
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Helios: Learning and Adaptation of Matching Rules for Continual
In-Network Malicious Traffic Detection

Anonymous Author(s)

Abstract
Network Intrusion Detection Systems (NIDS) are critical for web
security by identifying and blocking malicious traffic. In-network
NIDS leverage programmable switches for high-speed traffic pro-
cessing. However, they are unable to reconcile the fine-grained
classification of known classes and the identification of unseen at-
tacks. Moreover, they lack support for incremental updates. In this
paper, we propose Helios, an in-network malicious traffic detection
system, for continual adaptation in attack-incremental scenarios.
First, we design a novel Supervised Mixture Prototypical Learning
(SMPL) method combined with clustering initialization to learn
prototypes that encapsulate the knowledge, based on the weighted
infinity norm distance. SMPL enables known class classification and
unseen attack identification through similarity comparison between
prototypes and samples. Then, we design boundary calibration and
overlap refinement to transform learned prototypes into priority-
guided matching rules, ensuring precise and efficient in-network
deployment. Additionally, Helios supports incremental prototype
learning and rule updates, achieving low-cost hardware reconfigu-
ration. We implement Helios on a Tofino switch and evaluation on
three datasets shows that Helios achieves superior performance in
classifying known classes (92%+ in ACC and F1) as well as identi-
fying unseen attacks (62% - 98% in TPR). Helios has also reduced
resource consumption and reconfiguration time, demonstrating its
scalability and efficiency for real-world deployment.

CCS Concepts
• Security and privacy→ Network security.

Keywords
Malicious traffic detection, Programmable switches, Prototypical
learning

1 INTRODUCTION
Network Intrusion Detection Systems (NIDS) are essential for secur-
ing web services, as they classify malicious traffic from mixed user
traffic to preserve network integrity. However, traditional NIDS,
such as those based on Deep Packet Inspection (DPI), overly rely
on experts to manually mine the attack fingerprints and struggle
to accurately detect increasingly sophisticated cyber threats [5, 31].
Recently, deep learning (DL)-based supervised [40] and unsuper-
vised [16, 21] methods have emerged, leveraging the powerful fea-
ture extraction capabilities of neural networks to uncover hidden
patterns in network traffic for accurate attack identification. How-
ever, their high computational complexity necessitates uploading
traffic from the network environment to the control plane (e.g., x86
servers equipped with GPUs) for processing, resulting in significant
network bandwidth consumption and processing delays that hin-
der timely attack detection and can lead to financial losses [8, 26],

particularly in large-scale data centers. Furthermore, while an in-
crease in model parameters improves classification accuracy, it also
increases training time and restricts efficient updates.

In response to the increasing demand for real-time and high-
speed traffic processing, the in-network traffic classification para-
digm has emerged [25, 36, 38, 42]. Unlike DL-based NIDS, which are
typically deployed on GPUs, the in-network paradigm utilizes pro-
grammable switches to directly perform inference within the data
plane. This deployment enables terabit-per-second (Tbps) through-
put while maintaining nanosecond-level latency. However, pro-
grammable switches rely on match-action logic and support only
simple instructions, such as integer addition and bit shifts, mak-
ing it infeasible to deploy DL-based models which heavily require
floating-point operations [16, 40]. To overcome the computational
limitations of programmable switches, for example, [1, 10, 38, 41, 42]
transform tree-based machine learning models into match-action
rules, while [22, 23] directly extract rules from data. In [36, 37],
knowledge distillation is used to distill neural networks into a light-
weight binary decision tree (BDT). Additionally, [39] achieves a
conversion between regular expressions (RE) and byte-level recur-
rent neural networks (BRNN).

However, most existing in-network methods lack consideration
of continual model updates. They may fail to identify unseen at-
tacks because they completely partition the feature space based on
existing classes, leaving no space for unseen attack types. Moreover,
they require full retraining to update the model. In real network
scenarios, continual updating and maintenance of NIDS after its
initial deployment are essential as zero-day attacks emerge con-
tinuously [2, 32]. This attack-incremental nature of networks ne-
cessitates that NIDS refine its countermeasures over time. While
some latest unsupervised methods [10, 22, 23] can identify previ-
ously unseen attacks, and [23] supports incremental model updates,
they are limited to binary classification tasks and fail to meet the
fine-grained classification demands of NIDS [40].

In this paper, we aim to design a new in-network NIDS that
meets the following requirements: 1) proficient classification
ability: The system should perform robust classification on both
known and new attacks. It should achieve high accuracy in multi-
class classification for known classes while effectively identifying
unseen attacks without prior knowledge. 2) scalable hardware de-
ployment: Given the limited computational resources and memory
of programmable switches, the system should efficiently manage
hardware resources to achieve high-throughput traffic processing
without incurring excessive overhead. 3) incremental model up-
dates: The system should support incremental updates without
requiring full retraining when adapting to new classes (i.e., admin-
istrator’s changing requirements like newly detected attacks). This
reduces model retraining time and minimizes switch interruption
caused by reconfiguration, which is critical in high-speed environ-
ments (e.g., large web service provider networks serving millions of

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

users). Despite advancements, none of the current state-of-the-art
in-network solutions meet all of these requirements simultaneously.

We propose Helios1, a framework designed for continual in-
network malicious traffic detection in attack-incremental scenarios.
Helios consists of three key modules: Attack Knowledge Prototyping,
Priority-Guided Rule Transformation and Continual Rule Adaptation.

Attack Knowledge Prototyping learns a set of prototypes that en-
capsulate the knowledge of classes (including benign and known at-
tacks). We propose Supervised Mixture Prototypical Learning (SMPL),
based on Supervised Prototypical Learning (SPL) [6] and incorporat-
ing clustering-based initialization to achieve precise classification.
Unlike most SPL methods [11, 27] that rely on complex transfor-
mations incompatible with programmable switches and compact
each class into a single prototype, Helios operates directly on raw
features and assigns multiple prototypes to each class in order to
effectively capture diverse patterns. Specifically, Helios uses the
weighted infinity norm to measure similarity, which aligns with
the matching capabilities of programmable switches.

We design the Priority-Guided Rule Transformation method to
convert the learned prototypes into range-based matching rules
after completing prototype training, enabling efficient deployment
on switches for high-speed packet processing. Specifically, Helios
calibrates the acceptance boundaries of prototypes to enhance gen-
eralization ability. Then, Helios computes and assigns priorities
to the existing prototype-transformed rules, while also introduc-
ing higher-priority rules for extended coverage, thereby ensuring
optimal classification results in all overlapping regions.

During operations, when a new attack appears and network
administrators collect and label data samples for the new attack,
the Continual Rule Adaptation module performs incremental rule
updates. We retain existing rules that are not matched by any new
attack samples and then conduct incremental prototype learning on
the updated training set. The newly learned rules are incrementally
incorporated, ensuring low-cost hardware reconfiguration.

We implement Helios using the P416 [9] language and deploy it
on a real Tofino switch for hardware evaluation, achieving a packet
processing of 100Gbps per port. To evaluate the performance of
Helios, we conduct experiments across three public attack traf-
fic datasets [3, 28, 29]. The experimental results show that Helios
achieves high accuracy for known classes (95.78%) while effectively
identifying unseen attacks (98.21%). Furthermore, Helios achieves
reduced switch resource consumption and less table entry reconfig-
uration time compared to baselines [37, 38, 41, 42] (up to 4.5x faster),
demonstrating its scalability and efficiency for real deployment.

In summary, we make the following contributions:
• We propose Helios, the first in-network solution for continual

malicious traffic detection in attack-incremental scenarios, capa-
ble of accurately identifying known classes and unseen attacks.

• We develop an innovative learning method that integrates Su-
pervised Mixture Prototypical Learning (SMPL) with clustering
initialization, specifically designed to enhance performance.

• We develop a Priority-Guided Rule Transformation method to re-
solve overlapping between rules. We also design an incremental
update mechanism to enable efficient switch reconfiguration.

1Helios is a fictional Greek god, known for his ability to illuminate the world with his
light, uncovering hidden dangers and revealing them earlier than others.

