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1 IMPLEMENTATION DETAIL

1.1 IMPLEMENTATION DETAIL FOR EMPIRICAL STUDIES

For the experiments in empirical studies, we use a combination of 1) image captioning datasets:
MS-COCO (Lin et al., 2014), SBU (Vicente et al., 2016), CC-3M (Sharma et al., 2018) and Visual
Genome (Krishna et al., 2017) and 2) two object detection datasets, including Object365 (Shao et al.,
2019) and OpenImagesV6 (Kuznetsova et al., 2020). For image captioning data, we take the question
"what does the image describe?" as input prompt and ask the model to generate the descriptions. For
object detection datasets, we use a total of 6 tasks to fully utilize the rich annotations. Please refer
to Section D in this appendix for more details. The training dataset is uniformly sampled during
training. We optimize the model with a learning rate of 1e-4 and a batch size 1024. The whole
model is optimized by the AdamW (Loshchilov & Hutter, 2017) optimizer and we set β1 to 0.9 and
β2 to 0.98. We train the model for 10k steps, while the learning rate is linearly warmuped from 0 in
the first 1k steps, and is cosine decayed to 0 afterwards. We optimize all models using float16.

1.2 IMPLEMENTATION DETAIL FOR GVT

The implementation detail of our GVT is similar to that in the empirical studies, except that we use
more data and more training steps. Besides the image captioning and object detection dataset, we
also used LLaVa-158k dataset (Liu et al., 2023), which is generated by external powerful LLM. We
trained the model for 50k steps, with 2k steps for linear warmup. Then, we use cosine decay to
decrease the learning rate to 0.

1.3 EVALUATION DETAILS.

VQA. Modern Language Models mainly generate one or multiple sentences, making it infeasible to
directly evaluate the MLLMs in the standard evaluation protocol which requires the prediction and
ground truth to be exactly matched. As such, we slightly relax the original evaluation protocol. We
use the first sentence generated my MLLM as prediction result, and treated it as correct if contains
the ground truth answer.

Image Captioning. When MLLMs generate multiple sentences, we use the first sentence as the
captioning result for evaluation. Since MLLMs tend to generate multiple sentences, we use the
prompt "Describe this image in a sentence: This is an image of" as prompt to condense the prediction
for effective evaluation.

Object Counting. We extract the number of word from the first generated sentence, and compare it
with ground truth number.

Object Existence. We extract "yes" or "no" from the first generated sentence, and compare it with
ground truth.

2 BENCHMARKING FINE-GRAINED VISUAL UNDERSTANDING TASKS

We provide the details of the dataset used for evaluation in each task in Table 1. In this work, we con-
structed two fine-grained perception tasks: object counting and object existence based on instance-
level annotations from existing datasets. Specifically, they are constructed on MS-COCO (Lin et al.,
2014) and VCR (Zellers et al., 2019) validation datasets. We provide their details as follows.
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Table 1: Dataset set statistics of our dataset for evaluation.
Task Split Dataset # of Instance

Visual Question Answering validation VQAv2 (Goyal et al., 2017) 440k
Image Captioning validation MS-COCO (Lin et al., 2014) 25k
Object Counting validation MS-COCO (Lin et al., 2014) 10k
Object Counting validation VCR (Zellers et al., 2019) 10k

Multi-Class Identification validation MS-COCO (Lin et al., 2014) 10k
Multi-Class Identification valitdaion VCR (Zellers et al., 2019) 10k

2.1 OBJECT COUNTING

Besides the visual features, the prompt of this task – "Question: How many {obj} are there in the
image? Answer:¨ is fed into the MLLM for evaluation. We select the object name {obj} from
the object list of the dataset. Since there are often a single object of a certain class in one image,
we select a maximum of 3 objects with highest occurrence in the image to make this benchmark
challenging. Similar to object counting benchmarks, we report Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE). Furthermore, we also report accuracy which treats the counting
as a classification problem during evaluation. Both COCO-OC and VCR-OC contain a total of 10k
tasks.

2.2 MULTI-CLASS IDENTIFICATION

Multi-label classification can be used as task to evaluate the model’s multi-instance understanding
capability. However, given the open-ended nature of language models, the evaluation process is
not stable since the language model may generate more fine-grained object names than the dataset
categories, making a stable and fair evaluation difficult. To this end, we change the format of this
task and make the evaluation process more stable. We design the prompt as "Question: Does {obj}
exist in the image?" Answer:¨, and the model is expected to answer "Yes" or "No". We select the
object name {obj} from the object list of the dataset. For each image, we randomly select at most 3
objects that exist in the image, and the same number of objects that does not appear in the image,
so as to make the evaluation set balanced. Both COCO-MCI and VCR-MCI contain a total of 10k
tasks.

3 MORE FINE-GRAINED VISUAL UNDERSTANDING RESULTS

In this section, we provide more detailed results on our two new tasks: OC and OCI.

Detailed Object Counting Results. We show the detailed results of Object Counting task on MS-
COCO in Table 2. It can be observed that, when the images contains relatively small number of
objects (1-3), all methods can understand the number of objects to some extend, where ours is sig-
nificantly better than others. However, when the images become more complex, where the number
of occurrence increases (4-6, 7-9), the performance has significantly dropped. Similar trend can also
observed in Table 3. These results demonstrate that current MLLMs still struggle at correctly count-
ing the objects, indicating future research are required to make them more capable of challenging
visual understanding tasks.

