
Video Generation with Learned Action Prior-
Supplementary

1 Proof for Video Generation with Learned Action Prior1

1.1 Variational Lower Bound2

Here we are trying to maximize the joint likelihood of (x1:t, a1:T ) which is equivalent to maximizing3

lnqζ(x1:T , a1:T ) or lnqζ(x, a) for better readability. Let’s assume z = [z1, · · · , zT ] denotes the latent4

z variable across all the time-steps and they are independent of each other across time.5

lnqζ(x1:T , a1:T ) ≡ lnqζ(x, a) = ln
∫
z

qζ(x, a|z)p(z) (1)

= ln
∫
z

qζ(x, a|z)p(z)
pθ(z|x, a)
pθ(z|x, a)

(2)

= ln
(
Epθ(z|x,a)qζ(x, a|z)

p(z)

pθ(z|x, a)

)
(3)

≥ Epθ(z|x,a)
(

lnqζ(x, a|z)
p(z)

pθ(z|x, a)

)
(4)

= Epθ(z|x,a)lnqζ(x, a|z)− Epθ(z|x,a)
(

ln
pθ(z|x, a)

p(z)

)
(5)

= Epθ(z|x,a)lnqζ(x, a|z)−DKL(pθ(z|x, a)||p(z)) (6)

Given that we assumed in our model that x and a and conditionally independent given z, thus6

qζ(x, a|z) = qζ1(x|z)qζ2(a|z), where ζ = {ζ1, ζ2}. Thus equation 6 can be written as :7

lnqζ(x, a) ≥ Epθ(z|x,a)lnqζ1(x|z) + Epθ(z|x,a)lnqζ2(a|z)−DKL(pθ(z|x, a)||p(z)) (7)

Similar to SVG, we use RNN architectures in VG-LeAP to recursively predict image frames and8

at each time-step t,
↶

RNNζ1 takes the encoded past image xt−1 and zt as input. With the recursive9

behaviour of
↶

RNNζ1 , we can express lnqζ1(x|z) as:10

lnqζ1(x1:T |z1:T ) ≡ lnqζ1(x|z) = ln
∏
t

qζ1(xt|x1:t−1, z1:T ) (8)

=
∑
t

lnqζ1(xt|x1:t−1, z1:t) (9)

In the case of action predictor in VG-LeAP, we use a similar RNN architecture
↶

RNNζ2 which takes11

the past action at−1 and zt as input. Thus lnqζ2(a|z) can be expressed as:12

lnqζ2(a1:T |z1:T ) ≡ lnqζ2(a|z) = ln
∏
t

qζ2(at|a1:t−1, z1:T ) (10)

=
∑
t

lnqζ2(at|a1:t−1, z1:t) (11)

In the case of the posterior and learned prior networks
↶

RNNθ and
↶

RNNϕ respectively, we recursively13

feed the action at and image xt to approximate zt (in case of learned prior we feed xt−1 and at−1).14

Cause zts are independent across time, pθ(z|x, a) can be expressed as:15

pθ(z1:T |x1:T , a1:T ) ≡ pθ(z|x, a) =
∏
t

pθ(zt|xt, at) (12)
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We assume the extended image-action state as χ = (x, a) for better readability and compact expres-16

sions in long equations. Since zts are independent across time, we can rewrite DKL(pθ(z|x, a)||p(z))17

or DKL(pθ(z|χ)||p(z))as:18

DKL(pθ(z|x, a)||p(z)) ≡ DKL(pθ(z1:T |x1:T , a1:T )||p(z1:T )) =
∫
z

pθ(z|x, a)ln
pθ(z|χ)
p(z)

(13)

=

∫
z1

· · ·
∫
zT

pθ(z1|χ1) · · · pθ(zT |χ1:T )ln
pθ(z1|χ1) · · · pθ(zT |χ1:T )

p(z1) · · · p(zT )
(14)

=

∫
z1

· · ·
∫
zT

pθ(z1|χ1) · · · pθ(zT |χ1:T )
∑
t

ln
pθ(zt|χ1:t)

p(zt)
(15)

=
∑
t

∫
z1

· · ·
∫
zT

pθ(z1|χ1) · · · pθ(zT |χ1:T )ln
pθ(zt|χ1:t)

p(zt)
(16)