• We prototype Helios and perform comprehensive experiments
to demonstrate its performance2.

2 BACKGROUND
2.1 Malicious Traffic Detection and Challenges
Network Intrusion Detection Systems (NIDS) are essential for de-
tecting malicious activities and anomalies. Traditional NIDS, such
as those based on feature engineering or deep packet inspection
(DPI), rely heavily on expert knowledge, limiting their adaptability
to evolving threats. The advent of deep learning-based NIDS has
significantly improved detection accuracy but at the cost of higher
computational complexity and latency. For instance, even real-time
NIDS [15] are constrained to throughput rates around 10 Gbps, far
below the 100+ Gbps requirements of large-scale cloud and web
service networks.

Programmable switches, built on the P4 language [4] and Pro-
tocol Independent Switch Architecture (PISA), offer a solution for
high-speed packet processing directly within the data plane. They
support custom table-based match-action pipelines deployed on
switch ASICs, enabling network functions to operate at line rate.
However, programmable switches are limited in computational ca-
pability, supporting only basic operations like integer addition and
bit shifts, without support for loops or floating-point computations.
This makes it challenging to deploy DL-based NIDS directly on
switches, as they often require complex calculations and logic to
effectively detect attacks [16, 40].

Existingmethods address the challenges through two primary ap-
proaches. The first focuses on directly deploying tree-based models
by converting them into rules that programmable switches can exe-
cute. For example, IIsy [38] introduces a mapping strategy to offload
a decision tree (DT), while NetBeacon [42] offloads random forests
(RF) by combining feature encoding and decision tables. Similarly,
Flowrest [1] implements flow-level inference using RF. The second
aims to develop models that are inherently suitable to the compu-
tational limitations of programmable switches by incorporating
advanced machine learning techniques. For example, Mousika [36]
leverages knowledge distillation to train the ternary matching-
based binary decision tree (BDT) with the assistance of neural net-
works, enabling lightweight resource usage on switch. Metis [39]
transforms regular expressions (RE) into trainable byte-level recur-
rent neural networks (BRNN), preserving domain-specific expert
knowledge while allowing supervised optimization.

These methodologies mark notable progress in in-network at-
tack detection, enabling precise and high-speed traffic processing.
However, they still face several challenges, as detailed below.
C1: proficient classification ability. As highlighted in [40], an
ideal model should be capable of both multi-class classification of
known classes and identification of unknown attacks. This provides
fine-grained classification results that enable administrators to take
more targeted countermeasures and enhance system reliability
by ensuring robustness against zero-day attacks. However, most
existing supervised solutions [36–39, 41, 42] assume a fixed set of
attack types, with the expectation that traffic data for all attack
classes is available in advance. As demonstrated in section 5.2,

2We will open source the code.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection WWW ’25, April 28 - May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

despite our best efforts to extend these models, they still struggle to
effectively detect unseen attacks. Furthermore, while unsupervised
methods [10, 22, 23] can identify unseen attacks, they are limited
to binary classification tasks and lack support for fine-grained
malicious detection.
C2: scalable hardware deployment. To achieve high throughput
packet processing, the model should enable in-network deployment.
While some recent NIDS [21, 40] can detect unseen attacks, they
rely heavily on floating-point operations and complex logical com-
putations, making them impractical for deployment on resource-
constrained network devices (e.g., programmable switches). Addi-
tionally, some rule-learning methods [30, 34] based on interpretabil-
ity have been proposed, but they still require weighted probability
adjustments after rule matching, which hinders their deployment.
Additionally, the deployment should reduce hardware resource
usage to preserve capacity for other essential network functions
(e.g., routing). Although Metis [39] can be deployed on the switch,
it consumes excessive hardware resources, occupying nearly all
pipeline stages (i.e., 11 out of 12) even for binary classification tasks,
thus restricting its scalability.
C3: incremental model update. The model should support incre-
mental updates and efficient hardware reconfiguration to reduce
retraining costs and avoid disruption to the attack detection. Most
existing methods require full model retraining (i.e., learning from
scratch), which necessitates updating all hardware table entries.
This is particularly problematic in high-speed networks, where
even a brief interruption can affect large volumes of traffic. Among
in-networkmethods, only Genos [23] supports incremental updates.
However, as mentioned earlier, it is limited to binary classification.

In summary, state-of-the-art NIDS fail to address all of the afore-
mentioned challenges. Therefore, we propose Helios, which lever-
ages learning techniques such as Supervised Prototypical Learning
(SPL) and boosting to enable continual in-network malicious traffic
detection.

2.2 Learning Techniques
Supervised Prototypical learning. In prototypical learning [6], a
sample is classified into the class of the prototype to which it is most
similar in the hidden space. If a sample shows little similarity to any
prototype, it is classified as an out-of-distribution (OOD) sample,
and therefore considered as belonging to an unseen class. Existing
methods [11, 27] typically assign a single prototype to each class,
which works well because the features are processed by neural
networks, allowing a single prototype to effectively differentiate
between classes with minimal overlap in acceptance ranges.

However, in the context of the data plane, which does not sup-
port feature processing (e.g., linear or nonlinear transformations),
prototypes need to directly compare with original features. Con-
sequently, we assign multiple prototypes to each class to enhance
representation capability. However, this introduces new challenges,
as the acceptance boundaries for prototypes become difficult to
define, and an increase in the number of prototypes can lead to
considerable overlaps. We address these issues in Section 4.2.
Boosting. Boosting is a powerful learning technique commonly
used in machine learning [7, 13, 14] to enhance model accuracy by
iteratively correcting the errors of weak classifiers. At each itera-
tion, it focuses on the misclassified samples from previous rounds

and trains a new model that better captures these challenging in-
stances. By combining the strengths of multiple weak models, it
produces a robust classifier with improved accuracy and general-
ization. Since Helios is essentially a rule learner, which also acts
as a weak classifier, we combine SMPL with boosting to further
enhance classification performance.

3 OVERVIEW
In this paper, we propose Helios, a framework for learning and
adaptation of matching rules for incremental attack classes, and
achieving continual in-network malicious traffic detection. First, we
design a novel Supervised Mixture Prototypical Learning (SMPL)
method to encapsulate the knowledge of known classes (including
benign traffic and known attacks) into a set of prototypes. Each
prototype corresponds to a centroid of its class in the traffic fea-
ture space. By calculating the similarity between the input sample
and prototypes, Helios achieves multi-class classification of known
classes and identification of unseen attacks. Second, Helios con-
verts the learned prototypes into a set of range-based matching
rules. Although the prototypes are trained on the control plane (i.e.,
GPU-based server), this enables inference on the data plane of net-
work devices (e.g., programmable switches), meeting the demands
of line-rate processing for high-speed traffic. Finally, after network
administrators complete the collection and labeling of data from
the unseen attack, it becomes a newly known attack, and the corre-
sponding new samples are added to the training set.Helios supports
incremental rule learning and updating to reduce training time and
minimize packet interruption caused by hardware reconfiguration.

