
Supplemental:
Training Neural Networks is NP-Hard

in Fixed Dimension

A Detailed Proof of NP-Hardness for Two Dimensions

In this section we provide the omitted details to prove Theorem 1. We start by describing the precise
positions of the data points in the selection gadget.

First, we place 13 data points on the x2-axis (with x1 = 0, we call this vertical line h0):

x2 −4 −3 −2 −5/3 −4/3 −1 0 1 4/3 5/3 2 3 4
y 0 0 0 1/3 2/3 1 1 1 2/3 1/3 0 0 0

Next, we need a small � > 0 to be chosen later in a global context. The only condition we impose
on � to make the selection gadget work is that � ≤ min

�
1

3|s1| ,
1

3|s�|
�

. Based on this, we place 9 data
points parallel to the x2-axis with x1 = −� (we call the corresponding vertical line h−�):

x2 −4− �s� −3− �s� −2− �s� −1− �s1 0 1− �s� 2− �s1 3− �s1 4− �s1
y 0 0 0 1 1 1 0 0 0

Furthermore, similar to above, we place 9 data points parallel to the x2-axis with x1 = � (we call the
corresponding line h�):

x2 −4 + �s1 −3 + �s1 −2 + �s1 −1 + �s� 0 1 + �s1 2 + �s� 3 + �s� 4 + �s�
y 0 0 0 1 1 1 0 0 0

Finally, we place 2(�− 1) many data points as follows: for each i ∈ [�− 1], we introduce one data
point q−

i := (− 4
si+1−si

,− 2(si+si+1)
si+1−si

), as well as one data point q+
i := (4

si+1−si
, 2(si+si+1)

si+1−si
). All

these data points receive label y = 0.

With the precise description of the selection gadget at hand, we can proceed to proving Lemma 4.

Proof of Lemma 4. First, we focus on the three vertical lines h−�, h0, and h�. Note each of the three
lines contains a sequence of nine data points of which the first three have label 0, the next three have
label 1 and the final three have label 0 again. For simplicity, consider one of the three lines and denote
these nine data points by p1 to p9. Note that h0 contains even more data points, which will become
important later. For the following argument, compare Figure 5.

Observe that f restricted to one of the three lines is a one-dimensional, continuous, piecewise linear
function with at most four breakpoints. Looking at p2, p3, and p4, the corresponding y-labels are 0,
0, and 1, respectively. This can only be fitted if there exists a convex breakpoint between p2 and p4.
Analogously, there must be a concave breakpoint between p3 and p5, another concave breakpoint
between p5 and p7, and a convex breakpoint between p6 and p8. This uses already all four available
breakpoints, so there are no other breakpoints. Therefore, the function on the considered line must be
linear outside the segment between p2 and p8. Since p1, p2, p8, and p9 all have label 0, it follows

x2

y

p1 p2 p3

p4 p5 p6

p7 p8 p9

x2

y

p1 p2 p3

p4 p5 p6

p7 p8 p9

Figure 5: Cross section of the selection gadget through one of the three lines h−�, h0, or h�. The nine
data points (labeled p1 to p9) on each of these lines force the function f to attain a “levee-shape” with
the exact position and slope of the ascending and descending sections as the only degrees of freedom
(left). The four additional data points on h0 even fix these properties and thus exactly determine f on
that line (right).

12

that the function is constant 0 outside this segment. Moreover, there is no concave breakpoint outside
the segment between p3 and p7, implying that the function must be convex outside the segment
between p3 and p7. However, since these two points have label 0 as well, it follows that f must even
be constant 0 there.

Now consider the segment between p4 and p6. There is no convex breakpoint between p4 and p6.
Therefore, the function must be concave within the segment. Since p4, p5, and p6 all have label 1, it
follows that the function is constant 1 between p4 and p6.

Putting together the insights gained so far, it follows that f restricted to the considered line is constant
0 first, goes up to constant 1 via a convex and a concave breakpoint between p3 and p4, and goes
down to constant 0 again via a concave and a convex breakpoint between p6 and p7 (Figure 5, left).
Note that the exact location of these breakpoints and the slope in the sloped segments is not implied
by the nine data points considered so far.

This changes, however, when also taking into account the four other data points lying on h0. Combined
with the insights so far, they completely determine f on this line (Figure 5, right):

f(0, x2) =





0, if x2 ≤ −2 or x2 ≥ 2,
1, if − 1 ≤ x2 ≤ 1,
2 + x2, if − 2 ≤ x2 ≤ −1,
2− x2, if 1 ≤ x2 ≤ 2.

