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2 Sourcing a Keystep Vocabulary for Large-scale HowTo100M

HowTol00M is a large-scale dataset with more than 1M videos and 100M clips. Keystep annotation
at this scale is infeasible. To obtain a feasible set of keysteps K, DistantSupervision [1] collects
step headlines from WikiHow corresponding to the video category having at least 100 videos in
HowTo100M. This yields a set of 1059 video categories and 10588 keysteps collected from WikiHow
articles corresponding to these task labels. We use the same set of keysteps in our downstream
experiments.

3 Keystep Update Using the Video-Mined Task Graph: An Example

We use PathSearch algorithm to find the keysteps between the chosen anchor keysteps at time instants
t~ and tT. As an example, if t~ = 1 and t* = 10 and the PathSearch outputs are kg, , k4, , ka,, We

uniformly assign k; = l%t_ forl <¢t<2 k= lAcdl for3 <t<4,k = l%d2 for5 <t <6,k = kg,
for 7 < t < 8 and finally, k; = k;+ for 9 < ¢ < 10. See the attached video for a visual example.

4 Sensitivity on Confidence Threshold for PathSearch

Our proposed algorithm uses a confidence threshold ~y for PathSearch anchors. We use v = 0.5
and v = 0.3 for text and video features, respectively (L243). We show that the performance of our
method is not sensitive to the choice of v and choosing ~ anywhere in the range [0.3,0.5] yields
a performance better than the strong baselines. Table 1 shows the performance of our method for
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Table 1: Zero-shot keystep recognition on COIN and CrossTask for three modality choices—text,
video and video-text, along with ablations. We outperform strong baselines on all tasks. ‘-’ means
the method is n/a.

Text-only Video-only Video-Text

COIN CrossTask COIN CrossTask COIN CrossTask
Method Acc ToU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU
Random 00 00 001 001 00 00 001 001 00 0.0 0.01 001
VideoCLIP [4] - - - - 132 40 285 65 133 40 285 6.5
DistantSup. [1] 9.8 3.0 161 3.7 - - - - - - - -
Linear Steps 104 3.1 163 38 134 43 285 65 134 40 285 6.5
Auto-Reg [?] 102 3.1 164 37 136 43 285 65 137 42 285 6.5
Pruning Keysteps 113 34 164 38 134 42 285 6.5 135 41 285 65
Ours 163 54 200 49 154 47 286 66 169 54 289 6.7

403  4+01 402 £01 01 £01 £00 £00 £01 £01 01 £00
Ours w/ v = 0.3 159 51 19.1 44 154 4.7 28.6 6.6 - - - -
Ours w/ v = 0.4 16.1 52 194 47 151 46 286 6.6 - - - -
Ours w/ v = 0.5 163 54 200 49 149 45 286 6.6 - -
Video-Text Fusion - - - - - 140 43 28,6 6.6
BRF 135 41 171 43 140 44 286 6.6 149 46 28,6 6.5

various thresholds compared to the baselines. We sweep the threshold in the range [0.3,0.5] at a step
size of 0.05.

5 Video-Text Keystep Recognition Ablations

We propose to use a priority-based keystep assignment where we use video signals in case both video
and text modalities choose inconsistent keysteps (L245). We also experiment with video-text feature
fusion. Table 1 shows the results. Fusion is worse than using video as priority because of inconsistent
confident distribution across these modalities. Video features tend to show better performance at
lower thresholds than text feature. We observe similar performance when using weighted fusion as
well. In contrast, using video feature as priority solves this issue in a parameter-free way.