As illustrated in Figure 1,Helios consists of three modules: attack
knowledge prototyping, priority-guided rule transformation, and
class-incremental rule adaptation.
Attack Knowledge Prototyping. The attack knowledge prototyp-
ing module distills prototypes that encapsulate the knowledge of
each known class. To improve inter-prototype discrimination, He-
lios leverages the density-based clustering method DBSCAN [12]
for prototype initialization, ensuring that each class is assigned
a number of prototypes proportional to its data complexity. He-
lios employs the weighted infinity norm distance as the similarity
metric to facilitate the subsequent rule conversion. During SMPL,
Helios uses gradient descent to increase the similarity between
each prototype and the features of samples from the same class
while reducing similarity with features of samples from different
classes. After training, if a test sample exhibits low similarity to all
prototypes, it is classified as unknown.
Priority-Guided Rule Transformation. The priority-guided rule
transformation module first converts the trained prototypes into
range-based matching rules. Specifically, Helios partitions the fea-
ture space by leveraging the sample-prototype associations and
calibrates the boundaries to generate prototype-generated rules. To
resolve overlaps between these rules, which may cause issues when
multiple switch table entries are matched simultaneously, Helios
calculates the priorities of these rules using topological sorting.
Additionally, Helios introduces the overlapping regions that do not
achieve optimal classification results as higher-priority rules. Fi-
nally, Helios iteratively performs boosting on misclassified residual

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Separate

Separate

Boosting

Residual

Priority Assignment & Overlap Refinement

= =

Boundary Calibration

Weighted Infinity Norm

Clustering Initialization

Attack Knowledge Prototyping Priority-Guided Rule Transformation Continual Rule Adaptation

Programmable
Switches

Scope of Prototypes
Prototypes
Known Class Samples

Unknown Attack Samples

Traffic including unkown attack

Delete Rule 2&5

Rule Growing
Residual Samples

Retained Rules

Growing
Merged Rules

 Control Plane

Scope of Samples

Incremental Rule Update

Similar

 Mixture Prototypical Learning

Switch Table
Rule Priority

Rule 1 10003
Rule 2 10002

ID
1
2
3
4
5
6

Rule 3 10002
Rule 4 3
Rule 5 2
Rule 6 1

Label

Match

Scope of Overlaps

First Time Deployment

Residual Samples

Match
Refine

Topological Sorting

Figure 1: The workflow of Helios.

samples, re-prototyping them. After each iteration, the resulting
rules are merged and all rule priorities are reassigned.
Class-Incremental Rule Adaptation. The class-incremental rule
adaptation module performs incremental prototype learning and
rule updates when a new attack class emerges (e.g., identified by the
network administrator).Helios only makes necessary modifications
to the existing rules, retaining those that are not matched by any
new attack samples. On this basis, the new training set includes both
new attack instances and existing misclassified residual samples.
Similar to the boosting process, Helios then conducts incremental
learning on the updated training set. The newly learned rules are
incrementally incorporated, ensuring low-cost reconfiguration of
hardware table entries.

4 METHODOLOGY
In this section, we present the details of Helios, including the attack
knowledge prototyping module, the priority-guided rule transfor-
mation module, and the class-incremental rule adaptation module.

4.1 Attack Knowledge Prototyping
Existing prototypical learning methods typically assign only a sin-
gle prototype per class. This is effective in GPU-based servers due
to the integration of powerful feature extraction modules (e.g., deep
neural networks) in an end-to-end learning manner, resulting in
minimal overlap. However, programmable switches do not support
extended feature transformations, as they involve floating-point
operations and require complex computational logic. In Helios, we
directly compare the raw features with prototypes and assign multi-
ple prototypes to each class with an innovative supervised mixture
prototypical learning (SMPL) method. Algorithm 1 illustrates the
overall process.

Let 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 represent the training dataset, where 𝑥𝑖 ∈
R𝑑 is the feature vector of the 𝑖-th sample, and 𝑦𝑖 ∈ 𝐶 is the cor-
responding label from the set of known classes (including benign
and known attacks). Due to the large range of feature values (e.g.,

0 to 65535), we apply min-max normalization to standardize them
before inputting them into the model.
Prototype Initialization. Proper prototype initialization is crit-
ical to reflect data complexity. Insufficient prototypes fail to cap-
ture essential patterns, while excessive ones lead to overfitting.
Additionally, careful initialization promotes efficient parameter
convergence. Helios utilizes unsupervised clustering to initialize
prototypes around cluster centers. Instead of using 𝐾-means [17],
which requires specifying the number of clusters in advance, we
adopt DBSCAN [12] for its ability to identify clusters based on data
density. DBSCAN defines clusters using two parameters: the radius
of neighborhoods, and the minimum number of points required to
form a core cluster.

Specifically, for the 𝑖-th class, the initial value of the 𝑗-th pro-
totype 𝑃𝑖 𝑗 is set as the average of the 𝑗-th cluster obtained by
applying DBSCAN on the training samples labeled as class 𝑖: 𝑃𝑖 𝑗 =
1
|𝑈𝑖 𝑗 |

∑
𝑥𝑘 ∈𝑈𝑖 𝑗

𝑥𝑘 , where 𝑈𝑖 𝑗 is the 𝑗-th cluster from DBSCAN on
{𝑥𝑘 | 𝑦𝑘 = 𝑖}. Initializing prototypes from cluster centers facilitates
better convergence and enhances representational capacity.
Supervised Mixture Prototypical Learning. To measure the
similarity between features and prototypes, a classic choice is the
Euclidean distance. However, data planes do not efficiently support
square computations. We adopt the infinity norm ∥ · ∥∞, which
calculates the maximum difference between the feature vector and
the prototype across all dimensions. This approach aligns with
the nature of the upper and lower bounds in matching rules. Ad-
ditionally, we introduce a feature weight parameter 𝑤𝑖 𝑗 for each
prototype 𝑃𝑖 𝑗 , which scales the differences across dimensions to
handle feature values more flexibly. The initial values of𝑤 are set to
1, which means the identical mapping. By taking the absolute value
of original differences and weights, we ensure the final distance is
positive. Consequently, the distance metric is defined as follows:

Dist(𝑥, 𝑃𝑖 𝑗) =
���� 𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

− 𝑃𝑖 𝑗
���� · |𝑤𝑖 𝑗 |

∞
, (1)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection WWW ’25, April 28 - May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 denote the minimum and maximum values
of the features, respectively. 𝑃𝑖 𝑗 represents the 𝑗-th prototype of the
𝑖-th class, and𝑤𝑖 𝑗 is the corresponding feature weight parameter.

To determine the classification probability distribution for a
given sample, we first calculate the distance between the sample
feature vector and all prototypes using distance metric (1). We then
define the sample’s distance to a specific class as the minimum
distance to all prototypes within that class. The classification proba-
bility distribution is then obtained by applying the softmax function
to these distances. Additionally, we introduce a temperature param-
eter𝑇 to control the smoothness of the probability distribution [19].
It scales the distances before applying the softmax function, thereby
enhancing the convergence of prototype training. Consequently,
the classification probability for the 𝑖-th class is as follows:

Prob(𝑦 = 𝑖 | 𝑥) =
exp

(
min𝑗 Dist(𝑥, 𝑃𝑖 𝑗)/𝑇

)∑
𝑘 exp

(
min𝑗 Dist(𝑥, 𝑃𝑘 𝑗)/𝑇

) . (2)

We use the cross-entropy loss to simultaneously train prototypes
𝑃 and weight parameters𝑤 via gradient descent. Therefore, in each
iteration of training for a sample, only the nearest prototype of
each class participates in the probability calculation and undergoes
corresponding gradient updates. Among these prototypes, the one
with the same label as the sample is pulled closer, while those
from other classes are pushed away. This ensures that prototypes
unrelated to the current training sample remain unaffected.

4.2 Priority-Guided Rule Transformation
The trained prototypes need to be deployed on the data plane to
assign labels for incoming traffic samples. The basic idea is to com-
pare the input sample with the prototypes of all classes and find the
nearest one according to the distance metric. If the minimum dis-
tance falls below the acceptance threshold, the sample is assigned to
the corresponding class of this prototype. Otherwise, it is identified
as a new attack type. However, directly deploying this inference
process on switches is impractical since distance calculations and
comparisons are difficult to implement within the limited stages of
the switch pipeline. To address this, Helios design a priority-guided
method that transforms the inference process of prototypes into
range-based rule matching, making it more suitable for deployment.
Algorithm 2 illustrates the overall process of rule transformation.
Boundary Calibration. Since each sample is accepted by its near-
est prototype, it is essential to set acceptance thresholds for each
prototype to identify unseen attacks. One straightforward approach
is to set the threshold as the maximum distance among all accepted
samples. However, overly large acceptance boundaries can reduce
the generalization ability. We observe that most accepted samples
are relatively close to their prototypes in practice, with only a few
outliers. Therefore, in Helios, we define the threshold as the mean
distance of the accepted training samples, resulting in a tighter
boundary. This approach provides a robust threshold by ensur-
ing that the acceptance boundary is dominated by closer samples,
thereby preventing it from being influenced by a few distant outliers.
The corresponding formulas are given below:

