
TOIST: Task Oriented Instance Segmentation
Transformer with Noun-Pronoun Distillation

Supplementary Material

Pengfei Li1 Beiwen Tian1 Yongliang Shi1 Xiaoxue Chen1

Hao Zhao2,3 Guyue Zhou1 Ya-Qin Zhang1

1AIR, Tsinghua University 2 Peking University 3Intel Labs
li-pf22@mails.tsinghua.edu.cn

zhao-hao@pku.edu hao.zhao@intel.com

https://github.com/AIR-DISCOVER/TOIST

1 Implementation Details

1.1 Method

Noun Features. As mentioned in Section 3 (formulation) of the main paper, in an input image,
it is possible that no objects or multiple objects afford a specific task. And in the latter case, the
objects may belong to multiple classes. But for the language input Xl of verb-noun form, the noun
corresponds to the ground truth object categories. Therefore, when the count of targets ngt = 0, we
use an empty string to construct Xl. When ngt > 0 and all target objects belong to the same category,
we take a phrase like sit comfortably on sofa as Xl. When ngt > 0 and the target objects belong to
multiple classes, the language input Xl is set to the concatenation of multiple phrasal verbs, such as
sit comfortably on chair sit comfortably on bed.

We only update the proposed memory bank in the latter two cases. In these cases, if a noun is encoded
into multiple tokenized features by the text encoder, we use the mean value of the features processed
by the transformer encoder as ltrnoun for updating. In the last case, we take the average of multiple
noun features ltrnoun−1, . . . , l

tr
noun−nc

as the final ltrnoun, where nc is the count of classes. In this way,
the privileged knowledge of multiple nouns is more easily distilled into the single pronoun feature of
the student model when an image contains multiple classes of objects equally suitable for a task.

Components of TOIST. RoBERTa-base [8] and ResNet-101 [3] are used as the text encoder and
the CNN-based backbone (the image encoder). For the logit head and the detect head, two feed
forward networks of depth one and three are leveraged, respectively. For the segment head, following
the network design of [2], a multi-head attention operator and a FPN [5]-like convolutional neural
network are used. After each block in the transformer decoder, TOIST generates auxiliary outputs [1]
with the prediction heads.

1.2 Loss Functions

We present the loss terms used for the plain TOIST training in details.

For the ground truth objects Ogt of each training sample, we define pspan
i = [pspani,1 , . . . , pspani,nmax

] ∈
[0, 1]nmax as a uniform distribution over the span positions of the text tokens corresponding to the i-th
ground truth object. pspani,nmax

stands for the probability of "no-object", which is 0 for the ground truth
objects. As a reminder, we use the whole verb-pronoun (or verb-noun) description as token span.
Assuming that ngt (the count of Ogt) is smaller that npred (the count of the predicted objects Opred),

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/AIR-DISCOVER/TOIST

we pad Ogt with ∅ ("no-object") to be of size npred, denoted as O′
gt. For ∅, pspan

i is assigned to be
pspani,j = 1{j=nmax}: if j = nmax, pspani,j = 1; otherwise, pspani,j = 0.

We denote the bipartite matching between O′
gt and Opred as σ̂0, which is calculated by minimizing

the matching loss with the Hungarian algorithm [2]:

σ̂0 = argmin
σ0∈Snpred

npred∑
i

1{pspan
i,nmax

=0}

[
Ll1(bi, b̂σ0(i)) + Lgiou(bi, b̂σ0(i)) + Ltoken−m(p

span
i , ĝσ0(i))

]
.