Since
∫
z
pθ(z) = 1 we can further simplify equation 16 as19

DKL(pθ(z|x, a)||p(z)) =
∑
t

∫
zt

pθ(zt|χ1:t)ln
pθ(zt|χ1:t)

p(zt)
(17)

=
∑
t

DKL(pθ(zt|χ1:t)||p(zt)) =
∑
t

DKL(pθ(zt|x1:t, a1:t)||p(zt)) (18)

Thus combining equation 9, equation 11and equation 18, with equation 7 we get the variational lower20

bound as:21

lnqζ(x, a) ≥ Epθ(z|x,a)lnqζ1(x|z) + Epθ(z|x,a)lnqζ2(a|z)−DKL(pθ(z|x, a)||p(z)) (19)

=
∑
t

[Epθ(z1:t|x1:t,a1:t)(lnqζ1(xt|x1:t−1, z1:t) + lnqζ2(at|a1:t−1, z1:t))

−DKL(pθ(zt|x1:t, a1:t)||p(zt))] (20)

2 Proof for Causal Video Generation with Learned Action Prior22

2.1 variational Lower Bound23

Here we are trying to maximize the joint likelihood of (x1:t, a1:T ) which is equivalent to maximizing24

lnqζ(x1:T , a1:T ) or lnqζ(x, a) for better readability. Let’s assume z = [z1, · · · , zT ] denotes the25

image latent z variable across all the time-steps and u = [u1, · · · , uT ] denotes the action latent u26

variable across all the time-steps. Both zts and uts are independent of across time. From the Causal27

relationship between at and xt we get:28

lnqζ(x1:T , a1:T ) ≡ lnqζ(x, a) = lnqζ2(a|x)qζ1(x) (21)
= lnqζ2(a|x) + lnqζ1(x) (22)

from equation 22, we can derive the lower bound for lnqζ1(x) as:29

lnqζ1(x) = ln
∫
z

qζ1(x|z)p(z) (23)

= ln
∫
z

qζ1(x|z)p(z)
pθ(z|x)
pθ(z|x)

(24)

= ln
(
Epθ(z|x)qζ1(x|z)

p(z)

pθ(z|x)

)
(25)

≥ Epθ(z|x)
(

lnqζ1(x|z)
p(z)

pθ(z|x)

)
(26)

= Epθ(z|x)lnqζ1(x|z)− Epθ(z|x)
(

ln
pθ(z|x)
p(z)

)
(27)

= Epθ(z|x)lnqζ1(x|z)−DKL(pθ(z|x)||p(z)) (28)
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Similar to VG-LeaP, we use RNN architectures
↶

RNNζ1 in Causal-LeAP to recursively predict image30

frames at each time-step t.
↶

RNNζ1 takes the encoded past image xt−1, action at−1 and zt as input.31

With the recursive behaviour of
↶

RNNζ1 , we approximate lnqζ1(x|z) ≈ lnqζ1(x1:T |z1:T , a1:T−1) as:32

lnqζ1(x|z) ≈ lnqζ1(x1:T |z1:T , a1:T−1) = ln
∏
t

qζ1(xt|x1:t−1, z1:T , a1:t−1,���at:T−1) (29)

=
∑
t

lnqζ1(xt|x1:t−1, z1:t, a1:t−1) (30)

In the case of the posterior and learned prior of the image prediction networks
↶

RNNθ and
↶

RNNϕ33

respectively in Causal-LeAP, we recursively feed the action image xt to approximate zt (in case of34

learned prior we feed xt−1 ). Cause zts are independent across time, pθ(z|x) can be expressed as:35

pθ(z1:T |x1:T ) ≡ pθ(z|x) =
∏
t

pθ(zt|xt) (31)

We can rewrite DKL(pθ(z|x)||p(z)) as:36

DKL(pθ(z|x)||p(z)) ≡ DKL(pθ(z1:T |x1:T )||p(z1:T )) =
∫
z

pθ(z|x)ln
pθ(z|x)
p(z)

(32)

=

∫
z1

· · ·
∫
zT

pθ(z1|x1) · · · pθ(zT |x1:T )ln
pθ(z1|x1) · · · pθ(zT |x1:T )

p(z1) · · · p(zT )
(33)