𝐷𝑃𝑖 𝑗 = {𝑥𝑘 | 𝑦𝑘 = 𝑖 ∧ Dist(𝑥𝑘 , 𝑃𝑖 𝑗) ≤ Dist(𝑥𝑘 , 𝑃𝑖′ 𝑗 ′),∀𝑃𝑖′ 𝑗 ′ }, (3)

Threshold(𝑃𝑖 𝑗) =
1
|𝐷𝑃𝑖 𝑗 |

∑︁
𝑥𝑘 ∈𝐷𝑃𝑖 𝑗

Dist(𝑥𝑘 , 𝑃𝑖 𝑗), (4)

where 𝐷𝑃𝑖 𝑗 represents the set of samples accepted by 𝑃𝑖 𝑗 .
Rule Transformation. After calibrating the acceptance bound-
aries, Helios transforms the prototype inference process into range-
basedmatching rules, which are directly supported by programmable
switches. For a range rule with 𝑑 dimensions, an input sample is
considered a match if it falls within the specified bounds for each
dimension. If the sample exceeds the bounds in any dimension, it
is treated as a miss. The formal expression is given below:

Match(𝑥𝑖 , 𝑙, 𝑢) =
𝑑∧
𝑣=1
(𝑙𝑣 ≤ 𝑥𝑖𝑣 ≤ 𝑢𝑣), (5)

where 𝑙𝑣 and 𝑢𝑣 represent the lower and upper bounds for dimen-
sion 𝑣 , and 𝑥𝑖𝑣 is the 𝑣-th dimension of the input sample 𝑥𝑖 .

Using the acceptance relationship between samples and pro-
totypes, Helios partitions the feature space and transforms each
prototype into a corresponding rule. Specifically, the bounds for
each feature dimension in the rule are determined by the minimum
and maximum values of all accepted samples within the prototype’s
acceptance threshold. Formally, for the 𝑣-th feature dimension, the
bounds of the rule corresponding to prototype 𝑃𝑖 𝑗 are defined as:

{𝑙𝑣, 𝑢𝑣} =
{

min
𝑥𝑟 ∈𝐷𝑃𝑖 𝑗

𝑥𝑟 𝑣, max
𝑥𝑠 ∈𝐷𝑃𝑖 𝑗

𝑥𝑠𝑣

}
, 𝑣 = 1, 2, . . . , 𝑑, (6)

where 𝑙 and 𝑢 represent the lower and upper bounds, respectively.
OverlapRefinement and Priority Assignment. Since SMPL gen-
erates multiple prototypes, overlap issues inevitably arise. When
rules overlap, their classification results may conflict, and the op-
timal class for an overlapping region may not align with any of
the original rules that generated it. Given that overlapping regions
represent a finer partition of the feature space, refining these re-
gions can further improve performance. Ideally, each region should
have an optimal classification result, defined as the class containing
the largest number of samples within that region. Fortunately, pro-
grammable switches support a priority mechanism that can resolve
conflicts by returning the result of the highest priority rule. There-
fore, to mitigate these conflicts and maximize classification perfor-
mance, Helios prioritizes the rules generated by prototypes and
introduces additional higher-priority rules to cover the remaining
overlapping regions that still do not achieve optimal classification.

First, all samples in the training set are matched against the rules
to generate conflict sets. Each conflict set 𝑆𝑖 consists of a group
of overlapping rules {𝑅𝑖1, 𝑅𝑖2, . . . , 𝑅𝑖𝑚}, where 𝑅𝑖 𝑗 denotes the 𝑗-th
rule in the 𝑖-th conflict set. The class𝐶𝑖 with the highest number of
samples in the overlapping region is selected as the representative
class for 𝑆𝑖 . Next, a directed acyclic graph (DAG) 𝐺 is constructed.
The conflict sets are then sorted in ascending order based on their
sizes, and each conflict set is processed sequentially. For each 𝑆𝑖 ,
directed edges (𝑅𝑖 𝑗 → 𝑅𝑖𝑘) are inserted to𝐺 from all rules 𝑅𝑖 𝑗 ∈ 𝑆𝑖
belonging to class𝐶𝑖 to all other rules 𝑅𝑖𝑘 ∈ 𝑆𝑖 that do not belong to
class𝐶𝑖 . If a path already exists from 𝑅𝑖𝑘 to 𝑅𝑖 𝑗 , the insertion of this
edge is skipped. Finally, the priorities of the prototype-generated
rules are assigned in descending order based on the results of topo-
logical sorting on 𝐺 , starting from 1. For any conflict set 𝑆𝑘 that

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

remains unresolved, we introduce the corresponding overlapping
regions as additional rules. These rules are assigned a priority of
10000 + |𝑆𝑘 |, where |𝑆𝑘 | denotes the size of conflict set 𝑆𝑘 . This
ensures that their priority surpasses all prototype-generated rules,
allowing for complete coverage. Additionally, we observe that some
rules accept only a small number of samples, making them less cost-
effective. We prune these rules to mitigate overfitting, which also
reduces the switch’s resource consumption.
Rule Boosting. After completing the initial round of prototype
training and rule transformation (including refinement), Helios
utilizes the misclassified residual training samples based on the
current rules to perform rule boosting. New prototypes are trained
on these residual samples, and the resulting rules are merged into
the existing rule set. Following this, Helios applies overlap refine-
ment and priority assignment to the combined set of rules and then
iteratively proceeds to the next round of boosting. Recall thatHelios
employs tight boundary calibration, which, in combination with
boosting, maximizes the fit to the sample distribution and enhances
overall classification performance.

4.3 Class-Incremental Rule Adaptation
For the initial classes, Helios is trained and deployed for the first
time. When an unseen attack emerges, if a sample does not match
any of the rules, it is identified as an unseen attack class. The classi-
fication results from the data plane provide network administrators
with timely feedback and alerts. After network administrators col-
lect and label new attack samples, Helios performs incremental
learning on the updated dataset, enabling efficient rule updates
and lightweight switch reconfiguration. Algorithm 3 illustrates the
overall process of rule adaptation.
Isolated Rule Retention. During rule updates, a totally incremen-
tal approach would retain all existing rules while adding new ones
learned from the new attack. However, this may lead to significant
conflicts between merged rules, reducing learning capability and
deployment efficiency. Thus, existing rules need to be adjusted nec-
essarily, such as modifying their boundaries or splitting them [23].
Specifically, Helios retains those isolated rules that are not matched
by any new attack samples in the training set, that is,

𝑅𝑖 is retained if ∀𝑥𝑘 ∈ 𝐷new attack, ¬Match(𝑥𝑘 , 𝑅𝑖). (7)

By retaining rules that are unaffected by new attack samples,Helios
achieves the trade-off between minimizing unnecessary changes
and maintaining flexibility for updates.
Incremental Rule Update. After retaining the existing isolated
rules, Helios performs incremental learning on the new dataset,
which includes misclassified residual samples and new attack sam-
ples. Similar to the boosting-based SMPL, new rules are generated
and incrementally merged into the existing set. Helios then applies
overlap refinement and priority assignment across all rules. For the
newly added rules, only incremental deployment to the switch is
required, ensuring efficient reconfiguration. For retained prototype-
generated rules, some may need priority adjustments based on the
updated topological sorting results, unless they do not conflict with
any new rules and thus remain unchanged. Additionally, if the op-
timal classification results change, corresponding modifications are
also necessary. Compared to adding or deleting rules, modifying
priorities or updating classification results is more efficient.

