
A Experiments

In this section we present the relevant experimental details including a comprehensive list of exper-
iments in Table 2. We first discuss the computational setting and approximate computational cost.
Afterwards the details for the SBI benchmark, the torus, and the eggbox are presented along with
additional experiments for those problems. Finally we discuss how we generate our datasets and how
we can use the estimated likelihood-to-evidence ratio in practice. In all tests, we applied TMNRE with
the hyperparameters laid out in Table 3.

Table 2: Experiments
Task

Parameter
Dimension Algorithm Simulations

Trained
Marginalization

Evaluated
Marginalization Constrained Metric

Two Moons 2 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
Two Moons 2 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
Gaussian Linear 10 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
Gaussian Linear 10 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
Gaussian Linear Uniform 10 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
Gaussian Linear Uniform 10 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
SLCP 5 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
SLCP 5 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
SLCP (distractors) 5 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
SLCP (distractors) 5 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
Gaussian Mixture 2 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
Gaussian Mixture 2 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
SIR 2 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
SIR 2 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm
Lotka-Volterra 4 TMNRE {1, 10, 100}E3 1d, 2d 1d, 2d 1d C2ST-ddm
Lotka-Volterra 2 SBI {1, 10, 100}E3 Joint 1d, 2d C2ST-ddm

Torus 3 TMNRE 4985, 11322, 21127, 32032 1d, 2d 1d, 2d 1d C2ST-ddm, KLD, Visual
Torus 3 MNRE 4985, 11322, 21127, 32032 1d, 2d 1d, 2d C2ST-ddm, KLD, Visual
Torus 3 SBI 4985, 11322, 21127, 32032 Joint Visual

Torus (epsilon scan) 3 TMNRE ∼ 30 E3 1d, 2d 1d, 2d 1d C2ST-ddm / simulation

Egg Box 2 modes / dim 10 MNRE 10 E3 1d, 2d Visual
Egg Box 2 modes / dim 10 NRE 10 E3 Joint Visual
Egg Box 2 modes / dim 10 SNRE 10 E3 Joint Visual
Egg Box 2 modes / dim 10 SMNRE 10 E3 1d, 2d Visual
Egg Box 2 modes / dim 10 Remaining SBI 10 E3 Joint Visual

Rotated Egg Box 10 MNRE 10 E3 1d, 2d Visual
Rotated Egg Box 10 SBI 10 E3 Joint Visual

Table 3: TMNRE Hyperparameters
Hyperparameter Value

Activation Function RELU
AMSGRAD No
Architecture RESNET (2 blocks)
Batch normalization Yes
Batch size 128
Criterion BCE
Dropout No
Early stopping patience 20
ε e−13 ≈ 10−6

Hidden features 64
Percent validation 10%
Reduce lr factor 0.1
Reduce lr patience 5
Max epochs 300
Max rounds 10
Learning rate 0.01
Learning rate scheduling Decay on plateau
Optimizer ADAM
Weight Decay 0.0
Standard-score Observations online
Standard-score Parameters online
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A.1 Total Compute

Most calculations were performed on a local computing cluster which offered ten TitanX GPU nodes.
We estimate the total computation time, including prototype runs, was approximately 968 GPU hours.
We calculated the cost of one run of the benchmark then multiplied it by 10 for this estimation. The
computation of the C2ST-ddm on the marginals from existing data was performed on the same cluster
but using cpu nodes. According to mlco2.github.io this would imply 104.54 kg CO2 at a normal
institution; however, our cluster is run exclusively on wind power.

A.2 SBIBM details

Table 4: Actual bounds of stochastic simulation budget for TMNRE along with number of rounds
before the stoppping criterion was reached. Maximum of one round implies that there was no
truncation and the method is effectively doing MNRE.

Min simulation count Max simulation count Min Rounds Max Rounds
task num_simulations

gaussian_linear 1000 960 1065 1 3
10000 9966 12004 3 7
100000 99702 115784 3 6

gaussian_linear_uniform 1000 952 1056 1 1
10000 9760 10469 1 4
100000 100223 105468 1 4

gaussian_mixture 1000 954 1072 1 4
10000 9902 10582 2 4
100000 99567 105704 2 3

lotka_volterra 1000 966 1051 1 2
10000 9824 11916 1 6
100000 99791 128290 2 5

sir 1000 951 1024 1 5
10000 9973 10128 2 5
100000 99611 100547 2 3

slcp 1000 949 1050 1 1
10000 9901 10546 1 1
100000 99616 104968 1 2

slcp_distractors 1000 951 1035 1 1
10000 9931 10141 1 1
100000 99431 100882 1 1

two_moons 1000 934 1056 1 4
10000 9941 10558 1 4
100000 99863 104919 2 3

We performed a marginalized version of the SBI benchmark on all tasks from [18], except the
Bernoulli Generalized Linear Model. Each task has ten parameters drawn from the corresponding
prior. Each of those parameters are pushed through the simulator and those become ten observations
with a known ground truth posterior and true generating parameter. For the details of each task we
refer the reader to Ref. [18] where they are defined at great length. A summary of some of the details
for each of these tasks, and the algorithm applied to them, are contained in the Experiment Table 2.

