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TL;DR

Different codon sequences can encode the same protein but
interact differently within a host and have varying expression levels.
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CodonMPNN

Prevailing approach: An inverse folding model (e.g.,
ProteinMPNN) generates an amino acid sequence that is
mapped to a codon sequence via heuristic optimization.

Our approach: Lets € {1,...,64}F be a codon sequence

and x € R 3 protein structure of 3D coordinates with L

residues and their 4 backbone atoms.

We train CodonMPNN to predict p(s,; | S5« X; ©) for any
sequence permutationcand i € {1,...,64}.

We then sample from p(s) = HiL=1P(SG(,-) | Sp<iys X5 0).

Taxon conditioning

We use the NCBI taxonomy database to group organisms into
clusters with common cellular environments.

Balanced tree grouping: Recursively assign nodes to groups,
keeping subtrees together without exceeding size [n/k].
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Likelihoods for synonymous coding
sequences

We use yeast mutant data from [2] to evaluate CodonMPNN

likelihood predictions for 250 significant synonymous mutations.

We predict protein structures for wild-type sequences with
AlphaFold 2, which are used for CodonMPNN conditioning.

CodonMPNN correctly predicts higher likelihoods for the
more highly expressed codon sequences in 72.4% of the
cases (pairs above horizontal line).
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1. We propose CodonMPNN, which adapts ProteinMPNN [1] to generate codon
sequences conditioned on a protein backbone structure and an organism label.

2. CodonMPNN retains ProteinMPNN’s performance and recovers wild-type codons
more frequently.

3. For the same protein sequence, CodonMPNN assigns higher likelihood to high-
fitness codon sequences than low-fitness sequences.
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Codon recovery and designability

We train and evaluate CodonMPNN (and ProteinMPNN) on AFDB structures
with pLDDT > 0.9.

CoODON% AA % ™

PROTEINMPNN 20.5% 49.8% 0.83
PROTEINMPNN-TAXON 20.8% 50.3 0.86
CODONMPNN 24.8% 49.4% 0.84

CodonMPNN achieves the same AA recovery rate and designability (TM-
Score) as ProteinMPNN, as well as higher codon recovery rate.
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Codon Recovery and AA Recovery show the CodonMPNN recovery rates.
Naive Codon Recovery: Codon recovery rate obtained by translating
CodonMPNN'’s codons to AAs by choosing their most frequent codons.
Oracle Codon Recovery: Same but for AAs.

CodonMPNN improves over choosing the most frequent codon per AA for
codon recovery.
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