=

∫
z1

· · ·
∫
zT

pθ(z1|x1) · · · pθ(zT |x1:T )
∑
t

ln
pθ(zt|x1:t)

p(zt)
(34)

=
∑
t

∫
z1

· · ·
∫
zT

pθ(z1|x1) · · · pθ(zT |x1:T )ln
pθ(zt|x1:t)

p(zt)
(35)

Since
∫
z
pθ(z) = 1 we can further simplify equation 35 as37

DKL(pθ(z|x)||p(z)) =
∑
t

∫
zt

pθ(zt|x1:t)ln
pθ(zt|x1:t)

p(zt)
(36)

=
∑
t

DKL(pθ(zt|x1:t)||p(zt)) (37)

The lower bound of lnqζ2(a|x) is derived as follows:38

lnqζ2(a|x) = ln
∫
u

qζ2(a|u, x)p(u|x) (38)

= ln
∫
u

qζ2(a|u, x)p(u|x)
pψ(u|a, z)
pψ(u|a, z)

(39)

= ln
(
Epψ(u|a,z)qζ2(a|u, x)

p(u|x)
pψ(u|a, z)

)
(40)

≥ Epψ(u|a,z)
(

lnqζ2(a|u, x)
p(u|x)

pψ(u|a, z)

)
(41)

= Epψ(u|a,z)lnqζ2(a|u, x)− Epψ(u|a,z)
(

ln
pψ(u|a, z)
p(u|x)

)
(42)

= Epψ(u|a,z)lnqζ2(a|u, x)−DKL(pψ(u|a, z)||p(u|x)) (43)

Now combining equation 22, equation 28 and equation 43 we get:39

lnqζ(x, a) ≥ Epθ(z|x)lnqζ1(x|z) + Epψ(u|a,z)lnqζ2(a|u, x)−DKL(pθ(z|x)||p(z))
−DKL(pψ(u|a, z)||p(u|x))

(44)

In the case of action predictor in Causal-LeAP, to predict at we use RNN architecture
↶

RNNζ240

which takes the past action at−1 and ut as inputs at time t. Thus recursively it builds dependence41
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upon all past actions a1:t−1 and action latent variable u1:t. Please note in the case of the action42

predictor network we do not feed the last image xt as input. We found that even without the43

image xt as input, the action predictor generates accurate approximation of future actions. Thus44

lnqζ2(a|u, x) ≈ lnqζ2(a|u) in can be expressed as:45

lnqζ2(a1:T |u1:T ) ≡ lnqζ2(a|u) = ln
∏
t

qζ2(at|a1:t−1, u1:T ) (45)

=
∑
t

lnqζ2(at|a1:t−1, u1:t) (46)

In the case of the posterior and learned prior of the action prediction networks
↶

RNNψ and
↶

RNNφ46

respectively in Causal-LeAP, we recursively feed the action at and the image latent variable zt to47

approximate ut (in case of learned prior we feed (at−1, zt−1) ). Cause uts are independent across48

time, pθ(u|a, z) can be expressed as:49

pψ(u1:T |a1:T , z1:T ) ≡ pψ(u|a, z) =
∏
t

pψ(ut|at, zt) (47)

We can rewrite DKL(pψ(u|a, z)||p(u|x)) as:50

DKL(pψ(u|a, z)||p(z)) ≡ DKL(pψ(u1:T |a1:T , z1:T )||p(u1:T |x1:T )) =

∫
u

pψ(u|a, z)ln
pψ(u|a, z)
p(u|x)

(48)

=

∫
u1

· · ·
∫
uT

pψ(u1|a1, z1) · · · pψ(uT |a1:T , z1:T )ln
pψ(u1|a1, z1) · · · pψ(uT |a1:T , z1:T )

p(u1|x1) · · · p(uT |xT )
(49)

=

∫
u1

· · ·
∫
uT

pψ(u1|a1, z1) · · · pψ(uT |a1:T , z1:T )
∑
t

ln
pψ(ut|a1:t, z1:t)

p(ut|xt)
(50)

=
∑
t

∫
u1

· · ·
∫
uT

pψ(u1|a1, z1) · · · pψ(uT |a1:T , z1:T )ln
pψ(ut|a1:t, z1:t)

p(ut|xt)
(51)