Although it is not required for TMNRE, we applied the stochastic process from [44] to generate
samples from the prior distribution. This led to an estimated number of samples for each task. In
general, the number of training samples lied within ∼ 5% of reported value in Figure 1. This was not
true for the Lotka-Volterra and Gaussian Linear tasks because some runs had more truncation rounds
than expected with every round introducing more samples.

Five runs did not converge with TMNRE, those runs were on Gaussian Linear at 1,000 simulations
with observation numbers 4 and 5. Lotka-Volterra had the same problem with 10,000 for observations
2 and 6 and again at 100,000 simulations with observation number 6.

The other methods estimated the joint posterior in some manner while TMNRE targeted the marginals
directly. The full list of alternative methods are called REJ-ABC, NLE, NPE, NRE_B, SMC-ABC,
SNLE, SNPE, SNRE_B. These methods represent a significant portion of the neural simulation-based
inference literature and will not be described in detail here. Please consult Ref. [18].

We defined a summary of the C2ST across the task’s marginals by taking the average over same-
dimensional marginals and averaged over the observations, see (9). These values are reported for
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all methods in Figure 1 where the 95% confidence intervals are computed for the C2ST-ddm over
observations, i.e. the variance across marginals in the C2ST-ddm calculation is not carried forward
into the reported uncertainty. We found it to be very small compared to the reported values and was
unlikely to make a significant difference.

The authors note that data and code was used from SBIBM which can be found on GitHub at
https://github.com/sbi-benchmark/sbibm. It is distributed with the MIT license.

Our method TMNRE was trained to learn all one- and two-dimensional likelihood-to-evidence
ratios thereby predicting the posterior distribution. Since we applied TMNRE, the algorithm truncated
the prior distribution depending on the learned marginal likelihood-to-evidence ratio. We gave a
generous maximum of ten rounds but no task used so many. The maximum was seven before the
stopping criterion was satisfied. We used the ratio of the constrained prior mass from the current
round to the previous round, namely β in Algorithm 1, as a stopping criterion and set it to 0.8. The
stopping criterion was satisfied after a certain number of rounds details about the maximum and
minimum round for every task, at every budget, can be found in Table 4. We applied the heuristic for
the simulation budget found in Appendix A.8.

The final estimated likelihood-to-evidence ratio approximates the posterior on the constrained region.
Samples were drawn from this posterior using rejection sampling. The samples from these marginals,
in the constrained region, are used for the reported C2ST-ddm in Figure 1.

A.3 Torus details

We use a simulator and prior with a torus shaped posterior to showcase three aspects of TMNRE. The
ground truth can be seen on the left in Figure 2. We proceed with the details of the simulator followed
but subsections which give the details for every showcase experiment.

If we let θ, g(θ) ∈ R3 and θk denote the kth element of θ, then the simulator for this problem is
defined g(θ) = (θ0,

√
(θ0 − a)2 + (θ1 − b)2, θ2)T . The likelihood is defined by an additive noise

model, namely p(x | θ) = N (g(θ),Σ) where a, b are constant scalars and Σ is a diagonal, positive
definite matrix. In our experiments we let a = 0.6, b = 0.8, and Σ = diag(0.032, 0.0052, 0.22).
To ensure an approximately torus-shaped posterior, we select a “noiseless” observation of interest
x0 = g(θ0) and parameters θ0 = (0.57, 0.8, 1.0)T .

A.3.1 Torus TMNRE and MNRE Metrics

Since we did not have a clear simulation budget during the initial run of TMNRE, we determined the
number of simulations in the following round by multiplying the retained simulations by 1.5 and
sampling from a Poisson distribution. We started with 5,000 requested samples and up to 10 rounds.
In the end that meant we ran Algorithm 1 with the following number of simulations in each round:
4985, 11322, 21127, 32032. The stopping criterion was met in four rounds, before the maximum
number of rounds was reached.