5 EXPERIMENTS
5.1 Settings
Datasets. (1) CICIDS2018 [29], which includes network traffic gen-
erated within a simulated enterprise environment, featuring various
attacks such as Distributed Denial of Service (DDoS) attacks (in-
cluding LOIC and HOIC methods), Denial of Service (DoS) attacks
(e.g., GoldenEye, Hulk, Slowloris), and SSH brute force attempts.
(2) TON-IoT [3], specifically designed for Internet of Things (IoT)
applications, incorporating benign traffic alongside nine distinct
attack scenarios. (3) UNSW-NB15 [28], which integrates real normal
activities with synthetic contemporary attack behaviors, featuring
benign traffic and encompassing nine types of attacks.
Baselines. Given that methods supporting only binary classifica-
tion are unsuitable for class-incremental learning scenarios, we
select four state-of-the-art multi-classification in-network methods
as baselines: 1) IIsy [38], which designs a feature encoding approach
for deploying decision trees; 2) Planter [41] and Netbeacon [42],
which utilize different ensemble encoding methods for offloading
random forests; and 3)Mousikav2 [37], a lightweight method based
on knowledge distillation.
Metrics.Weevaluate themulti-classification performance for known
classes using accuracy (ACC) and F1-score (F1). For the identifica-
tion of unseen attacks, we calculate the True Positive Rate (TPR)
and the Area Under the Curve (AUC) under various threshold con-
figurations to provide a more comprehensive evaluation.
Configurations. We divide the training and updating process into
several tasks, each consisting of classification for the currently
known classes and the identification of an unseen attack. We set
the training epochs for each task to 50 and utilize the Adam [20]
optimizer with a learning rate of 0.001. The default values for other
key hyper-parameters are provided in Section A. Considering the
limited well-labeled samples in the real-world environment, we set
a 2:8 ratio of training set and testing set to simulate few-shot learn-
ing scenarios. Additionally, since the baselines do not inherently
support unknown class identification, we extend them in a manner
similar to previous out-of-distribution detection arts [18, 24, 33, 35]
by employing a threshold on the classification probabilities. Specif-
ically, if the classification probabilities for all classes fall below the
threshold, the input sample is classified as unknown. We calculate
the optimal threshold for each baseline bymaximizing 5×ACC+TPR
while ensuring that the ACC remains no lower than 85%.

5.2 Classification Performance Evaluation
We compare the classification performance of Helioswith enhanced
baseline methods across three datasets, as shown in Table 1. The
tasks are divided based on the number of classes in each dataset,
with the specific attack details in Table 3. Initially (Task 1), the
model classifies the initial classes (including benign and one attack)
and identifies the first unseen attack. In each subsequent task, the
unseen attack from its previous task is added as known, while
a new attack is introduced as unseen for that task. Finally (Task
ALL), ACC and F1 represent performance across all classes, while
TPR is calculated as the weighted average of all previous tasks,
representing the overall identification rate for unseen attacks.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection WWW ’25, April 28 - May 2, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Comparisons of Helios with prior arts on each task in terms of classification performance. Here, ACC, F1, and TPR
represent the Accuracy (%), F1-score (%) of known class classification, and the True Positive Rate (%) of new attack identification.

Planter Netbeacon Mousikav2 IIsy Helios
Dataset Task ACC F1 TPR ACC F1 TPR ACC F1 TPR ACC F1 TPR ACC F1 TPR

IDS

1 100.00 100.00 0.00 100.00 100.00 0.00 98.86 99.39 75.85 99.98 99.98 0.00 99.18 99.59 100.00
2 99.95 99.95 0.00 99.95 99.95 0.00 99.80 99.80 0.00 99.97 99.97 0.00 99.27 99.63 100.00
3 99.91 99.95 98.30 99.91 99.95 98.30 99.88 99.91 35.10 99.96 99.96 0.00 99.33 99.66 100.00
4 99.74 99.86 22.85 99.74 99.86 22.85 99.83 99.83 0.00 99.94 99.94 0.00 98.84 99.41 56.54
5 90.76 93.73 59.10 88.87 92.40 59.10 91.50 91.50 0.00 94.89 94.83 0.00 92.50 92.86 100.00
6 95.43 95.37 0.00 94.59 94.53 0.00 92.74 92.74 0.00 95.52 95.46 0.00 93.73 94.08 100.00
7 89.05 92.85 100.00 88.99 92.72 100.00 93.73 93.73 0.00 95.35 95.30 0.00 94.69 95.01 100.00
8 89.90 93.44 92.31 89.67 92.96 82.05 93.59 93.60 10.26 95.35 95.30 0.00 95.85 96.04 100.00
9 90.47 93.81 98.47 94.57 94.40 97.71 86.12 89.75 99.24 95.33 95.28 0.00 95.79 95.98 100.00

ALL 92.11 94.71 26.78 94.25 94.06 26.76 93.54 93.45 33.21 95.27 95.23 0.00 95.78 95.98 98.21

IoT

1 99.91 99.95 50.22 99.91 99.95 50.22 97.20 95.83 0.00 100.00 100.00 0.00 95.77 96.48 100.00
2 96.04 97.47 92.05 95.93 97.37 91.95 95.84 96.46 11.79 98.48 98.53 0.00 94.96 96.56 100.00
3 98.89 98.89 98.79 97.41 98.19 98.83 94.28 94.76 58.75 98.92 98.89 0.00 95.52 96.91 99.16
4 97.83 98.40 60.41 97.68 98.35 99.01 97.09 97.55 43.83 98.87 98.87 0.11 97.05 97.97 23.63
5 98.73 99.10 89.19 98.61 98.99 89.63 99.03 99.07 4.87 99.29 99.28 0.71 97.74 98.47 92.62
6 96.47 97.69 39.01 92.89 96.04 56.07 97.11 97.23 7.27 97.43 98.19 12.74 96.26 97.18 45.36
7 85.59 91.16 99.96 85.30 90.58 99.85 93.42 93.36 0.00 97.91 97.90 0.00 95.74 96.34 99.80
8 88.98 92.89 54.99 91.94 94.02 40.54 91.25 93.64 31.28 96.61 97.78 25.95 97.04 97.68 25.84

ALL 88.60 88.43 71.83 86.58 86.53 79.06 83.01 87.01 21.19 91.72 91.72 6.87 92.20 92.99 62.93

NB15

1 97.38 98.57 55.59 98.05 98.48 73.84 95.37 97.08 71.79 99.10 99.10 0.00 94.42 96.96 99.09
2 96.35 97.95 21.30 98.09 98.19 1.94 88.10 89.71 38.31 99.35 99.34 0.00 91.86 95.20 63.13
3 91.80 95.24 57.35 95.30 95.16 0.00 87.90 90.89 17.15 97.76 97.75 0.00 90.68 94.03 86.14
4 88.21 92.78 58.77 88.18 87.67 0.00 90.40 91.37 3.57 96.78 96.77 0.00 90.51 93.87 55.35
5 85.78 91.44 87.68 79.61 77.02 0.00 85.07 85.21 0.16 95.29 95.28 0.00 86.37 89.92 73.19
6 86.08 91.58 90.77 80.30 78.33 0.00 85.71 86.50 1.78 95.54 95.54 0.00 89.43 92.65 66.59
7 91.00 93.08 27.78 69.30 67.74 0.00 82.14 82.24 0.00 93.07 93.04 0.00 89.44 92.50 62.43
8 91.12 92.28 45.71 73.74 72.20 0.00 83.84 83.22 0.00 92.08 92.08 0.00 91.53 93.11 69.30

ALL 81.79 88.79 62.65 75.64 73.55 1.22 79.88 81.60 6.02 91.83 91.83 0.00 92.91 94.19 69.15

0 10 20 30 40
FPR (%)

0

25

50

75

100

TP
R

(%
)

Helios Mousikav2 Netbeacon Planter IIsy

0 10 20 30 40
FPR (%)

0

25

50

75

100

TP
R

(%
)

(a) CICIDS2018 dataset

0 10 20 30 40
FPR (%)

0

25

50

75

100

TP
R

(%
)

(b) UNSW-NB15 dataset

0 10 20 30 40
FPR (%)

0

25

50

75

100
TP

R
(%

)

(c) TON-IoT dataset

Figure 2: Receiver Operating Characteristic (ROC) curve of new attacks identification on three datasets.

For overall performance in Task ALL, Helios achieves the high-
est ACC and F1 across all datasets, as well as the best TPR on CI-
CIDS2018 and UNSW-NB15, demonstrating superior classification
precision. For individual tasks, Helios shows more stable perfor-
mance compared to the baselines, highlighting its ability to han-
dle continually emerging unseen attacks. In summary, even after
optimizing the existing state-of-the-art in-network methods and
selecting their optimal thresholds, Helios consistently outperforms
them in classifying known classes and identifying unseen attacks.