(1)
Here, Snpred

is the set of all permutations of npred elements. bi and b̂σ0(i) are the ground truth box
and the predicted box, respectively. ĝσ0(i) is the predicted logit, as detailed in the main paper. The
loss terms are defined as follows:

Ll1(bi, b̂σ0(i)) =
∥∥∥bi − b̂σ0(i)

∥∥∥
1
. (2)

Lgiou(bi, b̂σ0(i)) = 1−

(
|bi ∩ b̂σ0(i)|
|bi ∪ b̂σ0(i)|

−
|B(bi, b̂σ0(i))\bi ∪ b̂σ0(i)|

|B(bi, b̂σ0(i))|

)
. (3)

Ltoken−m(p
span
i , ĝσ0(i)) = −

nmax∑
j

pspani,j

exp
(
ĝ
σ0(i)
j

)
∑nmax

l=1 exp
(
ĝ
σ0(i)
l

) . (4)

Lgiou is the Generalized Intersection over Union (GIoU) loss [11]. | · | calculates the size of an
area. B(bi, b̂σ0(i)) stands for the smallest box containing bi and b̂σ0(i). The calculation of Lgiou is
implemented by linear functions, so it is differentiable and can be used for back propagation.

For segmentation, Dice/F-1 loss [9] Ldice and Focal cross-entropy loss [6] Lcross are leveraged:

Ldice(mi, m̂σ0(i)) = 1−
2miδ(m̂σ0(i)) + 1

δ(m̂σ0(i)) +mi + 1
. (5)

Here, mi is the ground truth instance mask of the i-th object. m̂σ0(i) is the corresponding predicted
mask logits. δ is the sigmoid function.

Lcross(mi, m̂σ0(i)) = −αt(1− pt)
γ
[
mi log δ(m̂σ0(i)) + (1−mi) log(1− δ(m̂σ0(i)))

]
, (6)

where
αt = αmi + (1− α)(1−mi), (7)

pt = miδ(m̂σ0(i)) + (1−mi)(1− δ(m̂σ0(i))), (8)

α and γ are hyper-parameters.

The soft-token prediction loss Ltoken is defined as:

Ltoken(p
span
i , ĝσ0(i)) = −

nmax∑
j

pspani,j log
exp

(
ĝ
σ0(i)
j

)
∑nmax

l=1 exp
(
ĝ
σ0(i)
l

) . (9)

The contrastive alignment loss is used to align the embedded features of the predicted objects and
the corresponding text tokens. The embedded features are obtained by projecting the processed text
features of the transformer encoder and the output features of transformer decoder to the same smaller
dimension. We follow the definition of [4]:

Lalign =
1

2

npred∑
i

1∣∣T+
i

∣∣ ∑
j∈T+

i

− log
exp

(
o⊤i tj/τ

)∑nmax

k=1 exp
(
o⊤i tk/τ

)
+

1

2

nmax∑
i

1∣∣O+
i

∣∣ ∑
j∈O+

i

− log
exp

(
t⊤i oj/τ

)∑npred

k=1 exp
(
t⊤i ok/τ

) . (10)

2

T+
i is the set of token features that a predicted object feature oi should be aligned to. O+

i is the set of
object features to be aligned with a token feature ti. Here the predicted objects matched to ∅ are not
included. τ is a hyper-parameter.

Finally, the total loss for the plain TOIST can be written as:

LTOIST = 1{pspan
i,nmax

=0}[λ1Ll1(bi, b̂σ̂0(i)) + λ2Lgiou(bi, b̂σ̂0(i))]

+ 1{pspan
i,nmax

=0}[λ3Ldice(mi, m̂σ̂0(i)) + λ4Lcross(mi, m̂σ̂0(i))]

+ λ5Ltoken(p
span
i , ĝσ̂0(i))

+ λ6Lalign,

(11)

1.3 Hyper-parameters and Training Details

For the proposed architecture, we set d = 256, nmax = 256, ntr = 6, npred = 100, nmem = 1024
and K = 3. For the loss functions, we set λ1 = 5, λ2 = 2, λ3 = 1, λ4 = 1, λ5 = 1, λ6 = 1,
λ7 = 104, λ8 = 50, α = 0.25, γ = 2 and τ = 0.07.

During training, we augment input images with random resize and random crop. Specifically, each
image is resized such that the shortest side is between 480 and 800 pixels and the longest side is less
than 1333 pixels. With probability 0.5, an image is cropped to a random size, where each side is
between 384 and 1333 pixels.