A sample visualization of this truncation process is visible in Figure 6. As described in the text,
each of these truncated priors were utilized for an ablation study where we estimated the marginal
likelihood-to-evidence ratio using either the truncated prior or the true prior. In effect, testing the
value of TMNRE versus MNRE. Once the number of simulations were fixed by TMNRE we used
exactly the same number of simulations at that stage with MNRE.

A.3.2 Epsilon Hyperparameter Scan

To determine a useful default value for the cutoff threshold ε, we ran TMNRE on the torus simulator, as
described above, at 10 different values of epsilon. Namely, εi ∈ {10i : i = −1, . . . ,−10}. At every
round, the simulator requested approximately 10,000 more simulations than were retained from the
previous round. The amount of simulations was determined stochastically, see Appendix A.8. Once
the method had hit the stopping criteria, the one- and two-dimensional C2ST-ddm was computed
and normalized by the number of simulations required to generate it. The results were plotted by
truncation cutoff ε on the right in Figure 2. We determined that 10−6 minimized the C2ST-ddm
approximately as well as the global minima 10−4 while truncating the prior more conservatively.
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Figure 6: An example of what the truncation process looks like in both one and two dimensions. At
each round, the truncated region of the indicator function is denoted in blue. The region is slightly
transparent so that the evolution over rounds can be discerned. This plot helps visualize that truncation
only occurs at very, very low posterior density. The entire prior region is shown to emphasize that
naive sampling results in few samples within the region of interest.

A.3.3 Empirical Self-Consistency Test

When we do not have a ground truth to compare to, it is important that we can determine whether
the nominal credible intervals correspond to the true credible intervals. We propose to do so by
comparing the nominal credibility to the empirical credibility. An explanation of how to calculate
this performance metric is provided in Appendix B.3.

The authors note, as addressed briefly in the main text, that our consistency test checks the calibration
[23] of the posterior to the truncated prior, rather than the true prior. This may introduce a bias into
the estimation of the self-consistency compared with drawing samples from the truth prior, although
we expect it to be small when ε is small. Investigation of the effects are left for future work.

A.4 Alternative Simulation-based Inference Methods on the Torus

We applied the various SBI techniques to the torus problem for comparison in Figure 7. Just like with
MNRE we expected that amortized, non-sequential methods would not have sufficient simulations
in the relevant region to accurately model the joint posterior on this task. Similarly, we expected
that sequential methods could benefit by focusing samples in the relevant parameter region, thereby
learning a more accurate posterior for this piece of data. (Just like TMNRE.) This is what we observe.
Our goal in Section 3.2 was to show that truncation offers accuracy with a limited simulation budget,
just like sequential methods do.

A.5 Eggbox details

The eggbox task is well described in the main text. The hyperparameters for NRE, SNRE, and SMNRE
are all the defaults as determined by SBI [51]. We implemented SMNRE by creating a custom version
of the simulator. We revealed the one or two parameters which were learned sequentially to the
SMNRE algorithm while we “baked-in” the uniform prior for the other dimensions, i.e. the simulator
sampled from a uniform distribution and simulates a concatenation of the sequentially predicted
dimensions with the uniformly predicted dimensions. We expect that SMNRE fails due to its very
limited number of simulations. This limitation might seem pathological in this symmetric setting but
it is very real in a simulator which defines an unknown posterior that may or may not have symmetry.
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Figure 7: Joint posteriors estimated by various popular SBI methods on the torus problem. When
compared to the prior, the narrowness of this posterior renders most untargeted simulations uninfor-
mative. Only sequential or truncation-based methods are able to recover accurate estimates at the
presented simulation budget of 32032. Left column: Torus ground truth from rejection sampling.
Mid-left column: NRE places mass in the correct region but misses the low density region. SNRE
fairly accurately reconstructs the posterior, although slightly narrow in some regions. Mid-right
column: NPE produces a wide, poorly resolved posterior. SNPE recovers the low density region but
introduces incorrect aberrations. Right column: NLE fails to accurately place any posterior mass.
SNLE accurately reconstructs the posterior.

A.6 Alternative Simulation-based Inference Methods on the Eggbox

We applied the various SBI techniques to the eggbox problem for comparison in Figure 8. The
purpose of this task was to show that multimodal distributions can be challenging for methods which
estimate the joint. On this problem we found that to be true for NRE, SNRE, and NPE, see figures 8
and 5. We were unable to draw the necessary samples from SNPE, likely indicating poor performance.

