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Figure 8: Architecture of our UNet in EARSB.

Figure 9: Architecture of our UNet in the
human-to-garment model.

A IMPLEMENTATIONS DETAILS

For generating the initial image x1 in our EARSB training, we employ two try-on GAN models:
HR-VTON (Lee et al., 2022) and SD-VTON (Shim et al., 2024). All human images are pro-
cessed to maintain their aspect ratio, with the longer side resized to 512 pixels and the shorter
side padded with white pixels to reach 512. During training, images undergo random shifting and
flipping with a 0.2 probability. The weakly-supervised classifier is trained for 100K iterations with
a batch size of 8, while the human-to-garment GAN is trained for 90K iterations with a batch size of
16. EARSB+H2G-UH/FH is trained for 300K iterations with a batch size of 32, incorporating 15%
synthetic pairs in each batch. The first 200K iterations are trained on t ∈ [0, 1] while the following
100k iterations are finetuned on t ∈ [0, 0.5) and t ∈ [0.5, 1] respectively following (Balaji et al.,
2022). All models utilize the AdamW optimizer with a learning rate of 10−4.

For inference, we select the GAN model that demonstrates better performance on each dataset to
generate the initial image. Specifically, we employ GP-VTON (Xie et al., 2023) for VITON-HD
and SD-VTON (Shim et al., 2024) for DressCode-Upper. During the sampling process, the guidance
score in Eq. (10) is scaled by a factor of 6 and clamped to the range [−0.3, 0.3].

B UNET ARCHITECTURE

EARSB UNet. The UNet architecture in EARSB consists of residual blocks and garment warping
modules. It processes the concatenation of the error map M , pose representation P , and noisy image
xt to predict the noise distribution ϵrθ at time t. The UNet encoder has 21 residual blocks, with the
number of channels doubling every three blocks to a maximum of 256. Similarly, the garment
encoder has 21 residual blocks but reaches a maximum of 128 channels. The decoder mirrors the
encoder’s structure, with extra garment warping modules. As shown in Fig. 8, each of the first 15
residual blocks in the UNet decoder is followed by a convolutional warping module. These modules
concatenate encoded garment features and UNet-decoded features to predict a flow-like map for
spatially warping the encoded garment features. The warped features are then injected into the
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Figure 10: Results on different time steps. Our error map focuses on low-quality regions and main-
tains the quality of the sufficiently good regions.

subsequent decoder layer via input concatenation. Following (Rombach et al., 2022), all residual
blocks and flow-learning modules incorporate timestep embeddings to renormalize latent features.

Human-to-Garment UNet. Our human-to-garment UNet architecture is adapted from the model
proposed in (Han et al., 2019). As illustrated in Fig. 9, it shares similarities with the UNet in
EARSB, but with two key distinctions: a) It is not timestep-dependent and takes cropped clothing as
input to generate its product-view image. b) The garment warping module utilizes the ith clothing
features from both the encoder and decoder to learn a flow-like map, rather than using encoded
features from the human.

C VISUALIZING ERROR MAPS

Our EARSB focuses on fixing specific errors and therefore can save the sampling cost when initial
predictions are sufficiently good. For example, in the first row of Fig. 10, the error map highlights the
graphics and text in the initial image. The highlighted low-quality part is being refined progressively
as the number of sampling steps increases from 5 to 100. At the same time, other parts that our
weakly-supervised classifier believes to be sufficiently good, which are mostly the solid-color areas,
are kept well regardless of the number of sampling steps. Therefore, for an initial image whose error
map has almost zero values, we can choose to use fewer steps in sampling. On the contrary, for an
initial image whose error map has high confidence, we should assign more sampling steps to it to
improve the image quality.

2
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HR-VTON (Lee et al., 2022) SD-VTON (Shim et al., 2024) GP-VTON (Xie et al., 2023)

Baseline 10.75 9.05 8.61
CAT-DM (Zeng et al., 2024) 10.03 8.76 8.55
EARSB 9.11 8.69 8.42

Table 4: FID scores of using different try-on GAN models to generate the initial image under the
unpaired setting.

Figure 11: Failure cases on VITON-HD where the initial image has a poor-quality.

D ABLATIONS ON THE QUALITY OF THE INITIAL IMAGE x1

In Tab. 4 we include the FID results of using different try-on GAN models to generate the initial
image under the unpaired setting. Baseline means the GAN baseline. As previously stated in Sec.
4.1., we can draw three conclusions from the results: a) our EARSB can refine the GAN-generated
image over the GAN baseline; b) the quality of the initial image x1 is positively correlated with the
quality of the sampled x̂0; c) our model achieves higher gains over CAT-DM, which also tries to
refine the GAN-generated image but without error-aware noise schedule.

E LIMITATIONS

While our human-to-garment model can effectively generate synthetic paired data for try-on training
augmentation, it has some imperfections. The overall quality of synthetic garments is regulated by
our filtering criteria (Sec. 3.1.2), yet minor texture deformations occasionally occur. For instance,
in Fig. 12, the second pair of the first row shows a misaligned shirt placket in the synthetic garment.
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This limitation stems partly from the fact that our model is trained in the image domain which lacks
3D information. A potential solution is to utilize DensePose representations extracted from the
garment as in (Cui et al., 2023).

A key constraint of our EARSB is its refinement-based nature, which makes the generated image
dependent on the initial image. We assume that the initial image from a try-on GAN model is of
reasonable quality, requiring only partial refinement. Consequently, if the initial image is of very
poor quality, our refinement process cannot completely erase and regenerate an entirely new, unre-
lated image. Fig. 11 illustrates this limitation: in the first row, the initial image severely mismatches
the white shirt with pink graphics. With EARSB refinement, while the shirt is correctly re-warped,
color residuals from the initial image persist around the shoulder area.

F ADDITIONAL VISUALIZATIONS

Figures 12 and 13 showcase exemplars from our synthesized datasets H2G-UH and H2G-FH, re-
spectively. The generated garment images closely mimic the product view of the clothing items,
accurately capturing both the shape and texture of the original garments worn by the individuals.
This approach to creating synthetic training data for the virtual try-on task is both cost-effective and
data-efficient, highlighting the benefits of our proposed human-to-garment model.

Figures 14 and 15 give visualized results of the proposed EARSB and EARSB+H2G-UH. In con-
trast to previous approaches, EARSB specifically targets and enhances low-quality regions in GAN-
generated images, which typically correspond to texture-rich areas. This targeted improvement is
evident in the last row of Fig. 14, where EARSB more accurately reconstructs text freinds, and in the
third row, where it successfully generates four side buttons. Furthermore, the incorporation of our
synthetic dataset H2G-UH with EARSB leads to even more refined details in the generated images,
demonstrating the synergistic effect of our combined approach.
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Figure 12: Visualized examples of the (human, synthetic garment) pairs on our proposed H2G-UH.
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Figure 13: Visualized examples of the (human, synthetic garment) pairs on our proposed H2G-FH.
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Figure 14: Visualized examples on VITON-HD. Our EARSB and EARSB+H2G-UH better recovers
the intricate textures in the garment.
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Figure 15: Visualized examples on DressCode-Upper. Our EARSB and EARSB+H2G-UH better
reconstructs the texts and graphics in the garment.
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