To further demonstrate the model’s capability in identifying un-
seen attacks under different threshold settings, we plot ROC curves,
as shown in Figure 2. Across all datasets, Helios outperforms the
baseline methods, achieving higher TPR while maintaining lower
FPR. On CICIDS2018, Helios achieves an AUC of 0.98, significantly
outperforming the second-best method, Planter, which achieves
0.59. On TON-IoT and UNSW-NB15, Helios also surpasses its top

competitors, with AUC of 0.90 and 0.88, compared to 0.88 for Netbea-
con on TON-IoT and 0.81 for Planter on UNSW-NB15, respectively.

5.3 Reconfiguration Time Evaluation
We conduct training on servers equipped with Intel (R) Xeon (R) Sil-
ver 4210 CPU @ 2.20GHz and V100 GPUs, and deploy the model on
a commodity Tofino switch (Edgecore Wedge100BF-65X3). Figure 3
presents the average switch table reconfiguration time for different
methods, along with the number of rules learned on total classes.
Overall, Helios outperforms the most lightweight but less accurate
method, Mousikav2, while significantly surpassing other methods.
As shown in Figure 3(a), Helios achieves minimal rule update time
overhead, ranging from 0.8 to 3.1 seconds. This result can be at-
tributed to the number of rules learned, as depicted in Figure 3(b),
where Helios demonstrates higher learning efficiency by requiring
fewer rules. Additionally, due to its incremental update mechanism,
3https://www.edge-core.com/product/dcs802/

7

https://www.edge-core.com/product/dcs802/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5

10

15

Planter Netbeacon Mousikav2 IIsy Helios0.0

2.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re
co

nf
ig

ur
at

io
n

Ti
m

e
(s)

CICIDS2018 TON-IoT UNSW-NB15

5

10

15

Planter Netbeacon Mousikav2 IIsy Helios0.0

2.5

5.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Re
co

nf
ig

ur
at

io
n

Ti
m

e
(s)

(a) The switch reconfiguration time overhead of methods

600

9400

18000

25.8%

Planter Netbeacon Mousikav2 IIsy Helios0

200

400

37.3%

13.4%

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r o

f R
ul

es

(b) The number of rules learned by different methods

Figure 3: Comparison of switch reconfiguration time and the number of learned rules between Helios and the baseline methods
across three datasets. For Helios, the dashed portion of the bar represents the savings during incremental updates.

Helios achieves a 13.4% to 37.3% reduction in rule deployment, fur-
ther reducing time overhead. In conclusion, Helios enables efficient
switch reconfiguration and minimizes switch interruption time.

5.4 Ablation Study
To further validate the design of Helios, we conducted ablation
studies on the TON-IoT dataset to assess the contribution of each
module, as detailed in Table 2. First, initializing prototypes with
DBSCAN yields significant improvements in both ACC and TPR
compared to Normal or Uniform initialization, and it also surpasses
𝐾-means initialization (we set sufficient clusters for 𝐾-means to en-
sure consistency). Second, using Euclidean distance decreases ACC,
suggesting that 𝑙∞ distance provides a better delineation of deci-
sion boundaries and is more suitable for conversion to range-based
rules. Next, initializing prototypes without subsequent boosting, or
performing only a single training iteration after initialization, fails
to achieve high ACC. While continual boosting without SMPL im-
proves ACC, it significantly lowers TPR. These results demonstrate
that both SMPL and boosting are effective methods for enhanc-
ing performance. Finally, without boundary calibration, although
slightly increasing ACC, results in a notable decrease in TPR. This
highlights the importance of refining the accepting boundary of
prototypes. Overall, Helios achieves an optimal balance between
ACC and TPR, ensuring high precision in classifying known classes
while effectively identifying unknown attacks.

Table 2: The ablation study of key components in Helios,
where NOR represents the number of rules.

Method ACC(%) TPR(%) NOR

w/ Normal init. 76.91 36.38 90
w/ Uniform init. 82.00 33.18 61
w/ 𝐾-means 91.46 58.30 394

w/ Euclidean dist. 90.08 64.66 306

w/o SMPL and Boosting 66.08 87.76 161
w/o Boosting 70.39 78.18 146
w/o SMPL 88.52 38.39 325

w/o Boundary Calibration 92.48 38.91 528

Helios 92.20 62.93 321

5.5 Hardware Performance
The hardware performance of Helios is depicted in Figure 4. Figure
4(a) illustrates the memory consumption, showing that Helios typ-
ically consumes less than 10% of TCAM and SRAM. Even for the
most complex dataset, UNSW-NB15, Helios requires only around
40% of TCAM. This efficiency ensures sufficient resources remain
available for other essential network functions, such as routing.
Additionally, we use a traffic generator (SPIRENT N11U4) to simu-
late high-speed network traffic at 10 Gbps, 50 Gbps, and 100 Gbps,
with the throughput and latency results presented in Figure 4(b). As
shown, Helios achieves high-speed processing without packet loss,
while maintaining notably low latency (around 0.66 𝜇𝑠) across vary-
ing input traffic rates. Therefore, Helios enables high-throughput,
low-latency detection of malicious traffic.

IDS IoT NB15
Dataset

0

20

40

60

Ra
te

 (%
)

TCAM SRAM

(a) Resource consumption

10Gps 50Gbps 100Gbps
Traffic rate

0

50

100

150
Th

ro
ug

hp
ut

 (G
bp

s)

0.0

0.4

0.8

1.2

La
te

nc
y

(µ
s)

Throughput Latency

(b) Throughput and latency

Figure 4: Hardware performance of Helios.

6 CONCLUSION
In this paper, we propose Helios, a continual in-network malicious
traffic detection framework for attack-incremental scenarios. Specif-
ically, Helios integrates supervised mixture prototypical learning
with boosting to derive prototypes that represent the knowledge
of each class, facilitating the classification of known classes and
the identification of unknown attacks. The inference process of
prototypes is then transformed into priority-based rule matching,
ensuring accurate and efficient switch deployment. Helios also
supports incremental prototype learning and rule updates when
new attacks are incorporated, achieving low-cost hardware recon-
figuration. Extensive evaluations of Helios using three datasets
demonstrate its effectiveness in identifying unknown attacks and
performing efficient updates.
4https://support.spirent.com/SpirentCSC/SC_KnowledgeView?Id=DOC10479

8

https://support.spirent.com/SpirentCSC/SC_KnowledgeView?Id=DOC10479

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection WWW ’25, April 28 - May 2, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Aristide Tanyi-Jong Akem, Michele Gucciardo, and Marco Fiore. 2023. Flowrest:

Practical flow-level inference in programmable switches with random forests. In
Proceedings of the International Conference on Computer Communications. IEEE,
1–10.

[2] Leyla Bilge and Tudor Dumitraş. 2012. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on
Computer and communications security. 833–844.

[3] Tim M Booij, Irina Chiscop, Erik Meeuwissen, Nour Moustafa, and Frank TH
Den Hartog. 2021. ToN_IoT: The role of heterogeneity and the need for stan-
dardization of features and attack types in IoT network intrusion data sets. IEEE
Internet of Things Journal 9, 1 (2021), 485–496.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[5] Anna L Buczak and Erhan Guven. 2015. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
surveys & tutorials 18, 2 (2015), 1153–1176.

[6] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan K Su. 2019. This looks like that: deep learning for interpretable image
recognition. Advances in neural information processing systems 32 (2019).

[7] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[8] Catalin Cimpanu. [n. d.]. Australian banks targeted by DDoS extortionists. https:
//www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/. Ac-
cessed: 2024-08-04.

[9] The P4 Language Consortium. [n. d.]. P416 Language Specification. https://p4.
org/p4-spec/docs/P4-16-v1.0.0-spec.html. Accessed: 2024-06-10..

[10] Yutao Dong, Qing Li, Kaidong Wu, Ruoyu Li, Dan Zhao, Gareth Tyson, Junkun
Peng, Yong Jiang, Shutao Xia, and Mingwei Xu. 2023. {HorusEye}: A Realtime
{IoT} Malicious Traffic Detection Framework using Programmable Switches. In
Proceedings of the 32nd USENIX Security Symposium. 571–588.