On the other hand, NLE and SNLE seem to work beautifully for this problem, producing accurate
looking posteriors. Likelihood estimation methods generally perform very well on benchmark / toy
problems presented in the SBI literature. NLE and SNLE are designed to estimate the data distribution
using a flow conditioned on parameters. This works well for low dimensions and simple data;
however, flows are notoriously difficult to train on higher-dimensional problems due to the necessary
computation of the determinant [36] which scales with dimension d like O(d3). Evidence of this can
be seen in the SLCP-Distractors task in Section 3.1. Introducing extra dimensionality, even when it
contains no useful information for inference, significantly reduced the performance of NLE and SNLE.
Since this work is intended to create a tool for data with d� 100, we recommend our method over
NLE and SNLE until they can be applied to high dimensional problems.

A.7 Rotated Eggbox

Truncating with one-dimensional marginals may lead to larger volumes than necessary to contain the
posterior mass, when it is not axis-aligned. For example, consider the inefficiencies of truncating a
highly correlated Gaussian posterior in this way, see Appendix D. We wanted to create a posterior
which was not axis aligned, thereby simulating a truncation scheme which was forced to truncate
a much larger volume than necessary to contain the mass of interest. Our next study considers the
eggbox problem transformed by a rotation to remove its axis-alignment.

We created a rotated version of the eggbox simulator where the initial simulator g(θ) was replaced
by g(QTθ). Q ∈ R10×10 is a rotation matrix which rotates the point (1, 1, . . . , 1)T to (0, 0, . . . , c)T

where c is a positive constant. We had been using a uniform prior defined by the unit cube; however,
this region no longer holds the posterior mass. We determined the limits of a hyperrectangle which
completely covered the rotated prior in the following manner: Consider each unit vector pointing
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Figure 8: Posteriors from the 10-dim eggbox benchmark with only four parameters shown for clarity.
Each method recieved 10k training samples and produced 25k posterior samples. All methods, other
than the ground truth, were trained jointly. NPE fails to model the posterior. SNPE training converged,
but drawing the posterior samples required well over three days of computation. NLE and SNLE seem
to have accurately recovered the ground truth joint distribution with the budget.

to the edge of the unit cube E = ×10
n=0{0, 1} where × denotes the Cartesian product. If each of

those vectors vi is rotated by Q, vi 7→ Qvi, we can then look at the minimum and maximum values
projected along each basis vector and set those to be the limits of our new uniform prior. The
bounds were [(−0.924, 0.924), . . . , (0.000, 3.160)] which implies a volume 795 times larger than the
unrotated prior. We place our new uniform prior over this volume to simulate an inefficient truncation.

Figure 9: The ground truth of the ro-
tated eggbox posterior estimated by
a set of translations and a rotation of
samples from the eggbox. The first
eight dimensions are symmetric so
only two are shown along with the
final asymmetric dimension.

Generating samples from the ground truth joint posterior is
rather difficult because of the extremely large number of modes
and lack of symmetry. To generate samples from the rotated dis-
tribution, we simply rotated samples from the original eggbox
problem. However, this does not reveal the entire posterior since
the simulator is periodic over the prior interval. We first copied
the 10,000 samples over all of the hypercubes neighboring
the unit cube, yielding 20,470,000 samples, then sub-sampled
those and rotated them. More translations were necessary to
completely represent the periodic nature of the ground truth
in Figure 9, but we quickly ran into memory constraints. The
limited, single-set-of-neighboring-hypercubes representation
of the rotated eggbox is shown in Figure 9.

For our experiment we trained all SBI methods along with
MNRE on this problem using the same hyperparameters as in
the original eggbox. No method was able to faithfully represent
the ground truth. We believe that the methods failed due to the
extremely large volume of the prior rather than the rotation.

A.8 Simulation budget and dataset generation

First, we note that it is possible to accomplish Algorithm 1
without having to sample new independently drawn parameters
by pairing simulations with other parameters. Like several other algorithms [11, 17], we assure
the independence of x and θ by sampling two mini-batches from the dataset and switching the θ
parameters. This produces a pair of independently drawn parameters and simulations which can be
used to calculate the loss function efficiently without sampling parameters more than necessary.

Second, we discuss our heuristic for producing a useful amount of samples within the constrained
region. We divided the simulation budget between constraining and inference on the constrained
region. During the constraining phase, we set the training data per round N (m) = 0.3B where
B represents the entire simulation budget. This does not imply that each round used a third of
the simulation budget, rather the new simulations plus the retained simulations equal a third of the
budget. Finally, once the stopping criterion was satisfied, we used the remaining budget within the
estimated Γ̂rec. We found that this technique created enough simulations during the truncation rounds
to estimate Γrec relatively well while leaving a sizable portion of the simulation budget to be sampled
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from the truncated prior. Naturally, we want to sample as much from the truncated prior as possible
to reduce simulations in regions of nearly zero posterior density and increase simulator efficiency.