We implement TOIST with PyTorch [10]. Both of the student and teacher TOIST models are
initialized with the model pre-trained by [4]. We fine-tune the two models on the COCO-Tasks
dataset separately for 30 epochs. Then we use the fine-tuned teacher model to distill knowledge to
the student model for 15 epochs. We train the models with an AdamW optimizer. The initial learning
rates are set to 10−5, 10−5, 5× 10−5 for text encoder, backbone and transformer, respectively. The
weight decay is 10−4. Our experiments were preformed on 8 NVIDIA A100 GPUs.

2 Dataset Details

We perform experiments on the COCO-Tasks dataset [12] which re-annotates the COCO dataset [7]
with preference-aware affordance labels. The COCO-Tasks dataset contains 14 tasks. For each task,
there are 3600 train images and 900 test images. We train the proposed architecture on all the train
images and evaluate it on all the test images.

In an image, the most suitable objects (one or more) for solving the task are selected and their
bounding boxes are taken as ground truth labels for detection. The number of selected objects in
an image varies from zero to a dozen. For each task, the total number of selected objects varies
between 1,105 and 9,870 and the number of different object categories varies between 6 and 30.
Totally, the COCO-Tasks dataset contains 65797 selected objects spanning 49 of the 80 COCO
object class categories. This shows the diversity of the dataset. For each task, the total count of
all instances belonging to the selected categories largely varies between 7,172 and 34,160. This
shows the task oriented object detection problem on this dataset is a non-trivial problem and solving
it with traditional methods is very challenging. The preference between multiple classes and multiple
instances of the same class must be taken into account.

The COCO-Tasks dataset is annotated with the available COCO detection boxes. Leveraging the
corresponding COCO segmentation masks directly gives the upgraded instance segmentation version.
We evaluate our proposed method on the upgraded dataset.

3 Quantitative results

Strategies for Updating Memory Bank. To update the text feature memory bank in noun-pronoun
distillation, two strategies are compared: (1) First-in-first-out. (2) Replacing the feature closest to the
new-coming ltrnoun. As shown in Table 1, the second strategy leads to better performance.

Comparison to the Baseline with the Same Backbone. To investigate whether our TOIST archi-
tecture is a standalone technical contribution by marginalizing the benefits brought by pre-trained
models, we present another baseline ’MDETR+GGNN’. Specially, to leverage the knowledge in noun

3

Table 1: Comparison of different updating strategies for the memory bank in the distillation.

Method mAPbox mAPmask

TOIST w/o distillation 41.3 35.2
first-in-first-out 43.9 (+2.6) 38.8 (+3.6)
replacing the closest one 44.1 (+2.8) 39.0 (+3.8)

Table 2: Comparison of the proposed method to ’MDETR+GGNN’ baseline on the COCO-Tasks
dataset.

Method mAPbox mAPmask

MDETR + GGNN w/o pretraining 9.6 8.6
MDETR + GGNN 36.8 30.3
TOIST 41.3 (+4.5) 35.2 (+4.9)
TOIST w/ distillation 44.1 (+7.3) 39.0 (+8.7)

referring expression comprehension, we use the official pre-trained model of MDETR [4] and then
fine-tune it on the COCO-Task dataset. We use the class names of the ground truth objects in each
image as the text input to detect these objects. Then we use the GGNN model [12] to infer which
objects are preferred for a task. The results are shown in Table 2. Note that this baseline is also tested
with privileged noun ground truth, but our distillation method only use the privileged knowledge
during training. Nevertheless, our proposed method still has a significant performance improvement
over this strong baseline (+7.3% mAPbox and +8.7% mAPmask). This demonstrates that our TOIST
architecture is a standalone technical contribution towards task oriented instance segmentation and
pretraining is necessary but insufficient to get the performance level of TOIST.

Ablations for Loss Terms. To demonstrate the effectiveness of the used loss terms, we provide abla-
tion studies in which we remove Lalign or Ltoken or both. The quantitative results are demonstrated
in Table 3. It shows that removing Ltoken brings a performance drop of -1.2% mAPbox and -0.4%
mAPmask, because the association between the matched object predictions and the task descriptions
is weakened. Removing Lalign brings a performance drop of -0.2% mAPbox and -0.1% mAPmask,
because the features of an object and its corresponding text features cannot be explicitly constrained
to be closer. Interestingly, removing both of them brings a significant performance drop of -17.9%
mAPbox and -14.5% mAPmask, implying the two loss terms enhance the effect of each other to
make TOIST understand verb reference better.