[11] Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. 2022. Siren: Shaping
representations for detecting out-of-distribution objects. Advances in Neural
Information Processing Systems 35 (2022), 20434–20449.

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the International Conference on Knowledge Discovery and Data
Mining, Vol. 96. 226–231.

[13] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119–139.

[14] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[15] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2021. Realtime robust malicious
traffic detection via frequency domain analysis. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 3431–3446.

[16] Xueying Han, Susu Cui, Jian Qin, Song Liu, Bo Jiang, Cong Dong, Zhigang Lu,
and Baoxu Liu. 2024. ContraMTD: An Unsupervised Malicious Network Traffic
Detection Method based on Contrastive Learning. In Proceedings of the ACM on
Web Conference 2024. 1680–1689.

[17] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) 28, 1 (1979), 100–108.

[18] Dan Hendrycks and Kevin Gimpel. 2016. A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks. arXiv preprint
arXiv:1610.02136 (2016).

[19] Geoffrey Hinton. 2015. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531 (2015).

[20] Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[21] Peiyang Li, Ye Wang, Qi Li, Zhuotao Liu, Ke Xu, Ju Ren, Zhiying Liu, and Ruilin
Lin. 2023. Learning from Limited Heterogeneous Training Data: Meta-Learning
for Unsupervised Zero-Day Web Attack Detection across Web Domains. In
Proceedings of the 2023 ACM SIGSACConference on Computer and Communications
Security. 1020–1034.

[22] Ruoyu Li, Qing Li, Yu Zhang, Dan Zhao, Yong Jiang, and Yong Yang. 2024.
Interpreting unsupervised anomaly detection in security via rule extraction.

Advances in Neural Information Processing Systems 36 (2024).
[23] Ruoyu Li, Qing Li, Yu Zhang, Dan Zhao, Xi Xiao, and Yong Jiang. 2024. Genos:

General In-Network Unsupervised Intrusion Detection by Rule Extraction. arXiv
preprint arXiv:2403.19248 (2024).

[24] Xixi Liu, Yaroslava Lochman, and Christopher Zach. 2023. Gen: Pushing the limits
of softmax-based out-of-distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 23946–23955.

[25] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen: A
{High-Performance}{Switch-Native} approach for detecting and mitigating
volumetric {DDoS} attacks with programmable switches. In Proceedings of the
30th USENIX Security Symposium. 3829–3846.

[26] Grainne McKeever. [n. d.]. Imperva releases its Global DDoS Threat Landscape
Report 2023. https://www.imperva.com/blog/imperva-releases-its-global-ddos-
threat-landscape-report-2023/. Accessed: 2024-08-04.

[27] Yifei Ming, Yiyou Sun, Ousmane Dia, and Yixuan Li. 2023. How to Exploit
Hyperspherical Embeddings for Out-of-Distribution Detection?. In Proceedings
of the Eleventh International Conference on Learning Representations.

[28] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set). In Proceed-
ings of the 2015 Military Communications and Information Systems Conference.
IEEE, 1–6.

[29] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. 2018. Toward gen-
erating a new intrusion detection dataset and intrusion traffic characterization.
ICISSp 1 (2018), 108–116.

[30] Shaoyun Shi, Yuexiang Xie, Zhen Wang, Bolin Ding, Yaliang Li, and Min Zhang.
2022. Explainable neural rule learning. In Proceedings of the ACMWeb Conference
2022. 3031–3041.

[31] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. 2018. A deep
learning approach to network intrusion detection. IEEE transactions on emerging
topics in computational intelligence 2, 1 (2018), 41–50.

[32] Ruming Tang, Zheng Yang, Zeyan Li,WeibinMeng, HaixinWang, Qi Li, Yongqian
Sun, Dan Pei, Tao Wei, Yanfei Xu, et al. 2020. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural networks. In Proceedings of
the IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2479–2488.

[33] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. 2022. Vim: Out-of-
distribution with virtual-logit matching. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 4921–4930.

[34] Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. 2021. Scalable rule-
based representation learning for interpretable classification. Advances in Neural
Information Processing Systems 34 (2021), 30479–30491.

[35] Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li.
2022. Mitigating neural network overconfidence with logit normalization. In
Proceedings of the International conference on machine learning. PMLR, 23631–
23644.

[36] Guorui Xie, Qing Li, Yutao Dong, Guanglin Duan, Yong Jiang, and Jingpu Duan.
2022. Mousika: Enable general in-network intelligence in programmable switches
by knowledge distillation. In Proceedings of the International Conference on Com-
puter Communications. IEEE, 1938–1947.

[37] Guorui Xie, Qing Li, Guanglin Duan, Jiaye Lin, Yutao Dong, Yong Jiang, Dan Zhao,
and Yuan Yang. 2023. Empowering in-network classification in programmable
switches by binary decision tree and knowledge distillation. IEEE/ACM Transac-
tions on Networking 32, 1 (2023), 382–395.

[38] Zhaoqi Xiong and Noa Zilberman. 2019. Do switches dream of machine learning?
toward in-network classification. In Proceedings of the 18th ACM workshop on
hot topics in networks. 25–33.

[39] Zhengxin Zhang, Yucheng Huang, Guanglin Duan, Qing Li, Dan Zhao, Yong
Jiang, Lianbo Ma, Xi Xiao, and Hengyang Xu. 2024. Metis: understanding and
enhancing in-network regular expressions. Advances in Neural Information
Processing Systems 36 (2024).

[40] Ziming Zhao, Zhaoxuan Li, Zhuoxue Song, Wenhao Li, and Fan Zhang. 2024. Tri-
dent: A Universal Framework for Fine-Grained and Class-Incremental Unknown
Traffic Detection. In Proceedings of the ACM on Web Conference 2024. 1608–1619.

[41] Changgang Zheng and Noa Zilberman. 2021. Planter: seeding trees within
switches. In Proceedings of the SIGCOMM’21 Poster and Demo Sessions. 12–14.

[42] Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. 2023. An
efficient design of intelligent network data plane. In Proceedings of the 32nd
USENIX Security Symposium. 6203–6220.

9

https://www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/
https://www.zdnet.com/article/australian-banks-targeted-by-ddos-extortionists/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://www.imperva.com/blog/imperva-releases-its-global-ddos-threat-landscape-report-2023/
https://www.imperva.com/blog/imperva-releases-its-global-ddos-threat-landscape-report-2023/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PARAMETERS ANALYSIS
We analyze the impact of three key parameters on the performance
of Helios: boosting iteration, pruning lower bound, and calibration
threshold. The experimental results are presented in Figure 5.
Boosting iteration. As shown in Figure 5(a), increasing boosting
iterations initially improves ACC as the model handles misclassified
samples better. However, beyond a certain point, both ACC and TPR
reach a state of convergence, indicating sufficient learning. To pre-
vent overfitting and excessive rule generation, the default boosting
iteration is set to 4, balancing accuracy and model complexity.
Pruning lower bound. Figure 5(b) shows that without pruning,
both ACC and TPR are lower compared to when a smaller prun-
ing lower bound (e.g., 10) is applied. This is because overfitted
rules from the training set reduce generalization on the test set and
occupy unnecessary feature space. As the pruning lower bound
increases, rule complexity decreases, but ACC also declines. There-
fore, a smaller pruning lower bound provides better results, and
the default value is set to 10.
Calibration threshold. Recall that we use the mean distance of
a prototype’s accepted samples as the threshold (Section 4.2), and
here we multiply this threshold by a scaling weight for parameter
analysis. As shown in Figure 5(c), when the scaling weight is below
1.0, ACC increases significantly because smaller thresholds fail to
capture all relevant data. When the scaling weight exceeds 1.0, ACC
stops improving, while TPR decreases due to overly broad rules
influenced by noisy samples. Therefore, consistent with Eq.(4), the
default value is set to 1.0.