Observe that this is precisely the same as (1) with x1 = 0.

It remains to consider the behavior of f on both sides of h0. To this end, observe that the breakpoints
of f restricted to one of the three lines considered so far emerge as intersections of these lines with
only four breaklines in total. Let us collect what we know so far about the locations of these four
breaklines:

• There are exactly two convex breaklines, intersecting h0 at (0,−2) and (0, 2), respectively.
We call them g1 and g4, respectively.

• There are exactly two concave breaklines, intersecting h0 at (0,−1) and (0, 1), respectively.
We call them g2 and g3, respectively.

• Each of the four segments
I1 := [(−�,−2− �s�), (−�,−1− �s1)] ⊆ [(−�,−7/3), (−�,−2/3)],

I2 := [(−�, 1− �s�), (−�, 2− �s1)] ⊆ [(−�, 2/3), (−�, 7/3)],

I3 := [(�,−2 + �s1), (�,−1 + �s�)] ⊆ [(�,−7/3), (�,−2/3)], and
I4 := [(�, 1 + �s1), (�, 2 + �s�)] ⊆ [(�, 2/3), (�, 7/3)]

is intersected by exactly one concave and one convex breakline. Here, the inclusions are
implied by � ≤ min

�
1

3|s1| ,
1

3|s�|
�

. See Figure 6 for an illustration of the position of these
segments.

Now consider g2, which goes through (0,−1), and observe that it cannot intersect I2 for the following
reason. If it did, it would intersect h� at x2 ≤ −1 − 5/3 = −8/3 < −7/3 and hence would neither
intersect I3 nor I4. This is a contradiction because there are only two concave breaklines and both I3
and I4 must be intersected by exactly one of them. Consequently, g2 cannot intersect I2, and must
intersect I1 instead.

Analogously, it follows that g1 and g2 intersect I1 and I3. Similarly, g3 and g4 intersect I2 and I4.
Combining this with the fact that f restricted to each of the three vertical lines h−�, h0, and h� has
an increasing section from 0 to 1 and a decreasing section from 1 to 0, this implies that the four
lines g1 to g4 do not cross between h−� and h�. Let us focus on the quadrilateral enclosed by g1,
g2, h−� and h�. By what we know so far, f is constant 0 on g1, constant 1 on g2, and linear within
this quadrilateral. Since h−� and h� are parallel, this implies that the corresponding two sides of
the quadrilateral must have the same length. Thus, the quadrilateral must be a parallelogram. In
particular, g1 and g2 are parallel. Similarly, g3 and g4 must be parallel.

Let s be the slope of g1 and g2, and let t be the slope of g3 and g4. To complete the proof, we need to
show that all four lines are parallel, that is, s = t, and that this slope value is equal to si for some
i ∈ [�].

13

I1

I2

I3

I4

Figure 6: Illustration of the segments I1 to I4 used in the proof of Lemma 4. The figure also highlights
(in black) the data points at (0,−2) and (0, 2), each of which lies on a convex breakline, as well as
the data points at (0,−1) and (0, 1), each of which lies on a concave breakline.

Without loss of generality, we can assume that s ≤ t, otherwise we mirror the gadget along the
x2-axis. Observe that s1 ≤ s ≤ t ≤ s� because both g1 and g2 intersect I3, and both g3 and g4
intersect I4.

Let i∗ := max{i | si ≤ s} ∈ [�]. If i∗ = �, then s = t = s� and we are done. Otherwise, consider
the data point q+

i∗ =
�

4
si∗+1−si∗

,
2(si∗+si∗+1)

si∗+1−si∗

�
, which has label y = 0.

Let us have a look at what f restricted to the vertical line h through q+
i∗ looks like. By s ≤ t, the four

lines g1, g2, g3, and g4 intersect h in exactly this order (from bottom to top). This means that these
lines do not cross between the x2-axis and h. By our insights above, this implies that restricted to h,
f is zero outside the intersection points with g1 and g4, increases from zero to one between g1 and
g2, stays constant 1 between g2 and g3, and decreases back to 0 between g3 and g4.

By our choice of i∗, we obtain that si∗+1 > s. Let us calculate at which x2-coordinate g1 intersects
h. This happens at

x2 = −2 +
4s

si∗+1 − si∗
< −2 +

4si∗+1

si∗+1 − si∗
=

4si∗+1 − 2(si∗+1 − si∗)

si∗+1 − si∗
=

2(si∗ + si∗+1)

si∗+1 − si∗
.