In contrast, sequential methods usually divide their simulation budget evenly across rounds. However,
since they do not have a stopping criteria it is natural to divide the simulations that way. We used this
technique when training sequential methods.

Third, we discuss the stochastic nature of our sampling technique. Rather than sampling an exact
number of parameters and corresponding simulations, we instead sampled from a Poisson distribution
centered at the the requested number of samples. In practice, this meant around a 5% difference
between the extrema of the actual number of produced simulations and the requested number of
simulations.

A.9 How do we use the likelihood-to-evidence ratio?

Histograms. Domain scientists, in particularly astronomers and astrophysicists, typically consider
a visualization of the posterior and draw conclusions based on their problem-specific intuition and the
reported uncertainty bounds. By learning the relevant one- and two-dimensional marginal likelihood-
to-evidence ratios, our method can generate a visualization of the posterior, namely a corner plot of
weighted histograms, by sampling from the prior ϑ ∼ p(ϑ) and sorting the results into bins. Each
sample’s contribution is weighted according to the learned r̂(x | ϑ), creating a posterior histogram.

The histogram facilitates the computation of credible regions. In particular, finding an accurate
estimate of the (100− α)% highest density credible region is the primary goal of most astronomers.

Rejection sampling. We can use our unnormalized point-wise posterior estimate as the target and
the constrained prior as the proposal to generate samples distributed like the posterior via rejection
sampling. Let p̃Γ(ϑ | x) = r̂Γ(x | ϑ)1Γ(ϑ)p(ϑ) be our target distribution and q(ϑ) = 1Γ(ϑ)p(ϑ)
be our proposal distribution. 1Γ denotes an indicator function which is nonzero in constrained region
Γ, p̃Γ(ϑ | x) is the unnormalized posterior, and r̂Γ is the constrained likelihood-to-evidence ratio.
Following a modified version of Maximum Likelihood Estimate (MLE)-based rejection sampling
[64], we set M = r̂Γ(x | ϑ̂) where ϑ̂ = arg maxϑ r̂Γ(x | ϑ) is the MLE. We sample parameters
from the proposal distribution ϑ ∼ q(ϑ) and accept them with probability p̃Γ(ϑ|x)

Mq(ϑ) = r̂Γ(x|ϑ)

r̂Γ(x|ϑ̂)
.

The acceptance probability is tolerable when the parameter space is low dimensional and the con-
strained prior is not significantly wider than the posterior [65]. For our method, the first condition
generally holds but the second is not guaranteed. Despite this potential inefficiency, the parallel pro-
posal and rejection of samples is resolved quickly when the acceptance probability is not vanishingly
small. In that case, likelihood-free MCMC [11, 17, 18] becomes unavoidable.

B Evaluation metrics

We introduce here the relevant evaluation metrics. These are relevant both to compare our results
with the ground-truth (C2ST, KL divergence), as well as for studying desirable statistical properties
of the posterior without requiring knowledge of the ground-truth (self-consistency check / empirical
credible interval testing / expected coverage testing). Here, C2ST is motivated by its omnipresence in
the simulation-based inference literature, to which we want to compare. We additionally introduce
KL divergence as a metric that is tractable for the low-dimensional marginal posteriors that are the
focus of this paper.

The neural likelihood-free inference reports several performance metrics which do not apply well to
our method... Reporting −E[log q(θo | xo)] is quite common throughout the literature [11, 13, 14,
15, 17]. Since we learn an unnormalized posterior, we cannot compare our value to other methods.
Furthermore it is a poor indicator of performance [18]. Another common technique is to measure the
median distance between posterior-predictive samples [13, 14, 17] but this is impossible since we
learn a marginalized posterior and cannot sample from the posterior predictive distribution. Maximum
Mean Discrepancy (MMD) [66, 67] has been found to be sensitive to choice of hyperparameters [18].
It is in principle possible to apply other alternatives such at the Wasserstein distance [68] using the
Sinkhorn-Knopp algorithm [69] but there is not literature precedent.
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B.1 Kullback–Leibler Divergence

Since this paper is primarily interested in determining low dimensional marginal posteriors, it is
feasible to estimate the Kullback–Leibler divergence, denoted DKL, using samples and comparing
the histograms. We’ve found that this method for approximating the Kullback–Leibler divergence
is hyperparameter dependent, namely based off the number of bins. We only reported the Kull-
back–Leibler divergence for the torus problem and we used 100 bins. This effect implies that only
the difference between Kullback–Leibler divergences is relevant.

