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A DATASETS

This section provides a detailed introduction to the datasets used in the main content:

Cora|Sen et al.|(2008)) dataset consists of 2,708 scientific publications categorized into seven classes:
case-based, genetic algorithms, neural networks, probabilistic methods, reinforcement learning, rule
learning, and theory. Each paper in the citation network cites or is cited by at least one other paper,
resulting in a total of 5,429 edges. We use the collected dataseﬂ with raw texts provided by TAPE He
et al.[(2023)).

CiteSeer (Giles et al.| (1998) dataset consists of 3,186 scientific publications categorized into six
classes: Agents, Machine Learning, Information Retrieval, Database, Human Computer Interaction,
and Artificial Intelligence. Our task is to predict the category of a paper based on its title and abstract.

WikiCS Mernyei & Cangeal (2020) dataset is a Wikipedia-based dataset designed for benchmarking
Graph Neural Networks. It is constructed from Wikipedia categories, specifically featuring 10 classes
corresponding to branches of computer science, exhibiting very high connectivity. The node features
are derived from the text of the corresponding articles. We obtain the raw texts of each node from
https://github.com/pmernyei/wiki-cs-dataset.

OGBN-ArXiv Hu et al.{(2020) dataset is a directed graph representing the citation network among
all computer science arXiv papers indexed by MAG [Wang et al.[(2020). Each node corresponds to
an arXiv paper, and directed edges indicate citations from one paper to another. The objective is to
predict the 40 subject areas of arXiv CS papers, such as cs.Al, cs.LLG, and ¢s.0S. These subject areas
are manually determined and labeled by the paper’s authors and arXiv moderators.

Arxiv-2023, proposed in TAPE |He et al.|(2023)), is a directed graph illustrating the citation network
among all computer science arXiv papers published in 2023 or later. Like OGBN-ArXiv, each
node represents an arXiv paper, and directed edges denote citations from one paper to another. The
objective is to predict the 40 subject areas of arXiv CS papers, including cs.Al, cs.LG, and cs.OS.
These subject areas are manually determined and labeled by the paper’s authors and arXiv moderators.

OGBN-Products Hu et al.[(2020) is characterized by a substantial scale, comprising 2 million nodes
and 61 million edges. We utilize a node sampling strategy, following TAPE |He et al.| (2023), to obtain
a subgraph containing 54k nodes and 74k edges, resulting in the OGBN-Products(subset) dataset.
Each node in this dataset represents products sold on Amazon, and edges between two products
indicate that the products are purchased together. The task involves predicting the category of a
product in a multi-class classification setup, using the 47 top-level categories as target labels.

B BASELINES

In this section, we provide a detailed introduction to the baselines used:
* Traditional GNNs: We adopt three simple but widely used GNN models in this work, i.e.,
GCN Kipf & Welling|(2016), SAGE Hamilton et al|(2017)), GAT |Velickovi¢ et al.| (2018).

* GraphFormers |Yang et al.|(2021) is a graph transformer nested with GNN in each layer,
originally designed for link prediction tasks.

'https://github.com/XiaoxinHe/TAPE
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Table 1: The interpretation comparison with LLM predictor methods on two cases. Case 1: a paper
classification task on Cora dataset. The blue parts are the labels. The red parts are the wrong
predictions, while the green parts are the correct predictions and the corresponding structurally

relevant interpretations.

Text | 0-hop | 1-hop | Sheaf
(label: theory) Ti- | Based on the content of | The two papers are re- | Based on the content of the
tle: Constructive | the paper, the most suit- | lated by citation. The | paper, the most appropriate
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first paper presents a
method for feature con-
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junctive features for clas-
sification tasks, focus-
ing on minimal multi-
level Boolean expres-
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the process of CI. Given
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lection and Boolean ex-
pressions, the first paper
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ing category. - - -

NodeFormer [Wu et al.| (2022) is an efficient graph transformer for large graphs which
develops a kernelized Gumbel-Softmax Jang et al.| (2016) operator.