Thus, q+
i∗ lies strictly above the line g1. Since q+

i∗ has label zero, this must imply that q+
i∗ does not

lie below g4. Looking at the intersection point of g4 with h, this means:

2 +
4t

si∗+1 − si∗
≤ 2(si∗ + si∗+1)

si∗+1 − si∗

⇔ 2(si∗+1 − si∗) + 4t ≤ 2(si∗ + si∗+1)

⇔ t ≤ si∗ .

Thus, we obtain si∗ ≤ s ≤ t ≤ si∗ , implying that g1, g2, g3, g4 are all parallel and have one of the �
predefined slopes. This implies that f is the levee fsi∗ , completing the proof of the lemma.

Next, we formalize how to combine multiple selection gadgets. To this end, we define a selection
gadget with offset z as the set of data points of a selection gadget as described above, where we add z
to all x2-coordinates of the gadget. In other words, the gadget is centered around the point (0, z).

Now, consider the set of data points originating from m selection gadgets with offsets z1, . . . , zm,
each one offering the choice between �j many slopes s(j)i , i ∈ [�j], j ∈ [m]. Suppose further that

we uniformly choose � := minj∈[m] min
�

1

3|s(j)1 |
, 1

3|s(j)� |

�
for all the gadgets such that the vertical

lines h−�, h0, and h� with x1-coordinates −�, 0, and �, respectively, each contain either 9 or 13 data

14

points from each gadget. Let δ := minj∈[m] mini∈[�j−1](s
(j)
i+1 − s

(j)
i) be the smallest difference of

two consecutive slopes in the m gadgets. Moreover, let S := maxj∈[m] maxi∈[�j]|s
(j)
i | be the largest

absolute value of all the slopes. In this setting, the following lemma states that fitting all these data
points is equivalent to independently choosing one slope for each single gadget and adding up the
corresponding levees, provided that the distance of the gadgets is large enough.

Lemma 11 (Formal version of Lemma 5). If zj+1 − zj ≥ 8S
δ + 6 for all j ∈ [m− 1], then there are

exactly
�m

j=1 �j many continuous piecewise linear functions f : R2 → R with at most 4m breaklines
fitting the data points of the m selection gadgets, namely f(x1, x2) =

�m
j=1 fs(j)ij

(x1, x2 − zj) for

each choice of indices ij ∈ [�j] for each j ∈ [m].

Proof. We first show that each of these functions does indeed fit all the data points. For this, it is
sufficient to show that each levee f

s
(j)
ij

(x1, x2 − zj) is 0 at all the data points (x̄1, x̄2) belonging to

a selection gadget with index j� �= j. Without loss of generality, we can assume that zj = 0. By
the definition of the selection gadget and checking all the possible x1-coordinates, we obtain that
|x̄1| ≤ 4/δ. Moreover, looking at the possible x2-coordinates, we obtain that x̄2 can differ at most by
4+S · |x̄1| from zj� , from which we conclude |x̄2| ≥ |zj� |−4−S · |x̄1| ≥ 4S

δ +2. On the other hand,
all points (x1, x2) for which the levee f

s
(j)
ij

(x1, x2) is nonzero satisfy |x2| < 2+ |sijx1| ≤ 2+S|x1|.
Since |x̄2| ≥ 4S

δ +2 ≥ 2+ S|x1|, it follows that f
s
(j)
ij

must be zero at (x̄1, x̄2), completing the proof

that all claimed functions fit the m selection gadgets.

It remains to show that all functions f fitting the data points of the m selection gadgets are of the
claimed form. We show this by induction on m. The base case m = 1 is given by Lemma 4. Now, let
m ≥ 2 and without loss of generality let z1 = 0. We will again consider the three vertical lines h−�,
h0, and h� with x1-coordinates −�, 0, and �, respectively. Remember that f restricted to each of these
three lines is a one-dimensional continuous piecewise linear function with at most 4m breakpoints,
stemming from breaklines intersecting the respective vertical line. By looking at each individual
gadget and arguing as in the proof of Lemma 4, we obtain the following information:

• There are exactly 2m convex breaklines, intersecting h0 at the 2m points (0, zj − 2) and
(0, zj + 2), j ∈ [m]. Note that by our assumptions z1 = 0 and zj+1 − zj ≥ 8S

δ + 6 > 6, all
these points are distinct, two of them are (0,−2) and (0, 2), and all the other 2m− 2 points
lie above the horizontal line x2 = 4.

• There are exactly 2m concave breaklines, intersecting h0 at the 2m points (0, zj − 1) and
(0, zj + 1), j ∈ [m]. Again by our assumptions z1 = 0 and zj+1 − zj ≥ 8S

δ + 6 > 6, all
these points are distinct, two of them are (0,−1) and (0, 1), and all the other 2m− 2 points
lie above the horizontal line x2 = 5.