B.2 Classifier 2-Sample Test per d-Dimensional Marginal (C2ST-ddm)

The classifier 2-sample test (C2ST) [48, 49] is a performance metric where a classifier is trained
to differentiate between samples from the ground truth and approximate posterior. It features an
interpretable scale where 1.0 implies that the classifier could distinguish every pair of samples the
distributions while 0.5 implies indistinguishably. It is possible to determine where distributions differ
using this metric [18]. A classifier with insufficient expressivity yields unreliable results [18, 23, 49].

We define the C2ST per d-Dimensional Marginal (C2ST-ddm) test statistic, which reports the
average C2ST across every set of d-dimensional marginals. Consider two random variables
X ∼ P (X),Y ∼ Q(Y ) with X,Y ∈ RD and hyperparameter 1 ≤ d ≤ D that represents the
marginal dimensionality of interest. Let (SP , SQ) :=

{
(SPk , SQk) : k ∈ {1, 2, . . . ,

(
D
d

)}
where

SPk := {x(1)
k , . . . ,x

(n)
k } ∼ P (Xk) and SQk := {y(1)

k , . . . ,y
(n)
k } ∼ Q(Y k) are sets of n samples

drawn from the kth d-dimensional marginal of P and Q, respectively. Now,

C2ST-ddm(SP , SQ) :=
1

K

K∑
k=1

C2ST (SPk , SQk) , with K =

(
D

d

)
. (9)

For our problem, we let Pk = p(ϑk | xo) and Qk = r̂k(xo | ϑk)p(ϑk).

B.3 Empirical Credible Interval Testing

Evaluating the accuracy of a posterior approximation requires access to the ground-truth and the
ability to compute a suitable metric or divergence. While acceptable during benchmarking [18], this
is impossible for practitioners because they only have access to the observation xo. Domain scientists
depend on sanity checks such as coverage testing and comparison between estimation methods to
verify that the reported posterior is accurate. Coverage testing is designed for frequentist confidence
intervals; however, we apply a similar technique, known in [23] as expected coverage testing, to test
the validity of our credible intervals, empirically.

We report a nominal (100 - α)% credible region but the effects of approximation or training might
have influenced the contour’s shape. Our empirical testing checks whether the nominal contour aligns
with the contour ground truth by considering many realizations of x and dividing the number of
times the corresponding θ falls within the nominal credible region by the number of (θ,x)s that were
tested. When this is the case, the blue line and the orange line intersect in visualizations like Figure 3.

One major advantage of an amortized method for a real-world practitioner is the possibility of
quickly performing tests like these. During the training process many parameter-simulation pairs
have already been generated, we can use them to check the credible intervals of our method. Note
that sequential methods cannot do this without great expense because they would have to retrain
their posterior estimator on every tested observation. Furthermore, this test checks the properties of a
single amortized estimator; however, testing sequential methods in the same way estimates properties
of the sequential training, not a single estimator.
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C Comparing the truncated marginal likelihood-to-evidence ratio to the
truth

C.1 Exemplary error estimates

We will consider the effect of truncation on a multivariate normal distribution, and discuss various
limiting cases. Let us assume that the true posterior has the shape of a multivariate normal distribution
with mean zero and covariance matrix Σ,

p(ϑ|xo) = N (ϑ|0,Σ) . (10)

This implies that the posterior-to-maximum posterior ratio is given by

p(ϑ|xo)
maxϑ p(ϑ|xo)

= exp

(
−1

2
ϑTΣ−1ϑ

)
, (11)

and that the same ratio for all one-dimensional marginal posteriors is given by

p(θi|xo)
maxθi p(θi|xo)

= exp

(
−1

2

θ2
i

Σii

)
. (12)

Let us consider an indicator function 1Γ where Γ is defined as in Eq. (6), given some small ε. In
the case of vanishing parameter correlations, the covariance matrix Σ is diagonal, and the posterior
factorizes like p(ϑ|xo) =

∏
i p(θi|xo). The truncation procedure can then be considered for

each of the one-dimensional marginal posteriors separately: Only parameter regions where |θi| <√
−2Σii ln ε for all i are included in Σ. In this case ε directly determines how far into the tails

posteriors are correctly reconstructed. Using the error function, one can show that the amount of
mass that is removed by the truncation is ε/

√
− ln ε. This motivates our general estimate of an

O(ε) maxθi p(θi|xo) effect on the truncated posteriors, where the second factor is accounting for the
right dimensionality of the expression.