6 Keystep Recognition with Noisy Labels

We extend our setup to further demonstrate the robustness of our method in the presence of irrelevant
keysteps. In this setup, we add keysteps from HowTol00OM into the clean annotated keystep set
of COIN and CrossTask to simulate an increasingly larger vocabulary. For each test dataset, we
randomly select a/V keysteps from the 10588 keysteps used in HowTo100M, where « is a scaling
factor and N is the number of keysteps in the test dataset, and inject these keysteps into test dataset
vocabulary. This results in a much larger vocabulary size of (1 + ) N. We progressively increase o
and evaluate the performance at each scale level. We show in Table 2 the performance on text-only
modality and we see the same trend in other modalities. The vocabulary size is shown in the first
column (e.g., 1.5 x N implies a = 0.5). The frame-wise accuracy of the DistantSupervision [!]
baseline and our method with the bigger vocabulary are shown in columns 2 and 3, respectively. Our
relative improvement in accuracy over DistantSupervision [ 1] is shown in column 4.

7 Task Graph Ablations

Next we perform additional experiments to further accentuate the use of the task graph for zero-shot
keystep recognition (Sec 4.1 of the main paper).

Additional Ablations. We propose a probabilistic video-mined graph 7 for keystep recognition.
The graph is built using a constant threshold. We compare the performance if we alter each of these
choices —using a non-probablistic graph and using an adaptive threshold instead of a fixed threshold.
The adaptive threshold is per-video, i.e., the threshold is set such that 50% of the video is kept based
on the similarity score and the remaining 50% are influenced by the graph transitions. Table 3 (a)



Table 2: Zero-shot keystep recognition under various noise levels for COIN and CrossTask dataset.
Our method performs significantly better than the baseline even in the presence of strong noise.

(a) COIN dataset (N = 749) (b) CrossTask dataset (N = 105)
Vocab | DistantSup Ours Relative Vocab | DistantSup Ours Relative
Size (1 Gain Size (1] Gain
1xN 9.8 16.3 66% 1xN 16.1 20.1 25%
1.5xN 8.4 14.1 68% 1.5xN 13.3 16.8 26%
2x N 7.7 13.3 73% 2x N 12.6 15.7 25%
4xN 6.2 10.9 76% 4xN 10.1 12.9 27%
5x N 5.6 10.6 89% 5xN 8.9 11.7 31%
10x N 4.3 8.4 95% 10 x N 7.5 10.1 35%

shows the results. We observe that these ablations are inferior to our setting and we outperform both
the baselines.

Additional Metrics. Table 3 (b) shows results for two additional metrics. Since our method results
in a sequence of keystep predictions, edit distance (ED) is another suitable metric to compare our
predicted sequence with the ground truth sequence. Similarly, F1 captures overall recall and precision
performance, augmenting Accuracy and IoU already reported in Table 1 of the main paper. Our
method outperforms all the baselines in the additional metrics as well.

Keystep Recognition under High and Low Predictability. To evaluate if our method works well
even under low keystep predictability, given the set of low score predictions, we split it into two
sets: one where the keystep predictability using the task graph prior is high, and one where it is
low. To measure keystep predictability, we use the Shannon entropy of starting keystep. We choose
a threshold such that the predictions are split into half. High Shannon entropy means low keystep
predictability and vice-versa. Table 3 (c) shows the results. We see that our task graph outperforms
the baselines even in the case of low predictability of keysteps. Of course, the gain is lower than it is
for cases with high keystep predictability. Thus, our task graph prior can be seen as a way to correct
noisy perceptual predictions, even in cases of low predictability.

8 Bayesian Recursive Filtering

We also evaluate the keystep assignment using Bayesian Recursive Filter (BRF) [3] instead of
the proposed beam-search algorithm. The idea is that we model the similarity scores as a noisy
measurements and then recursively update the predictions based on task graph transitions. Concretely,
we maintain a |}C|—dimensional belief vector 5(¢) that denotes the probability distribution across all
possible keysteps at time ¢. We compute similarity score s(k;) same as our proposed algorithm (L202)
and use the previous belief vector to update the current belief vector. We have, k; = argmax B(t)
where B(t) is recursively calculated as

B(t) = (k) o ift=0
k). ATB(t — 1) + es(k;) otherwise

Here the multiplicative term AT B(t — 1) computes the likelihood of the current keystep from all
previous keysteps. The last additive term is used to tune our confidence on belief vector vs similarity
measurements.