• Each of the four segments I1 to I4 corresponding to the selection gadget with index j = 1 as
defined in the proof Lemma 4 is intersected by exactly one convex and exactly one concave
breakline. There are 4m− 4 further such segments stemming from selection gadgets with
index j > 1, and all of those lie completely above the horizontal line x2 = 6− 7/3 = 11/3.

Looking at the breaklines passing through (0,−2) and (0,−1), they must also pass through one of
the described 2m segments on h−� and one of the described 2m segments on h�. Since the considered
gadget is the lowest one on the x2-axis, the same argument as in the proof of Lemma 4 applies, which
means that the only way of fulfilling these requirements simultaneously is that these breaklines pass
through I1 and I3. Once having this, the same argument can be repeated for the breaklines passing
through (0, 1) and (0, 2), making use of the fact that all the 4m− 4 segments not belonging to the
considered gadget lie above the x2 = 11/3-line. Therefore, these breaklines must intersect h−� and
h� within I2 and I4, respectively.

From this, it follows as in the proof of Lemma 4 that the only way to fit the data points of the selection
gadget with index j = 1 is one of the �1 levees f

s
(1)
i

, i ∈ [�1]. Thus, subtracting one of these �1

levees from f eliminates four of the 4m breaklines. Applying induction to the resulting function and
the m− 1 remaining selection gadgets completes the proof.

15

Finally, we provide the details of the global layout of our construction. Let δ := 1
2m . This will be

the smallest difference of any two consecutive slopes in any selection gadget we are going to use.
Moreover, no absolute value of a slope will be larger than S := 1. From this, we conclude that, in
order to apply Lemma 11 in the end, we need to maintain a distance of at least Δ := 8S

δ +6 = 16m+6
between the centers of the gadgets.

We start by describing the positions and slopes of the selection gadgets. Compare Figure 4 for an
illustration. Firstly, for each clause Cj , j ∈ [m], we introduce one selection gadget with offset jΔ
(that is, centered at (0, jΔ)) and the three different slopes s(j)1 := (2j−2)δ−1, s(j)2 := (2j−1)δ−1,
and s

(j)
3 := 2jδ − 1. Note that all these slopes are contained in [−1, 0]. The interpretation will be as

follows: Choosing the levee with slope s
(j)
r for the j-th selection gadget corresponds to choosing the

r-th literal of the j-th clause as the one that is set to true. Secondly, for each variable vi, i ∈ [n], we
introduce one selection gadget with offset −iΔ and the two slopes −1 and 1. Here the interpretation
is as follows: choosing the levee with slope −1 corresponds to setting the variable to true, while
choosing the levee with slope 1 corresponds to setting the variable to false. Finally, if the r-th literal,
r ∈ [3], of clause Cj is vi, then we introduce a data point pj,r with label y = 1 at the intersection of
the “center-line” of the levee with slope s(j)r corresponding to the selection gadget for Cj (that is, the
line x2 = Δj + s

(j)
r x1) and the “center-line” of the levee with slope 1 corresponding to the selection

gadget of vi (that is, the line x2 = −Δi+ x1). Thus, pj,r := (Δ(i+j)

1−s
(j)
r

, Δ(i+j)

1−s
(j)
r

−Δi).

This finishes the construction. Before we prove Theorem 1 using this construction, we show the
following useful lemma.
Lemma 12. For each j ∈ [m] and r ∈ [3], there are exactly two out of the 3m + 2n possible
levees defined by the selection gadgets which are non-zero at pj,r, namely f

s
(j)
r
(x1, x2 − jΔ) and

f1(x1, x2 + iΔ), where vi is the r-th literal in Cj .

Proof. Since pj,r is the intersection point of the center-lines of the two named levees, it suffices to
show that no other levee is non-zero at this point.

Let us start by reminding ourselves that a levee with offset z and slope s is non-zero only for points
within a stripe of “vertical width 4”, that is, for points (x1, x2) with sx1+ z− 2 < x2 < sx1+ z+2.

Now we focus on levees belonging to other clauses Cj� with j� �= j. If j� > j, then the slope will
be at least s(j)r and the offset will be at least (j + 1)Δ. Since pj,r lies on the right-hand side of the
x2-axis and on the center-line of a levee with slope exactly s

(j)
r and offset exactly jΔ, we obtain

that pj,r lies below the center-line of the considered levee with a vertical distance of at least Δ > 2,
implying that the levee must vanish at pj,r. In the case j� < j it follows similarly with pj,r lying
above instead of below the considered levee.