Let us consider the opposite extreme of a maximally correlated posterior, with a covariance matrix
that is given by Σii = 1 and Σij = 1− ξ for i 6= j, and where ξ � 1. Again, marginal posteriors
are given by Eq. (12). Since the support of the maximally correlated posterior is essentially focused
on the line θ1 ' θ2 ' · · · ' θd, truncations in all directions are identical. As a result, marginal
posteriors are affected exactly as in the previous diagonal case.

Finally, let us consider a mildly correlated posterior in two dimensions. In this case, the region
Γ would be again identified through |θi| <

√
−2Σii ln ε for i = 1, 2, but since the posterior does

not factorize anymore integrals on the constrained region become non-trivial. However, since only
O(ε) of posterior mass lies outside of Γ, this implies that only a similarly small mass fraction can
be re-distributed in the truncated marginal posteriors pΓ(θi|xo). This can significantly affect the
far low-mass tails of the distribution, with negligible effect on the high mass density regions of the
posterior.

C.2 A general estimate

Let us consider an indicator function defined through Eq. (8), first for a single marginal θi. The
removed probability mass is then given by

δMε =

∫
Ωi

dθip(θi|xo)1
[
p(θi|xo) < εmax

θi
p(θi|xo)

]
,

where 1 denotes an indicator function. An upper bound on the removed probability mass is then
given by

δMε < εmax
θi

p(θi|xo)
∫

Ωi

dθi1

[
p(θi|xo) < εmax

θi
p(θi|xo)

]
,

For a compact Ωi, this leads to the claimed bound in one dimension. However, also in the case of
a larger number of parameters, each truncation would remove at most mass at the level of O(ε),
leading to an overall O(ε) effect on the estimated posteriors. We emphasize that in the case of priors
with non-compact support, a re-parametrization onto priors with compact support can lead to smaller
coefficients in front of ε.
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D Limitations

We note two kinds of limitations: First, we address limitations when the method works as planned.
Second, we address failure modes.

When the posterior distribution is nearly as wide as the prior, we do not gain much by truncating the
prior distribution. In this case our method would reduce to MNRE. However, this is rarely the case
in physics where the paradigm is to define an uninformative prior distribution across the accepted
bounds for a parameter and the posterior will be contained in fractions of that prior’s mass.

Another limitation is that the truncation by hyperrectangle is inherently inefficient when the marginals
of interest are highly correlated. In that situation, we are interested in a hyperellipse within the
constrained hyperrectangle but our current formulation cannot utilize this heuristic. This problem
possible to solve by using techniques from Nested Sampling which regularly seeks to efficiently
sample from within a certain density contour.

Finally, as mentioned in Section 2.2. Algorithm 1 does not naively allow for sampling from the
posterior predictive distribution p(x′ | x) :=

∫
Ω
p(x′ | θ)p(θ | x) dθ because it only produces the

one- and two-dimensional marginals. It remains possible to estimate the joint posterior within the
truncated region by simply training another ratio estimator with all parameters. Doing this, using
only the simulations necessary for Algorithm 1, may produce an inaccurate joint posterior estimate.

The failure modes are perhaps more obvious. If our initial round of sampling is too sparse, it is
possible to incorrectly “miss” a region of high posterior density and cut it out of our analysis. If
the initial region is satisfactorily sampled from, this will not occur. To illustrate this point, consider
a simulator with a two-dimensional parameter space. If significant amounts of posterior mass are
truncated in the θ0 dimension, the ground truth θ1-marginal posterior, under the truncated prior,
transforms from the intended marginal distribution p(θ1 | x) towards a conditional distribution
p(θ1 | x, θ∗0). Where θ∗0 denotes the center of the truncated region in the θ0 dimension.

Another failure mode is related to the local amortization that our ratio estimators learn. While they are
able to estimate any posterior from a parameter drawn within the truncated prior, it may be that some
of the posterior runs into the truncation. This can be identified whenever a posterior equicontour line
intersects with the truncation bounds. The caveat is that if an entire separate mode is truncated, this
test will not indicate it. In general, we suggest limiting the use of the locally amortized predictions to
ones closer to the ground truth generating parameter than to the truncation bounds.