Replicates. In Table 4 and 5, we show the mean and standard deviation of the results obtained by
running experiments three times under different random seeds.

Per-task Results. In Table 6 and 7, we provide per-task results of the proposed method and existing
state-of-the-art baselines on the COCO-Tasks dataset. The results show that our TOIST model with
noun-pronoun distillation achieves the best performance in most tasks.

4 More Analysis

In Fig.1, we present the percentage of ground truth object categories, in each task. The figures show
that the distribution of object categories in each task in the COCO-Tasks dataset is very diverse. In

Table 3: Ablations for the soft-token prediction loss and the contrastive alignment loss.

Method mAPbox mAPmask

TOIST 41.3 35.2
TOIST w/o Ltoken 40.1 (-1.2) 34.8 (-0.4)
TOIST w/o Lalign 41.1 (-0.2) 35.1 (-0.1)
TOIST w/o Ltoken and Lalign 23.4 (-17.9) 20.7 (-14.5)

4

Table 4: Ablations for distillation settings.
CCR, CL and SBTL are short for cluster cen-
ter replacement, cluster loss and soft binary
target loss, respectively.
Index CCR CL SBTL mAPbox mAPmask

(a) × × × 41.3±0.44 35.0±0.28
(b) × × ✓ 43.2±0.20 38.0±0.02
(c) × ✓ × 42.0±0.03 37.1±0.04
(d) × ✓ ✓ 43.5±0.30 38.6±0.05
(e) ✓ × × 42.0±0.03 36.9±0.06
(f) ✓ × ✓ 42.3±0.02 37.3±0.02
(g) ✓ ✓ × 42.3±0.02 37.5±0.03
(h) ✓ ✓ ✓ 44.1±0.12 39.0±0.07

Table 5: Ablations for pronoun input.
Method Pronoun mAPbox mAPmask

TOIST

something 41.3±0.44 35.0±0.28
it 41.4±0.26 35.1±0.20

them 41.5±0.28 34.7±0.28
abcd 38.9±0.10 33.2±0.15

TOIST
w/ distillation

something 44.1±0.12 39.0±0.07
it 43.8±0.12 38.4±0.02

them 43.7±0.13 38.1±0.03
abcd 42.8±0.06 37.4±0.02

Table 6: Per-task object detection results on COCO-Tasks.
Object Detection, AP@0.5

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean

Faster-RCNN 28.1 25.8 30.1 22.0 30.5 11.7 30.8 0.0 5.1 33.4 9.7 6.1 24.6 30.9 20.6
Faster-RCNN + pick best 22.9 18.1 19.8 15.0 21.3 5.8 20.4 3.9 3.3 22.0 11.1 5.0 12.5 15.6 14.1
Faster-RCNN + ranker 10.7 10.4 11.5 11.6 11.8 3.3 15.0 2.4 4.6 10.5 5.2 5.0 8.3 17.2 9.1
Faster-RCNN + classifier 33.1 26.7 36.8 32.9 35.4 14.6 40.3 14.4 17.6 38.4 17.1 24.5 33.2 38.1 28.8
Faster-RCNN + GGNN 36.6 29.8 40.5 37.6 41.0 17.2 43.6 17.9 21.0 40.6 22.3 28.4 39.1 40.7 32.6
Yolo + GGNN 36.8 31.9 39.1 38.0 41.6 16.5 44.4 18.7 23.0 39.0 22.3 26.9 44.0 42.0 33.2
Mask-RCNN 30.8 25.0 32.7 20.4 33.1 8.0 28.2 7.9 11.2 43.1 8.1 14.7 32.2 32.0 23.4
Mask-RCNN + pick best 21.9 19.6 22.1 21.6 28.3 12.6 26.2 3.4 3.6 29.1 20.4 3.7 22.4 28.6 18.8
Mask-RCNN + ranker 11.6 11.6 12.2 14.0 15.0 5.0 18.9 2.6 3.3 12.2 7.1 4.7 9.2 21.3 10.6
Mask-RCNN + classifier 36.8 31.1 42.4 39.5 40.8 18.6 48.3 13.9 17.2 48.4 21.4 23.1 43.5 46.4 33.7
Mask-RCNN + GGNN 39.0 33.2 46.4 43.8 47.7 21.4 51.2 16.7 20.3 51.3 27.3 26.8 50.2 48.9 37.4
MDETR + GGNN 44.3 36.5 45.2 28.6 44.0 27.6 35.9 20.7 34.7 46.3 27.8 41.5 46.5 36.2 36.8