B MATCHING TABLE IMPLEMENTATION
As illustrated in Listing 1, features are used as keys for the match-
ing table, and table entries are processed sequentially according to
their assigned priorities. When a match is found, the correspond-
ing Set_class action is executed, classifying the sample as either
a known attack or benign traffic. If no table entry matches, the
Set_as_unseen_attack action is triggered, classifying the sample
as an unseen attack. This mechanism ensures that new or unknown
traffic is properly flagged for further analysis in the control plane.

Listing 1: The P4 matching table.
1 table Helios {

2 key = {

3 meta.feature_1: range; // Range -based matching

4 meta.feature_2: range;

5 ...

6 meta.feature_m: range;

7 }

8 actions = {Set_class_1; ..., Set_class_n ;} // Hit

9 default_action = {Set_as_unseen_attack ;} // Miss

10 }

C PSEUDOCODE OF ALGORITHMS
We present the pseudocode for various modules of Helios, includ-
ing the attack knowledge prototyping module (Algorithm 1), the
priority-guided rule transformation module (Algorithm 2), and the
class-incremental rule adaptation module (Algorithm 3). These
modules collectively enable Helios to achieve high classification
performance while maintaining efficient switch reconfiguration.

Algorithm 1: Attack Knowledge Prototyping
Input: Training set 𝐷 = { (𝑥𝑖 , 𝑦𝑖) }𝑁𝑖=1
Output: Prototypes P, Weight parameters w

1 Run DBSCAN on 𝐷 to initialize 𝑃 as cluster centroids;
2 𝑤 ← 1;
3 for each epoch do
4 for each mini-batch { (𝑥𝑘 , 𝑦𝑘) } in 𝐷 do
5 �̂�𝑘 ← Prob(𝑥𝑘) via Eq.(2);
6 𝐿 ← Loss(�̂�𝑘 , 𝑦𝑘) ;
7 Update 𝑃 and 𝑤 using gradients ∇𝑃𝐿, ∇𝑤𝐿;
8 end
9 end

10 return 𝑃, 𝑤;

Algorithm 2: Priority-Guided Rule Transformation
Input: Training set 𝐷 = { (𝑥𝑖 , 𝑦𝑖) }𝑁𝑖=1
Output: Range-based matching rules 𝑅

1 Initialize prototype-generated rules 𝑅gen as empty;
2 𝐷now ← 𝐷 ;
3 for each boosting iteration do
4 𝑃 ← Perform Algorithm 1 on 𝐷now;
5 for 𝑃𝑖 𝑗 in 𝑃 do
6 Compute 𝐷𝑃𝑖 𝑗 via Eq.(3);
7 Compute Threshold𝑖 𝑗 via Eq.(4);
8 Compute boundaries (𝐿𝑖 𝑗 ,𝑈𝑖 𝑗) for 𝑃𝑖 𝑗 via Eq.(6);
9 Add (𝐿𝑖 𝑗 ,𝑈𝑖 𝑗) to 𝑅gen;

10 end
11 Refine the optimal class for all overlapping regions in 𝑅gen;
12 Perform topological sorting on 𝑅gen and assign priorities;
13 𝑅overlap ← Introduce regions still not achieve optimal;
14 Prune low cost-effective rules in 𝑅gen and 𝑅overlap;
15 𝐷now ← Residual samples of 𝐷now based on 𝑅gen and 𝑅overlap;
16 end
17 𝑅overlap ← Overlap refinement and priority assignment on 𝑅gen;
18 𝑅 ← 𝑅gen ∪ 𝑅overlap;
19 return 𝑅;

Algorithm 3: Class-Incremental Rule Adaptation
Input: Known class samples 𝐷known, new attack samples 𝐷new,

rules learned on known class samples 𝑅exist
1 𝐷update ← 𝐷known ∪𝐷new;
2 𝑅isolate ← 𝑅exist \ {rules that match any 𝑥𝑘 ∈ 𝐷new};
3 𝐷residual ← {𝑥 ∈ 𝐷update | 𝑥 is misclassified by 𝑅isolate};
4 𝑅new ← Perform Algorithm 2(𝐷residual, 𝑅exist) ;
5 𝑅retain ← 𝑅exist ∩ 𝑅new;
6 𝑅modify ← {𝑟 ∈ 𝑅retain | priority(𝑟) ≠ priority(𝑅new) };
7 𝑅delete ← 𝑅 \ 𝑅retain;
8 𝑅add ← 𝑅new \ 𝑅retain;
9 Perform the corresponding switch table-entry reconfiguration for

𝑅modify, 𝑅delete and 𝑅add;
10 return;

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Helios: Learning and Adaptation of Matching Rules for Continual In-Network Malicious Traffic Detection WWW ’25, April 28 - May 2, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0 10 20 30 40 50 60 70 80
Prune Number

40

55

70

85

100

Ra
te

 (%
)

ACC (IDS) TPR (IDS) ACC (IoT) TPR (IoT) ACC (NB15) TPR (NB15)

1 2 3 4 5 6 7 8
Boosting iteration

40

55

70

85

100

M
et

ric
s (

%)

(a) Iterations of boosting

0 10 20 30 40 50 60 70 80
Pruning lower bound

40

55

70

85

100

M
et

ric
s (

%)

(b) Lower bound of pruning

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Scaling weight

0

25

50

75

100

M
et

ric
s (

%)

(c) Scaling weight of boundary calibration

Figure 5: Analysis of key hyper-parameters for Helios.

D DATASET DETAILS
Table 3 presents the attack classes assigned to each task across
datasets. Initially, each dataset begins with benign traffic and a sin-
gle attack. As tasks progress, additional attack classes are introduced
incrementally, simulating a continually evolving network environ-
ment. This incremental setup effectively evaluates the methods’
ability to handle both known classes and newly emerging threats,
reflecting the attack-incremental nature of real-world scenarios.

Table 4 presents the extracted traffic features used in our ex-
periments. For UNSW-NB15, we extract features across various
levels, including IPv4 (e.g., length, flags, TTL, protocol, and ports),
TCP (e.g., offset, flags, and window size), and UDP (e.g., length).
If a packet is of the TCP type, the UDP fields are padded with ze-
ros, and vice versa. For TON-IoT, features such as total packet size
and inter-arrival time are considered, with average, maximum, and
minimum values captured to characterize the flow. Additionally,
packet-level attributes such as packet count, protocol, and destina-
tion port are included. For CICIDS2018, flow-level features such
as forward and backward packet sizes are extracted, along with
packet-level attributes.

Table 3: Task-specific class details for each dataset.

Task CICIDS2018 TON-IoT UNSW-NB15

Init Benign Benign Benign
Init DDoS LOIC HTTP Mitm Analysis
1 DDoS HOIC DoS Worms
2 DDoS LOIC UDP Runsomware Backdoor
3 DoS GoldenEye Backdoor DoS
4 DoS Hulk Injection Exploits
5 DoS Slowloris DDoS Fuzzers
6 SSH BruteForce Password Generic
7 Web Attack XSS Scanning Reconnaissance
8 Web Attack SQL XSS Shellcode
9 Web Attack Brute Force - -

Table 4: Detailed features extracted from different fields, in-
cluding both packet-level and flow-level features.

Dataset Field Features

NB15

IPv4 length, flags, TTL, protocol, sr-
cport, dstport

TCP offset, flags, window_size

UDP length

IoT

Total Packet Size avg, max, min

Inter-Arrival Time avg, max, min

Packet-Level pkt_count, protocol, dstport

IDS

Forward Packet Size avg, max, min

Backward Packet Size avg, max, min

Packet-Level pkt_count, protocol

11

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Malicious Traffic Detection and Challenges
	2.2 Learning Techniques

	3 OVERVIEW
	4 METHODOLOGY
	4.1 Attack Knowledge Prototyping
	4.2 Priority-Guided Rule Transformation
	4.3 Class-Incremental Rule Adaptation

	5 EXPERIMENTS
	5.1 Settings
	5.2 Classification Performance Evaluation
	5.3 Reconfiguration Time Evaluation
	5.4 Ablation Study
	5.5 Hardware Performance

	6 CONCLUSION
	References
	A PARAMETERS ANALYSIS
	B MATCHING TABLE IMPLEMENTATION
	C PSEUDOCODE OF ALGORITHMS
	D DATASET DETAILS