Table 1 shows the result using this method. Clearly, this method has a lower performance than our
proposed method. Nevertheless, the performance remains higher than the similarity-based baselined
because of the meaninful updates in keystep assignment using BRF. Moreover, this method is causal,
i.e. we only look backward in time to make future predictions. The performance remains low because
this method uses lesser context and error made in earlier prediction rounds are propagated to all time
instances after that.



Table 3: (a) Additional ablations, (b) additional metrics (ED and F1 score) and (c) splits of the
performance for low and high entropy values.

Text-only Video-only Video-Text
COIN CrossTask COIN CrossTask COIN CrossTask
(a) Additional Ablations

Method Acc IToU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Non-probabilistic 105 32 164 38 136 42 285 65 137 41 285 65
Adaptive Threshold 12.5 3.8 17.1 4.0 141 43 285 65 140 44 286 6.5
Ours 163 54 200 49 154 47 286 6.6 169 54 289 6.7

(b) Normalized Edit Distance (ED) | and F1 score

Method ED Fl1 ED Fl ED Fl ED Fl ED Fl1 ED Fl

VideoCLIP [4] - - - - 090 99 076 129 087 107 0.75 132
DistantSup. [1] 08 75 082 76 - - - - - - - -

Pruning Keysteps 08 9.7 082 89 08 114 076 125 086 113 0.75 128
Adaptive Threshold 0.85 109 081 9.1 088 128 0.74 130 085 13.6 074 13.0
Ours 082 171 0.78 128 0.84 174 0.74 138 0.81 188 0.74 14.0

(c) Accuracy for splits of low and high Shannon entropy.“Low'' entropy means high predictability.

Method Low High Low High Low High Low High Low High Low High

VideoCLIP [4] - - - - 177 115 301 221 18.0 124 302 222
DistantSup. [1] 140 83 171 11.1 - - - - - - - -

Pruning Keysteps 161 106 20.0 125 181 11.8 31.0 222 188 130 309 225
Adaptive Threshold 18.5 11.2 209 13.8 188 121 313 224 19.7 136 31.1 226
Ours 23.5 141 251 163 227 13.7 33,5 229 240 147 337 231

9 Compute Details

For zero-shot keystep recognition, we use one 32GB GPU since we use pretrained features from
[1, 4]. Next, for representation learning, we use 128 GPUs for a total compute time of 12 hours. The
experimental setting is same as [!]. Finally, for downstream training, we use 32 GPUs (each with 32
GB) for an average compute time of 9 hours across all experiments.

10 Limitations and Societal Impact

We propose a novel approach for keystep recognition using video-mined task graphs. Our method
uses high-confidence anchors as basis for using the PathSearch algorithm. It is possible that the
feature extractor f(v¢, n¢) outputs a keystep with high confidence while being incorrect. For example,
if the ASR narrations is “Let me put side the toaster to create more space” when demonstrating “how
to make tiramisu” the high-confidence keystep can be “run the toaster” whereas the demonstration is
unrelated to toaster. We claim that such noisy/unrelated signal is difficult to avoid in similarity based
measures.

Video representation learning and keystep recognition in general could risk negative impacts if any
bias from the dataset influences the representations. For example, COIN/CrossTask/HowTo100M
are collected from YouTube and they may only contain videos having certain kinds of home and
those with access to recording devices and microphones. Such biases could result in failures when
these systems are deployed in a diverse set of environments. For example, keystep recognition in a
cluttered and low-end kitchen might not work if the model is trained in clean and tidy kitchens. In
addition, using these video representations for AR/VR applications may raise user privacy concerns,
depending on how the dataset creators went about collecting the video samples.
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