TOIST 44.0 39.5 46.7 43.1 53.6 23.5 52.8 21.3 32.0 46.3 33.1 41.7 48.1 52.9 41.3
TOIST w/ distillation 45.8 40.0 49.4 49.6 53.4 26.9 58.3 22.6 32.5 50.0 35.5 43.7 52.8 56.2 44.1

Fig.2, we present the percentage of the images that contain at least one ground truth object or contain
no object in each task. These figures show that many of the images do not contain objects that are
suitable for the tasks. All these statistical results demonstrate that it is non-trivial to find the objects
with affordance and preference for a specific task in a given image.

We present the precision-recall curves of our detection and segmentation results on all the test data or
the test data that contain at least one ground truth object (termed nonempty data) in Fig.3-6. It can be
seen that the curves of the results with noun input are generally higher than those with pronoun input.
The proposed noun-pronoun distillation makes the curves of the results with pronoun input closer to
those with noun input, which demonstrates the effectiveness of the distillation method. Meanwhile,
on the nonempty data, the noun-pronoun distillation only marginally improves TOIST, indicating
that the method makes TOIST more capable of filtering out objects that do not afford the tasks in the
empty data.

We further present the precision-recall curves of our results on the test data that contain objects of
specified classes in each task. The results show that the distillation method has different performance
on different categories. For example, in the task step on something, it works for the data containing

Table 7: Per-task instance segmentation results on COCO-Tasks.
Instance Segmentation, AP@0.5

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean

Mask-RCNN 23.8 21.0 33.0 12.1 33.0 6.8 19.3 6.4 7.7 43.0 6.2 10.9 31.8 24.8 20.0
Mask-RCNN + pick best 17.9 16.4 21.7 16.8 27.9 10.6 23.3 2.9 2.8 28.7 18.6 2.3 21.9 23.4 16.8
Mask-RCNN + ranker 9.0 10.0 11.9 11.2 15.3 4.4 14.4 1.8 2.3 12.0 6.2 3.1 9.1 19.1 9.3
Mask-RCNN + classifier 30.0 27.3 41.4 30.3 39.9 14.8 35.7 12.5 13.5 46.8 19.4 16.0 43.0 38.1 29.2
Mask-RCNN + GGNN 31.8 28.6 45.4 33.7 46.8 16.6 37.8 15.1 15.0 49.9 24.9 18.9 49.8 39.7 32.4
MDETR + GGNN 36.9 31.3 43.6 17.1 42.9 20.1 19.9 18.7 24.5 45.5 23.1 30.9 46.2 24.0 30.3

TOIST 37.0 34.4 44.7 34.2 51.3 18.6 40.5 17.1 23.4 43.8 29.3 29.9 46.6 42.4 35.2
TOIST w/ distillation 40.8 36.5 48.9 37.8 53.4 22.1 44.4 20.3 26.9 48.1 31.8 34.8 51.5 46.3 38.8

5

chair but does not work for those containing dining table or couch (see the first row of Fig.7).
However, in the task place flowers and get potatoes out of fire, the proposed distillation method works
for almost every category (see the fifth row to the twelfth row of Fig.7). Combined with the statistics
of category proportion in Fig.1, we think one possible reason is that the effect of the distillation on
different categories is influenced by the proportion of categories in the tasks. When a few classes
take a large portion of selected objects in a certain task, the effect of the distillation on these classes
is good, while that on others is poor. If the number of categories in the whole task is distributed more
evenly, the distillation can boost performance for most categories.