Fintuned LMs: We adopt three widely used pre-trained language models: BERT |Kenton!
& Toutanoval (2019), SentenceBERT [Reimers & Gurevych|(2019), and DeBERTa He et al.
(2020). The parameters of these models are fully fine-tuned in our experiments.

GIANT [Chien et al|(2021)) is a cascading structure method with two stages: pretraining
LMs and training GNNS. In the first stage, it enhances node representations by integrating
structural information into LM pre-training. Then fine-tuned LM-generated node features
serve as initial features for GNN training.

GLEM [Zhao et al.| (2022) is an effective framework that fuses large language models and
GNNSs in the training phase through a variational EM framework. We used the source codeE]
provided in the original paper.

TAPE He et al.|(2023) utilizes LLMs, like ChatGPT OpenAl| (2023)), to generate pseudo
labels and explanations for textual nodes. Then it will finetune PLMs with the generated
content and original texts. The enhanced features, derived from the fine-tuned PLMs, are
used as initial node features for training GNNs.

SimTeG |Duan et al.[(2023) is also a cascading structure method tailored for textual graphs. It
employs a two-stage training paradigm, initially fintuning language models and subsequently
training GNNSs.

Fine-Tuning methods: LoRA [Hu et al.|(2021)), IA3 Liu et al.|(2022), Prompt Tuning Lester
et al.|(2021), and LST|Sung et al.| (2022). These methods involve fine-tuning large language
models to showcase experimental results on textual graphs.
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Methods | Cora CiteSeer WikiCS
MLP 83.92+1.39 91.00+0.95 92.314+0.07
GCN 90.22+0.89 92.93+1.36 93.634+0.24
SAGE 88.254+0.88 91.68+1.08 95.93+0.20
GAT 89.70+£1.72 91.95+0.90 93.254+0.13
SheaFormer ‘ 94.55+0.51 96.27+0.72 98.43+0.28

Table 2: Link prediction performance, as evaluated by AUC metric.

\ Cora CiteSeer WikiCS OGBN-ArXiv ArXiv-2023 OGBN-Products Ele-Photo
Learning rate le-3 le-2 le-2 le-3 le-2 le-3 le-3
Batch size 32 32 32 32 32 32 32
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Table 3: Hyper-parameters for fine tune of LLM baselines.

C LINK PREDICTION

Our method is not limited to node classification tasks, it can also be applied to edge-level or graph-
level tasks. In this section, we conduct experiments on link prediction tasks. We split existing edges
into train:val:test=0.85:0.05:0.1 for all datasets.

| Cora CiteSeer =~ WikiCS  OGBN-ArXiv ArXiv-2023 OGBN-Products Ele-Photo
# Hidden size 64 64 64 64 64 64 64
# Layers 2 1 1 1 1 1 2
Norm ID ID ID ID LN LN ID
Activation ELU ELU ReLU ELU ELU ELU ELU
Dropout 0.5 0.5 0.5 0.2 0.2 0.2 0.5
# Epochs 200 200 200 200 200 200 200
Learning rate Se-5 Se-5 le-3 le-3 le-4 le-2 le-3
Optimizer AdamW  AdamW  AdamW AdamW AdamW AdamW AdamW
Weight decay Se-4 Se-4 le-4 Se-4 Se-4 Se-4 Se-4
Early stop True True True True True True True
Patience 500 500 500 50 50 20 20
Sampler subGraph  subGraph subGraph subGraph subGraph subGraph subGraph

Table 4: Hyper-parameters for GNN baselines. ‘ID’ means no norm layer(Identity), ‘LN’ denotes
Layer Normalization. For sampler, ‘RWR’ means random walk sampler with restart, and ‘subGraph’
is one-hop subgraph sampler.

\ Cora CiteSeer WikiCS OGBN-ArXiv  ArXiv-2023

OGBN-Products

chatGLM3

+SheaFormer | 92.93£0.45 79.04+0.68 82.20+£0.77  78.25+0.41 80.70£0.37

81.36+£0.62

Table 5: Experimental results of different LLM.

Zhttps://github.com/AndyJZhao/GLEM
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