Next, let us focus on the two levees belonging to the same clause Cj but to the r�-th literal with r� �= r.
The slope of such a levee differs by at least δ from s

(j)
r , while the offset is exactly jΔ. This implies

that pj,r has a vertical distance of at least δΔ(i+j)

1−s
(j)
r

≥ δ 2Δ
2 = δΔ > 8 > 2 from the center-line of the

considered levee.

Next, let us focus on a levee with slope 1 belonging to a variable vi� with i� �= i. Since pj,r lies on
the center-line of the levee with slope 1 belonging to vi, these levees are parallel, and have vertical
distance at least Δ > 2, this case is settled, too.

Finally, let us focus on a levee with slope −1 belonging to any variable. Such a levee has an offset of
at most −Δ and its slope is at most s(j)r . Since pj,r lies on the center-line of the levee with offset
jΔ and slope s

(j)
r , this implies that its vertical distance to the considered levee is at least 2Δ > 2,

finishing the proof.

Finally, we are ready to prove the main theorem.

Proof of Theorem 1. We reduce from POITS and construct an instance of 2L-RELU-NN-TRAIN(L)
with k = 4(m+ n) and γ = 0 as described above. Note that, overall, we introduce O(m+ n) points
with rational coordinates (with poly(m,n) bits) which are polynomial-time computable.

16

To prove equivalence between the POITS instance and the constructed instance, let us first assume
that the POITS instance is a yes-instance. Let T ⊆ [n] be a set of indices such that the truth
assignment with vi = true for i ∈ T and vi = false for i /∈ T sets exactly one literal per clause to
true. Let rj ∈ {1, 2, 3} denote which of the three literals is set to true in clause Cj by this assignment.
We claim that the following function, which is a sum of m + n levees and thus realizable with
k = 4(m+ n) ReLUs using Observation 3, exactly fits all the constructed data points:

f(x1, x2) =
�

i∈T

f−1(x1, x2 + iΔ) +
�

i/∈T

f1(x1, x2 + iΔ) +

m�

j=1

f
s
(j)
rj

(x1, x2 − jΔ). (2)

By Lemma 11, f fits all data points belonging to the selection gadgets. It remains to show that f
attains value 1 at all the data points pj,r, j ∈ [m], r ∈ [3]. To see this, fix such j and r and let the
r-th literal in Cj be vi. By Lemma 12, the only two levees which can potentially be non-zero at pj,r

are f
s
(j)
r
(x1, x2 − jΔ) and f1(x1, x2 + iΔ). If r = rj , then vi = true and the former levee attains

value 1 while the latter levee attains value 0 at pj,r. Otherwise, if r �= rj , then vi = false and the
former levee attains value 0 while the latter levee attains value 1 at pj,r. In both cases, the data point
is fitted correctly.

Now suppose conversely that the constructed data points can be precisely fitted with a function f
representable with k = 4(m + n) ReLUs. By Lemma 11, f must be of the form (2) for some set
T ⊆ [n] and some values rj ∈ [3] for all j ∈ [m]. We claim that setting vi = true for i ∈ T and
vi = false for i /∈ T sets exactly one literal per clause to true. To see this, fix j ∈ [m] and r ∈ [3] and
let vi be the r-th literal of Cj . Using Lemma 12 again, observe that exactly one of the two levees
f
s
(j)
r
(x1, x2 − jΔ) and f1(x1, x2 + iΔ) must belong to the sum (2) because the data point pj,r has

label one. In other words, it holds that either r = rj (implying i ∈ T) or i �∈ T . This implies that, for
each j ∈ [m], the defined truth assignment sets exactly the rj-th literal of Cj to true, finishing the
overall proof.

B Detailed Proof of W[1]-Hardness for Four ReLUs

We prove Theorem 6 with a parameterized reduction from 2-HYPERPLANE SEPARABILITY. The
hardness proof for 2-HYPERPLANE SEPARABILITY by Giannopoulos et al. [2009] in fact shows that
if there is a solution, then there is a solution where Q lies entirely in one region of the hyperplane
arrangement and the points in P lie only in the two neighboring regions. Formally, if the two
hyperplanes are defined by hi · x + oi = 0 for hi ∈ Rd, oi ∈ R, i ∈ [2], then (without loss of
generality) we can assume that the following holds:

∀q ∈ Q : h1 · q+ o1 > 0 > h2 · q+ o2 (3)
∀p ∈ P : sgn(h1 · p+ o1) = sgn(h2 · p+ o2) (4)

Moreover, a closer inspection of their reduction shows that one can assume that the hyperplanes have
distance at least � := m−3 to each input point3. That is, we can assume

∀x ∈ Q ∪ P, i ∈ [2] :
|hi · x+ oi|

�hi�
> �. (5)

We will make use of these assumptions in the following proof.