Since
∫
u
pψ(u) = 1 we can further simplify equation 51 as51

DKL(pψ(u|a, z)||p(u|x)) =
∑
t

∫
ut

pψ(ut|a1:t, z1:t)ln
pψ(ut|a1:t, z1:t)

p(ut|xt)
(52)

=
∑
t

DKL(pψ(ut|a1:t, z1:t)||p(ut|xt) (53)

Now combining equation 30, equation 46, equation 37 and equation 53 with equation 44 we get the52

final expression for the variational lower bound as:53

lnqζ(x, a) ≥ Epθ(z|x)lnqζ1(x|z)+
+ Epψ(u|a,z)lnqζ2(a|u)−DKL(pθ(z|x)||p(z))−DKL(pψ(u|a, z)||p(u|x))

(54)

=
∑
t

[Epθ(z1:t|x1:t)lnqζ1(xt|x1:t−1, z1:t, a1:t−1) + Epψ(u1:t|a1:t,z1:t)lnqζ2(at|a1:t−1, u1:t)

−DKL(pθ(zt|x1:t)||p(zt))−DKL(pψ(ut|a1:t, z1:t)||p(ut|xt)] (55)

3 Robot Autonomous Motion Dataset: RoAM54

The Robot Autonomous Motion (RoAM) dataset is a unique, publicly available resource offering55

synchronized and time-stamped camera motion data along with video data. It comprises 50 long video56

sequences collected over 7 days in 14 different indoor spaces, capturing various human activities57

from the ego-motion perspective of a mobile robot. RoAM provides stereo image pairs, depth58
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maps, LiDAR scans, IMU data, odometry, and timestamped control actions. The dataset has been59

processed into accessible formats, with images in .png format and depth maps in 32-bit single-60

channel .tiff format. Control action data, including normalized forward velocity and rotation rate,61

are saved in corresponding .txt files. We followed the instructions provided in the GitHub repository62

(https://github.com/meenakshisarkar/RoAM-dataset.git). to prepare the dataset as a TensorFlow63

dataset object. This involved sampling 3,07,200 random video-action sequences of length 25 from64

45 training videos, with the remaining 5 videos serving as the test set. Images were cropped and65

downsampled to 64x64x4, preserving the aspect ratio. The repository also includes scripts for reading66

TFRecord files.

Figure 1: Sample image frames from the RoAM dataset depicting different indoor spaces and
backgrounds with various human actions and motions.

67

4 Network Architecture and Training details:68

All the models are conditioned on past 5 frames to predict the next 10 frames during training. At test69

time, we increase the no of predicted frames to 20.70

4.1 Model: SVG-lp71

We used the same architecture for SVG-lp as given in Denton and Fergus (2018). We used the VGG1672

architecture for training our image encoder. The size of the latent variable z is taken as 128. The73

hidden dimension for the vgg16 image encoder is taken as 256 and we used 512 lstm cells in the74

recurrent block of our posterior and prior modules. Similar to Denton and Fergus (2018), we used 275

layers of recurrent cells, each having 512 LSTM cells in our image prediction network.76

We trained the SVG-lp on RoAM using the ADAM Kingma and Ba (2015) optimizer with the77

learning rate of 0.0001. β for the KL divergence term was set at 0.001, with β1 = 0.9 for the ADAM78

optimizer. The batch size was kept at 64. The model was trained on two Tesla v100 GPUs using the79

distributed training API of tensorflow.80

4.2 Model:VG-LeAP81

VG-LeAP uses the same architecture and training parameters as SVG-lp as discussed in the previous82

subsection. It also uses the VGG16 architecture for training our image encoder to encode images83

as a vector of size 256. The size of the latent variable z is also taken as 128 and we used 512 lstm84

cells in the recurrent block of our posterior and prior modules. Similar to SVG-lp, we use 2 layers85

of recurrent cells, each having 512 LSTM cells in our image prediction network. The only extra86

hyper-parameters in VG-LeAP comes from the action encoder and predictor network. The action87

encoder encodes the 2 dimensional input action to an encoded dimension of 16. In the case of action88

encoding, we upsample the action to a higher dimensional manifold for better interaction between89

the encoded image and action data in the approximation of the latent variable zt. We use 2 layers of90