E Cosmological inference with a simulator

Parameter inference plays a important role in modern cosmology. Here we use a simulator that takes
six parameters (specifying the underlying ΛCDM cosmological model) and returns three lensed
angular power spectra CTT` , CTE` , CEE` (where T denotes temperature and E = denotes E-mode
polarization) as they would be measured by an idealized Cosmic Microwave Background (CMB)
experiment. The likelihood-based approach to inference in this context is provided by popular pack-
ages such as MontePython [70]. Our simulator is identical to the likelihood that in MontePython
is called fake_planck_realistic [71]. This likelihood is used, often in combination with other
likelihoods, to forecast the expected constraining power of future experiments. In this model, the
power spectra receive non-stochastic contributions from the cosmological model and the idealized
measurement instrument. Stochasticity is implemented in the form of cosmic variance, which reflects
the fact that for fixed `, each C` is determined by measuring 2` + 1 modes in the sky. The result
is that the collection of C` obeys a Wishart distribution, which at large ` can be approximated as
a multivariate normal distribution. For more details see [72]. Draws from the simulator with and
without noise are shown in Fig. 10.

We use this example to study the utility of marginal ratio estimation. As such, we do not use multiple
rounds of simulation and training. This is in part due to the availability of a tractable likelihood, which
allows us to perform a Fisher estimation (i.e. Gaussian approximation) of the expected marginal
probability contours. Although the ground-truth posteriors for this inference problem turn out to be
slightly non-Gaussian, the Fisher estimation suffices to derive a reasonable region in parameter space
for inference. We therefore take a uniform prior with θd ∈

[
θd − 5σFd , θd + 5σFd

]
, where θd denotes
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Figure 10: A sample drawn from the CMB simulator, with the cosmological contribution in orange
and the noise-added sample in green. The noise model amounts to a non-stochastic contribution from
the instrument as well as a stochastic contribution (following a Wishart distribution) corresponding
to cosmic variance, in other words the fact that an individual C` is determined by measuring 2`+ 1
modes.

the ground truth parameter value and σFd =
√

(F−1)ii is the Fisher estimation of the 1σ region for
parameter i.

We compare three approaches with 5,000 samples. For comparison, an MCMC analysis of this problem
converges after roughly 45,000 accepted samples with an acceptance rate of ∼ 0.3. We compare
MNRE, NRE, and MCMC with a limited number of samples. For MCMC we use a pre-computed
covariance matrix for proposal steps, determined by running a chain until convergence. For inference
with MNRE and NRE, we use a linear compression layer that takes the concatenated power spectra
(each with ` ∈ [2, 2500], so that the full data vector has 7497 entries) and outputs 10 features. The
same linear compression network is shared between different ratio estimators. In other words, we
introduce a shared feature embedding of the data such that the entire neural network has the form

fφ,k(x,ϑk) = gφg,k(F φF
(x),ϑk) (13)

where F is the feature embedding, k represents the index of the marginal-of-interest, g is an MLP,
and φ represents the network weights from both g and f . This is appealing computationally but,
unlike with φg, the weights of the feature embedding are dependent on the loss of every marginal.
This is the multi-target training paradigm and can be difficult to tune [73, 74]; however, this is not a
problem for us in practice. The hyperparameters are written in Table 5.

The results are shown in Fig. 11. We see that MNRE reproduces the ground-truth 1- and 2-σ contours
very accurately. On the other hand, NRE results in hardly any constraint on the parameter space, while
the limited MCMC run does not have accurate 2-σ contours.
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Figure 11: Corner plots for various methods using 5,000 simulations (in red) vs. ground-truth MCMC
(45,000 accepted samples with acceptance rate ∼ 0.3, in black). Top Left: results for MNRE. We
see excellent agreement with the ground truth. Top Right: corner plot for NRE. With 5,000 samples,
the marginal posteriors are hardly constrained. Bottom: corner plot for MCMC with 5,000 accepted
(burn-in removed) samples vs. converged MCMC chain. While the short chain gives accurate 1σ
contours, it does not yield accurate for the 2σ contours.

Table 5: Physics Example Hyperparameters
Hyperparameter Value

Activation Function Feature Embedding: None, Ratio Estimator: RELU
AMSGRAD No
Architecture Feature Embedding: One Linear Layer, Ratio Estimator: MLP
Batch size 64
Batch normalization No
Criterion BCE
Dropout No
Early stopping patience 5
ε N/A
Hidden features 256
Percent validation 10%
Reduce lr factor 0.25
Reduce lr patience 2
Max epochs 300
Max rounds N/A
Learning rate 0.001
Learning rate scheduling Decay on plateau
Optimizer ADAM
Weight Decay 0.0
Z-score observations online
Z-score parameters online
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