Proof of Theorem 6. Let (Q,P) be an instance of (restricted) 2-HYPERPLANE SEPARABILITY and
let m := |Q ∪ P | and � := m−3. We construct the instance (X ⊆ Rd+1, k := 4, γ := 0) of
2L-RELU-NN-TRAIN(L), where X contains the following points:

• (q, 1) for each q ∈ Q,

• (p, 0) for each p ∈ P ,

3The critical points in the reduction are the constraint points quvij which are separated from the points
piui , piui , pjuj , pjuj by some translation of the hyperplane H(u1, . . . , uk) towards the origin. The distance of
any quvij to H(u1, . . . , uk) is at least 2 sin3(π/m) ≥ 2m−3 in one dimension.

17

• (rqp := (1− δ)q+ δp, 1) and (sqp := δq+ (1− δ)p, 0) for each (q,p) ∈ Q× P , where
δ := �(2�q− p�)−1.

Note that rqp (sqp) lies on the line segment qp at distance �/2 to q (p). Overall, we construct
n := |X| ∈ O(m2) points, which can be done in polynomial time.

For the correctness, assume first that there are two hyperplanes Hi, i ∈ [2], defined by hi ·x+ oi = 0
(wlog �hi� = 1) that strictly separate Q and P and satisfy (3)–(5).

A solution for (X, 4, 0) can then be constructed as follows (see also Figure 7): We use two ReLUs
realizing an “upward step” of height 1 (with slope β := 4/�) in the direction of h1. That is, we set

w1 := βh1, b1 := βo1, a1 := 1,

w2 := βh1, b2 := βo1 − 1, a2 := −1.

Additionally, we use two ReLUs realizing a “downward step” of height 1 (with slope −β) in the
direction of h2, that is,

w3 := βh2, b3 := βo2, a3 := −1,

w4 := βh2, b4 := βo2 − 1, a4 := 1.

Let Wi be the hyperplane defined by wi · x+ bi = 0 for i ∈ [4]. Note that W1 = H1 and W3 = H2.
Note further that W2 is parallel to W1 at distance β−1 = �/4 and W4 is parallel to W3 at distance �/4.

To verify that all data points are exactly fitted, consider first a point q ∈ Q. From (3) and (5), we
obtain

w1 · q+ b1 = β(h1 · q+ o1) > 0,

w2 · q+ b2 = β(h1 · q+ o1 − β−1) > β�− 1 > 0,

w3 · q+ b3 = β(h2 · q+ o2) < 0,

w4 · q+ b4 = β(h2 · q+ o2 − β−1) < 0.

From the above inequalities, it follows

φ(q) = β(h1 · q+ o1)− β(h1 · q+ o1 − β−1) = 1.

Now consider a point rqp and note that, for each Wi, rqp lies in the same half-space as q since it has
distance �/2 to q which has distance at least 3

4� to Wi (by (5)). Thus,

φ(rqp) = β(h1 · rqp + o1)− β(h1 · rqp + o1 − β−1) = 1.

Next, consider a point p ∈ P . Using (4) and (5), one easily verifies that

sgn(w1 · p+ b1) = sgn(w2 · p+ b2) = sgn(w3 · p+ b3) = sgn(w4 · p+ b4).

Hence, φ(p) = 0 clearly holds if all the above signs are negative. If all signs are positive, then

φ(p) = β(h1 · p+ o1)− β(h1 · p+ o1 − β−1)− β(h2 · p+ o2) + β(h2 · p+ o2 − β−1) = 0.

Finally, any point sqp analogously lies in the same half-space as p for each Wi, which also im-
plies φ(sqp) = 0. Thus, all points are correctly fitted.

Conversely, assume that the points in X can be exactly fitted by φ realized by four ReLUs with values
wi, bi, ai, i ∈ [4]. Let I+ := {i ∈ [4] | ai = 1} and I− := {i ∈ [4] | ai = −1}.

Consider an arbitrary line segment qp for (q,p) ∈ Q × P . Clearly, the points (q, 1), (rqp, 1)
and (sqp, 0) on this line segment cannot all lie on the same piece of φ. Hence, φ must have a
concave breakpoint at some point on the open segment between q and p. That is, there must be
a ReLU i ∈ I− such that the hyperplane defined by (wi, bi) intersects the open line segment qp
and does not contain q or p. Analogously, the points (p, 0), (sqp, 0) and (rqp, 1) enforce a convex
breakpoint, that is, a ReLU j ∈ I+ with a hyperplane (wj , bj) also intersecting the open line segment
qp and not containing q or p.