LSTM cells, each having 32 LSTM cells in the action prediction network.91

We trained the VG-LeAP on RoAM using the ADAM Kingma and Ba (2015) optimizer with the92

learning rate of 0.0001. β for the KL divergence term is set at 0.001, βa = 0.0001, and β1 = 0.9 for93
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the ADAM optimizer. The batch size was kept at 64. The model is trained on two Tesla v100 GPUs94

using the distributed training API of Tensorflow.95

4.3 Model:Causal-LeAP96

Causal-LeAP uses the same vgg16 image encoding architecture as VG-LeAP and SVG-lp. The size97

of the latent variable z is also taken as 128 and the hyper-parameters for the image prior, posterior and98

prediction network are kept same as VG-LeAP and SVG-lp for better comparison of performances.99

The hyper-parameters action encoder and predictor networks in Causal-LeAP is same as VG-LeAP.100

In Causal-LeAP we have the additional Action Posterior and Prior modules which uses a single layer101

of 32 LSTM cells to establish the recurrent relationship between the past action at and latent image102

variable zt values in approximation of the latent action variable ut103

We trained the Causal-LeAP with the same training parameter as VG-LeAP on RoAM using the104

ADAM Kingma and Ba (2015) optimizer with a learning rate of 0.0001 and batch size of 64 except105

in Causal-LeAP the β associated with the image KL divergence is 0.0001. γ = 0.0001 for the KLD106

associated with the action latent variable. The model is also trained on two Tesla v100 GPUs using107

the distributed training API of Tensorflow.108

4.4 Model: RIVER and RAFI109

Our overall architecture for both river and rafi remained same as given in Davtyan, Sameni, and110

Favaro (2023). We first trained a VQGAN Esser, Rombach, and Ommer (2021) using using the111

taming-transformers library, for both RIVER and RAFI we used the same pretrained VQGAN. For112

training of VQGAN we first sampled 2 videos from each video sequence and trained the VQGAN113

architecture for 8 iterations. Then we further trained it for 2 more iterations but with 10 frames being114

sampled from each Video Sequence. In our training set of VQGAN we included images both from115

our test set and our train set.116

The only difference in architecture between RAFI and RIVER is in the dimensions of the input to the117

vector field regressor model, for river its input state size was kept as 8 and input state resolution at 4.118

For RAFI these parameters were kept as 10 (due to 2 additional channels generated by concatenating119

action maps) and 4 respectively. In order to train the vector field regressor model we used a batch size120

of 16. Both models were trained for 450k iterations with AdamW optimizer, with initial lr as 10−4121

and weight decay as 5.10−6. Similar to Davtyan, Sameni, and Favaro (2023) we used A learning122

rate linear warm up with 7.5K iterations followed by a square root decay schedule. For both of these123

models, we kept the no. of conditioning frames to 5 and total no. of frames to generate to 10.124

4.5 Model: SRVP125

We trained SRVP following the training parameters given in Franceschi et al. (2020) for training126

Human3.6M dataset as that was the only dataset that closely resembled RoAM. We trained SRVP on127

RoAM dataset using the distributed training API of PyTorch Paszke et al. (2019) on two NVIDIA128

3090Ti GPUs with a batch size of 32. In a distributed training setup, SRVP took 36 hours to train on129

RoAM dataset for 525000 iterations. We found that increasing the batch size to 64 for SRVP resulted130

in exponentially increasing the training time for the model from 1.5 days to several days(4.5). Thus131

we kept 32 as our batch-size for SRVP to accommodate our limitation in computational resources.132

The learning rate is kept at 0.0001 and the number of Euler steps is kept as 2. The rest of the training133

parameters are kept as same as training the Human3.6M in Franceschi et al. (2020).134

4.6 Model: ACPNet135

We also trained ACPNet on the RoAM dataset following the same training hyper-parameters as136

Sarkar et al. (2023).137
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(a) (b)

Figure 2: Fig. 2a (lower is better), and 2b(higher is better) showing the average quantitative
performance of Causal-LeAP, VG-LeAP, SVG (SVG-lp), RAFI, SRVP, and ACPNet for 20 different
sampling on predicting 20 future image frames from past 5 conditioning frames. In all the quantitative
performance metrics, Causal-LeAP model outperforms the other 5. In case of LPIPS values for RAFI
and ACPNet, we can see that both these models start much better than Causal-Leap, however as time
passes, both start performing much worse than LeAP models.