5 More Qualitative results

We present more qualitative results in Fig.9. For each task, we select four diverse scenes for
visualization. These results show that our method is robust to complex scenes of different tasks.

6 Used and Released Asserts

The license of the assets we used is as follows: (a) MIT License for the COCO-Tasks dataset. (b)
Creative Commons Attribution 4.0 License for the Microsoft COCO dataset. (c) Apache License 2.0
for MDETR, DETR and Mask-RCNN implemented by Detectron2. All existing codes and dataset
we used are open-source and allowed for research. To avoid the disclosure of personally identifiable
information and the presentation of the content that might be considered offensive, we have blurred
out some of the figures in this paper. Our code is released under the MIT license.

References
[1] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level

language modeling with deeper self-attention. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 3159–3166, 2019.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[4] Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas
Carion. Mdetr-modulated detection for end-to-end multi-modal understanding. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 1780–1790, 2021.

[5] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2117–2125, 2017.

[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[9] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In 2016 fourth international conference
on 3D vision (3DV), pages 565–571. IEEE, 2016.

6

Figure 1: Statistics on the number of images about each ground truth category selected in each task.

7

Figure 2: Statistics on the number of images that contains selected objects (denoted as ’nonempty’)
or not (denoted as ’empty’) in each task.

8

Figure 3: The precision-recall curves for object detection on all the test data in each task. The
evaluation type ’Box’ means object box instead of object mask.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[11] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regression.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
658–666, 2019.

[12] Johann Sawatzky, Yaser Souri, Christian Grund, and Jurgen Gall. What object should i use?-task
driven object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7605–7614, 2019.

9

Figure 4: The precision-recall curves for object detection on the test data that contain selected objects
in each task. The evaluation type ’Box’ means object box instead of object mask.

10

Figure 5: The precision-recall curves for instance segmentation on all the test data in each task. The
evaluation type ’Mask’ means object mask instead of object box.

11

Figure 6: The precision-recall curves for instance segmentation on the test data that contain selected
objects in each task. The evaluation type ’Mask’ means object mask instead of object box.

12

Figure 7: The precision-recall curves for object detection on the test data that contain objects of
specified classes in each task.

13

Figure 7: The precision-recall curves for object detection on the test data that contain objects of
specified classes in each task (cont.).

14

Figure 7: The precision-recall curves for object detection on the test data that contain objects of
specified classes in each task (cont.).

15

Figure 7: The precision-recall curves for object detection on the test data that contain objects of
specified classes in each task (cont.).

16

Figure 7: The precision-recall curves for object detection on the test data that contain objects of
specified classes in each task (cont.).

17

Figure 8: The precision-recall curves for instance segmentation on the test data that contain objects
of specified classes in each task.

18

Figure 8: The precision-recall curves for instance segmentation on the test data that contain objects
of specified classes in each task (cont.).

19

Figure 8: The precision-recall curves for instance segmentation on the test data that contain objects
of specified classes in each task (cont.).

20

Figure 8: The precision-recall curves for instance segmentation on the test data that contain objects
of specified classes in each task (cont.).

21

Figure 8: The precision-recall curves for instance segmentation on the test data that contain objects
of specified classes in each task (cont.).

22

water plant

get lemon

dig hole

open beer

Input Prediction Ground Truth Input Prediction Ground Truth

Figure 9: More qualitative results.

23

step on

sit comfortably on

place flowers

get potatoes out of fire

Input Prediction Ground Truth Input Prediction Ground Truth

Figure 9: More qualitative results (cont.).

24

open parcel

serve wine

pour sugar

smear butter

Input Prediction Ground Truth Input Prediction Ground Truth

Figure 9: More qualitative results (cont.).

25

extinguish fire

pound carpet

Input Prediction Ground Truth Input Prediction Ground Truth

Figure 9: More qualitative results (cont.).

26

	Implementation Details
	Method
	Loss Functions
	Hyper-parameters and Training Details

	Dataset Details
	Quantitative results
	More Analysis
	More Qualitative results
	Used and Released Asserts