To sum up, every open line segment qp is intersected by at least two hyperplanes (not containing q
or p), one corresponding to a ReLU i ∈ I−1 and one corresponding to a ReLU j ∈ I+. Since

18

h2

h1

Figure 7: Example of the reduction from 2-HYPERPLANE SEPARABILITY for d = 2 dimensions. Big
points are points in Q (dark gray) and in P (light gray). The small points are additionally introduced.
The four lines are the breaklines of the four ReLUs. The two thick lines indicate the original two
separating lines. The dashed circle has radius �.

there are only four ReLUs, it follows that min(|I+|, |I−|) ≤ 2. That is, we obtain a solution
for 2-HYPERPLANE SEPARABILITY by picking either all hyperplanes corresponding to I+ or all
hyperplanes corresponding to I−.

This finishes the reduction. Note that since the dimension of the input data points in our constructed in-
stance is d, any algorithm solving 2L-RELU-NN-TRAIN(L) in time ρ(d)no(d) poly(L) would imply
an algorithm running in time ρ(d)mo(d) poly(L�) for 2-HYPERPLANE SEPARABILITY contradicting
the ETH.

C Proof of Fixed-Parameter Tractability for the Convex Case

Before proving Theorem 10, we introduce some definitions. For I ⊆ [k], let RI ⊆ Rd be the active
region of the ReLUs in I , that is, x ∈ RI if and only if

∀j ∈ I : wjx+ bj ≥ 0,

∀j ∈ [k] \ I : wjx+ bj ≤ 0.

Note that RI could be empty. Clearly, on each RI , φ is the affine function
�

j∈I(wj · x+ bj). Let
FI := {(x,φ(x)) | x ∈ RI)} be the piece corresponding to I .

The convexity of φ now allows for a branching algorithm assigning the input data points to the at
most 2k pieces.

Proof of Theorem 10. Let (x1, y1), . . . , (xn, yn) ∈ Rd+1, k ∈ N, and let L denote the overall
number of input bits. The idea is to use a search tree algorithm to check whether the data can be
exactly fitted with k (convex) ReLUs. To this end, we define 2k sets S1, . . . , S2k where each i ∈ [2k]
one-to-one corresponds to a certain subset I(i) ⊆ [k] of active ReLUs. For given point sets S ⊆ Rd+1

and Si ⊆ Rd+1, i ∈ [2k], our algorithm checks whether the points in S can be exactly fitted by k
ReLUs with the additional constraint that Si ⊆ FI(i) holds for each i ∈ [2k]. That is, the following
(in)equalities must hold

x ∈ RI(i) and
�

j∈I(i)

wjx+ bj = y, i ∈ [2k], (x, y) ∈ Si. (6)

Algorithm 1 depicts the pseudocode of our ExactFit algorithm. We solve an instance with an initial
call where S := {(x1, y1), . . . , (xn, yn)}, S1 = S2 = · · · = S2k := ∅.

19

Algorithm 1: ExactFit(S, S1, . . . , S2k)

1 if S = ∅ then
2 return check-feasibility(S1, . . . , S2k)
3 else
4 choose (x, y) ∈ S
5 S ← S \ {(x, y)}
6 foreach i = 1, . . . , 2k do
7 Si ← Si ∪ {(x, y)}
8 check-forced-points(S, S1, . . . , S2k)
9 a ← ExactFit(S, S1, . . . , S2k)

10 if a = Yes then return Yes
11 return No

Algorithm 2: check-forced-points(S, S1, . . . , S2k)

1 foreach (x, y) ∈ S do
2 foreach i = 1, . . . , 2k do
3 µ ← lower-bound(x, i, S1, . . . , S2k)
4 if µ = y then
5 Si ← Si ∪ {(x, y)}
6 S ← S \ {(x, y)}
7 restart
8 if µ > y then
9 reject branch (return No)

The correctness of Algorithm 1 follows by induction on |S|. For S = ∅, we simply need to check
whether the system (6) of linear (in)equalities is feasible. This can be done by solving a linear
program with k(d + 1) variables and O(n) constraints in O(poly(k, L)) time (this is done by
check-feasibility in Line 2).

If S �= ∅ and (S, S1, . . . , S2k) is a no-instance, then none of the recursive calls in Line 9 will be
successful (by induction). Hence, the algorithm correctly returns “No” in Line 11.