5 Extended Results and Additional Generated Images138

We have provided the LPIPS, and PSNR plots for all 6 models: Causal-LeAP, VG-LeAP, SVG-lp,139

RAFI, SRVP Franceschi et al. (2020) and ACPNet in Fig 2a and 2b respectively. It can be observed140

from the plots that SRVP does not perform well on RoAM dataset. From the extended FVD score141

table in 1 we can see that the FVD score for SRVP is 596, which is relatively higher compared142

to SVG and other LeAP models. We attribute this to the poor training of SRVP model on RoAM143

data. There might be some combination of the hyper parameter tuning that might lead to better144

performance on RoAM, however, the large computational requirements of SRVP limited our scope145

for such explorations. This also raises an important question of how efficient frameworks like SRVP146

Franceschi et al. (2020) on modelling partially observable video data such as RoAM and warrent147

further investigation.148

We have also added raw-generated image frames by Causal-LeAP, VG-LeAP, SVG-lp, RAFI, and149

RIVER at Fig 3, 4,5, 6,7, 8. Additional generated videos can be found at the following link:150

https://sites.google.com/view/learned-action-prior/home.151

Table 1: FVD Score
Model Score
Causal-Leap 514.65 ± 3.37
Svg-Leap 539.29 ± 1.94
Vg-Leap 481.15 ± 2.39
RIVER (BEST) 284.46 ± 3.21
RAFI 288.23 ± 4.39
SRVP 596.68 ± 2.82
ACPNET 908.36
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GT

Causal-LeAP Best

Causal-LeAP Random 1

Causal-LeAP Worst

VG-LeAP Best

VG-LeAP Random 1

VG-LeAP Worst

SVG-lp Best

Figure 4: Zoomed samples from Causal-LeAP, VG-LeAP, and SVG-lp compared to Ground Truth.
For each framework, we show the best, worst, and one random samples based on VGG cosine
similarity. Images are zoomed using bilinear extrapolation for better visibility.
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GT

RAFI best

RAFI random

RAFI worst

RIVER best

RIVER random

RIVER worst

Figure 6: Zoomed samples from RAFI and RIVER along with GT. For each framework, we show
the best, worst, and one random samples based on VGG cosine similarity. Images are zoomed using
bilinear extrapolation for better visibility.

12



G
T

C
au

sa
l-

L
eA

P
B

es
t

C
au

sa
l-

L
eA

P
R

an
do

m
1

C
au

sa
l-

L
eA

P
W

or
st

V
G

-L
eA

P
B

es
t

V
G

-L
eA

P
R

an
do

m
1

V
G

-L
eA

P
W

or
st

SV
G

-l
p

B
es

t

Fi
gu

re
7:

A
bl

at
io

n
st

ud
y

sa
m

pl
es

fr
om

C
au

sa
l-

L
eA

P,
V

G
-L

eA
P,

an
d

SV
G

-l
p

co
m

pa
re

d
to

G
ro

un
d

Tr
ut

h.
Fo

re
ac

h
fr

am
ew

or
k,

w
e

sh
ow

th
e

be
st

,w
or

st
,a

nd
on

e
ra

nd
om

sa
m

pl
es

ba
se

d
on

V
G

G
co

si
ne

si
m

ila
ri

ty
.E

ac
h

fr
am

ew
or

k
pr

ed
ic

ts
15

fr
am

es
in

to
th

e
fu

tu
re

fr
om

pa
st

5
fr

am
es

at
0.

5
fp

s tr
ai

n
or

∆
t t

es
t
=

2
×

∆
t t

ra
in

.T
he

no
rm

al
is

ed
fo

rw
ar

d
ve

lo
ci

tie
s

ar
e

de
no

te
d

at
th

e
to

p
of

th
e

fr
am

es
.

13



(a) (b)

Figure 8: Fig. 8a and 8b shows the predicted forward velocity and turn rates from Causla-LeAP and
VG-LeAP along with GT for the ablation study video frame presented in Fig. 7. Here also we can
see that predictions from VG-LeAP starts to diverge after timestep t = 14.
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