details from Section 5 (Experiments)
	LCE Results
	Ablation study.
	NAS algorithm descriptions and details