Table 2: Detailed results on the Object Counting on MS-COCO dataset.
GT range 1 - 3 4 - 6 7 - 9 Overall
Method Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓
MiniGPT4 23.0 0.96 1.60 11.0 1.68 2.19 0.0 4.09 4.24 21.1 1.36 2.1
LLaVa 26.5 0.89 1.86 11.0 1.72 3.25 1.58 4.75 5.83 22.0 1.36 2.70
BLIP-2 61.1 0.47 0.82 12.1 2.10 2.50 0.47 4.97 2.57 48.0 1.15 2.05

GVT (Ours) 74.7 0.25 0.51 4.7 2.26 2.49 0.02 2.29 5.25 56.0 1.01 1.93

Detailed Multi-Class Identification Results. We provide more detailed results on MCI task for
MS-COCO in Table 4. The performance of all methods decrease when the image becomes more
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Table 3: Detailed results on the Object Counting on VCR dataset.
GT range 1 - 3 4 - 6 7 - 9 Overall
Method Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓ Acc ↑ MAE ↓ RMSE ↓
MiniGPT4 25.0 0.84 1.32 13.0 1.48 1.82 0.00 4.34 4.46 25.0 1.51 2.24
LLaVa 24.0 0.91 2.24 13.3 1.53 1.99 1.16 4.46 4.75 24.0 1.58 2.77

GVT (Ours) 63.9 0.36 0.61 5.94 2.22 2.46 0.00 4.96 5.18 40.0 1.49 2.41

complex (with more objects in the image). However, the results on the VCR dataset does not show
a stable trend. We conjecture this can be related to the difference on the instruction tuning datasets,
which leads the model to focus on different types of objects.

Table 4: Detailed results on the Multi-Class Identification on MS-COCO dataset.
#Objects 1 - 9 10 - 20 > 20 Overall

MiniGPT4 80.7 72.3 96.1 76.8
LLaVa 52.1 52.0 51.7 52.0
BLIP-2 85.4 77.6 75.2 81.9

GVT (Ours) 89.7 87.0 84.5 88.2

Table 5: Detailed results on the Multi-Class Identification on VCR dataset.
GT range 1 - 9 10 - 20 > 20 Overall

MiniGPT4 71.2 70.2 71.1 70.8
LLaVa 67.1 66.6 66.8 66.9
BLIP-2 67.6 70.3 70. 68.9

GVT (Ours) 77.1 80.6 81.5 78.8

4 OBJECT-CENTRIC TASKS

The work of (Piergiovanni et al., 2022) has proposed 4 tasks to utilize object detection dataset for
vision-language pretraining, including:

1. List Objects
Input: "List all objects"
Output: "{obj1}, {obj2}, ..."

2. Object Existence
Input: "Does {obj} exist in the image?"
Output: "Yes/No."

3. Group Existence
Input: "Does all of {obj1}, {obj2} and {obj3} exists in the image?"
Output: "Yes/No."

4. Existence Selection
Input: "Which of {obj1}, {obj2}, {obj3} exist in the image?"
Output: "{obj1/2/3}"

To further utilize the rich annotations in object detection datasets, we also design two tasks that
facilitate the model’s learning on fine-grained visual information.
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5. Object Counting
Input: "How many {obj}s are there in the image?"
Output: 1-9.

6. Spatial Relation
Input: “What is the spatial relation between {obj1} and {obj2}? Choose one from Top/Top
Left/Left/Bottom Left/Bottom/Bottom Right/Right/Top Right"
Output: "Top/Top Left/Left/Bottom Left/Bottom/Bottom Right/Right/Top Right"

Task 6 is only performed when the selected {obj1} and {obj2} are unique in the image, so as to avoid
the referring ambiguity problem. For all tasks, we use the input text as the prompt and ask the model
to generate the output text. The loss is only computed on the output texts. For each image, the task is
uniformly sampled on the two object detection datasets (Shao et al., 2019; Kuznetsova et al., 2020).

5 MORE ABLATION STUDIES

Choice of Distillation Target. According to the results in Table 1 in our main paper, we observe
that DINOv2, which is pre-trained with self-supervision on a dataset with 142M images also demon-
strates good overall performance. To find the best target for feature distillation, we compared it with
the CLIP model from (Sun et al., 2023), both in ViT-L architecture. The results are shown in Table 6.
It can be seen that CLIP has demonstrated better overall performance, which can be attributed to its
large-scale pretraining dataset and advanced training strategies.

Table 6: Comparison of visual tokenizers under ViT-L architecture.
Visual VQA Captioning COCO-OC COCO-MCI AvgTokenizer Acc CIDEr SPICE Acc Acc

DINO-v2-Large 53.9 69.9 15.0 45.5 83.6 63.2
CLIP-Large 55.5 71.9 16.5 45.2 83.5 64.0

Number of Latent Queries. We study the number of latent queries in the Perceiver Resampler. The
results are shown in Table 7. It can be observed that the overall performance generally increases
with the number of latent queries, where 32 query results in a satisfactory performance. Besides,
increasing the number of queries to 64 leads to limited improvements.

Table 7: Comparison of the number of latent queries in the Perceiver Resampler.
#Latent VQA Captioning COCO-OC COCO-MCI AvgQuery Acc CIDEr SPICE Acc Acc

8 53.4 60.0 15.4 50.0 78.0 60.3
16 55.0 61.7 15.8 51.1 83.5 62.8
32 55.5 71.9 16.5 45.2 83.5 64.0
64 54.0 71.1 16.4 47.0 84.2 64.1

Training with different resolutions. In our MLLM, the model use images with 256×256 resolu-
tion for training and inference. It is expected that increasing the image resolution can improve the
model’s performance on downstream tasks, especially on fine-grained visual understanding tasks.
As such, we compared models trained with images of 512 × 512 resolution. The results are shown
in Table 8. It can be observed that higher resolution indeed leads to better performance.

Table 8: Comparison of visual tokenizer with different LLMs.
Resolution VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

256 53.0 65.9 40.3 67.4 21.3 67.4 52.3
512 55.1 70.2 43.5 73.9 24.2 71.0 56.3
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