Now assume that (S, S1, . . . , S2k) is a yes-instance. Then, any point (x, y) ∈ S must lie on some
piece FI(i). That is, (x, y) can be put into some Si. Hence, in Line 6, we branch into all 2k options.
In each branch, we then check whether putting (x, y) into Si also forces other points from S (due to
assumed convexity) to be contained in some Si� (this is done by check-forced-points in Line 8).
We do this in order to achieve our claimed running time bound as we will show later.

The pseudocode for this check is given in Algorithm 2. The idea is to compute for each (x, y) ∈ S
and each i ∈ [2k] the lower bound

µ := min
wj ,bj

�

j∈I(i)

(wjx+ bj)

subject to the constraints (6), which again can be accomplished via linear programming
in O(poly(k, L)) time. Note that both µ = +∞ (linear program is infeasible) and µ = −∞
(linear program is unbounded) are possible. This is done by lower-bound in Line 3. Now, note
that µ > y implies that

φ(x) =

k�

j=1

[wjx+ bj]+ ≥
�

j∈I(i)

(wjx+ bj) > y

holds for every φ satisfying (6). That is, we can reject (Line 9) the current branch of ExactFit. If
µ = y, then we have

φ(x) ≥
�

j∈I(i)

(wjx+ bj) = y

20

for every φ satisfying (6), and thus we can safely put (x, y) into Si. To see that this is correct, assume
that a solution puts (x, y) ∈ FI� for some I � ⊆ [k] with I � �= I(i). Then, we have

y =
�

j∈I�

(wjx+ bj) =
�

j∈I�∩I(i)

(wjx+ bj) +
�

j∈I�\I(i)
(wjx+ bj)

=
�

j∈I(i)

(wjx+ bj) =
�

j∈I�∩I(i)

(wjx+ bj) +
�

j∈I(i)\I�

(wjx+ bj),

which implies �

j∈I�\I(i)
(wjx+ bj) =

�

j∈I(i)\I�

(wjx+ bj).

Since x ∈ RI� , it follows that the left sum is at least zero and the right sum is at most zero. Thus, both
sums are zero and wjx+bj = 0 holds for all j ∈ (I � \I(i))∪(I(i)\I �), which shows that x ∈ RI(i).
Thus, putting (x, y) into Si is correct.

Note that adding a point to Si adds new constraints to (6). Hence, we restart the procedure (Line 7) to
check whether this forces new points. Overall, check-forced-points takes O(n22k poly(k, L)) ⊆
O(2k poly(k, L)) time.

As regards the correctness of Algorithm 1 now, note that check-forced-points clearly never
incorrectly rejects a branch of ExactFit and never forces points incorrectly. Hence, one of the
recursive calls in Line 9 will correctly answer “Yes” (by induction), which proves the correctness.

It remains to analyze the running time of Algorithm 1. Clearly, each call to the algorithm
takes O(2k poly(k, L)) time and recursively branches into 2k options. It remains to bound the
depth of the recursion tree. To this end, note that the recursion stops as soon as S is empty or the
current branch is rejected by Algorithm 2. We claim that the latter happens after at most k(d+1)+ 1
recursive calls.

To verify this claim, observe that the algorithm maintains the invariant that the linear program

min
wj ,bj

�

j∈I(i)

(wjx+ bj) s.t. (6)

has a solution µ < y for every i ∈ [2k] and (x, y) ∈ S. This invariant is achieved by check-
ing for forced points in Line 8. Let P ⊆ Rk(d+1) be the polyhedron defined by (6) in the vari-
ables (wj , bj)j=1,...,k. Now, adding a point (x, y) to some Si (Line 7) adds constraints to (6) which
yield a polyhedron contained in

P � := P ∩ {(wj , bj)j=1,...,k |
�

j∈I(i)

(wjx+ bj) = y}.

By the above invariant, there exists a (wj , bj)j=1,...,k ∈ P with
�

j∈I(i)(wjx + bj) < y. Hence,
aff(P �) � aff(P) and dim(P �) < dim(P). That is, each recursive call decreases the dimension
of the feasible polyhedron. Thus, after at most k(d + 1) + 1 recursive calls we reach an empty
polyhedron, in which case the current branch is rejected.

To sum up, we obtain an overall running time of 2O(k2d) poly(k, L).

Note that if positive and negative coefficients aj are allowed, then our search tree approach of
Algorithm 1 does not work since we cannot check for forced points anymore which is necessary to
ensure a bounded recursion depth. Indeed, Theorem 6 implies that this approach cannot work already
for k = 4. It is unclear whether this issue can be resolved for k = 2 or k = 3.

21

