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Abstract1

Few-shot graph classification is a novel yet promising emerging research field that2

still lacks the soundness of well-established research domains. Existing works3

often consider different benchmarks and evaluation settings, hindering comparison4

and, therefore, scientific progress. In this work, we start by providing an extensive5

overview of the possible approaches to solving the task, comparing the current state-6

of-the-art and baselines via a unified evaluation framework. Our findings show that7

while graph-tailored approaches have a clear edge on some distributions, easily8

adapted few-shot learning methods generally perform better. In fact, we show that it9

is sufficient to equip a simple metric learning baseline with a state-of-the-art graph10

embedder to obtain the best overall results. We then show that straightforward11

additions at the latent level lead to substantial improvements by introducing i) a12

task-conditioned embedding space ii) a MixUp-based data augmentation technique.13

Finally, we release a highly reusable codebase to foster research in the field, offering14

modular and extensible implementations of all the relevant techniques.15

1 Introduction16

Graphs have ruled digital representations since the dawn of computer science. Their structure is17

simple and general, and their structural properties are well studied. Given the success of deep18

learning in different domains that enjoy a regular structure, such as those found in computer vision19

[4, 48, 72] and natural language processing [9, 14, 39, 55], a recent line of research has sought to20

extend it to manifolds and graph-structured data [3, 8, 26]. Nevertheless, the expressivity brought21

by deep learning comes at a cost: deep models require vast amounts of data to search the complex22

hypothesis spaces they define. When data is scarce, these models end up overfitting the training set,23

hindering their generalization capability on unseen samples. While annotations are usually abundant24

in computer vision and natural language processing, they are harder to obtain for graph-structured data25

due to the impossibility or expensiveness of the annotation process [29, 50, 52]. This is particularly26

true when the samples come from specialized domains such as biology, chemistry and medicine [28],27

where graph-structured data are ubiquitous. The most heartfelt example is drug testing, requiring28

expensive in-vivo testing and laborious wet experiments to label drugs and protein graphs [37].29

To address this problem, the field of Few-Shot Learning (FSL) [18, 20] aims at designing models30

which can effectively operate in scarce data scenarios. While this well-established research area31

enjoys a plethora of mature techniques, robust benchmarks and libraries, its intersection with graph32

representation learning is still at an embryonic stage. As such, the field suffers from a lack of33

uniformity: existing works often consider different benchmarks and evaluation settings, with no two34

works considering the same set of datasets or evaluation hyperparameters. This scenario results in a35

fragmented understanding, hindering comparison and, therefore, scientific progress in the field. In an36

attempt to mitigate this issue and facilitate new research, we provide a modular and easily extensible37

codebase with re-implementations of the most relevant baselines and state-of-the-art works. The38

latter allows both for straightforward use by practitioners and for a fair comparison of the techniques39

in a unified evaluation setting. Our findings show that kernel methods achieve impressive results on40

particular distributions but are too rigid to be used as an overall solution. On the other hand, few-shot41

learning techniques can be easily adapted to the graph setting by employing a graph neural network as42

encoder. Contrarily to existing works, we argue that the latter is sufficient to capture the complexity43

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.



Metric Based Few-Shot Graph Classification

Support Set Query Set

K shots Q queries

N
cl

as
se

s

Figure 1: An N -way K-shot episode. In this example, there are N = 3 classes. Each class has
k = 4 supports yielding a support set with size N ∗K = 12. The class information provided by the
supports is exploited to classify the queries. We test the classification accuracy on all N classes. In
Figure there are Q = 2 queries for each class thus the query set has size N ∗Q = 6.

of the structure, relieving the remaining pipeline of the burden. When in the latent space, standard44

techniques behave as expected and need no further tailoring to the graph domain is needed.45

In this direction, we show that a simple Prototypical Networks [49] architecture outperforms existing46

works when equipped with a state-of-the-art graph embedder. As typical in few-shot learning, we47

frame tasks as episodes, where an episode is defined by a set of classes and several supervised samples48

(supports) for each of them [57]. Such an episode is depicted in Figure 1. This setting favors a49

straightforward addition to the architecture: in fact, while a standard Prototypical Network would50

embed the samples in the same way independently of the episode, we can take inspiration from [40]51

and empower the graph embeddings by conditioning them on the particular set of classes seen in the52

episode. This way, the intermediate features and the final embeddings may be modulated according53

to what is best for the current episode. Finally, we propose to augment the training dataset using a54

MixUp-based [71] online data augmentation technique. The latter creates artificial samples from two55

existing ones as a mix-up of their latent representations, probing unexplored regions of the latent56

space that can accommodate samples from unseen classes. We finally show that these additions are57

beneficial for the task both qualitatively and quantitatively.58

Summarizing, our contribution is 4-fold:59

1. We provide an extensive overview of the possible approaches to solve the task, comparing all60

the existing works and baselines in a unified evaluation framework;61

2. We release a strongly re-usable codebase to foster research in the field, offering modular and62

extensible implementations of all the relevant techniques;63

3. We show that it is enough to equip existing few-shot pipelines with graph encoders to obtain64

competitive results, proposing in particular a metric learning baseline for the task;65

4. We equip the latter with two supplementary modules: an episode-adaptive embedder and a novel66

online data augmentation technique, proving their benefits qualitatively and quantitatively.67

2 Related work68

Few-Shot Learning. Data-scarce tasks are usually tackled by using one of the following paradigms:69

i) transfer learning techniques [1, 34, 35] that aim at transferring the knowledge gained from a70

data-abundant task to a task with scarce data; ii) meta-learning [21, 42, 70] techniques that more71

generally introduce a meta-learning procedure to gradually learn meta-knowledge that generalizes72

across several tasks; iii) data augmentation works [22, 54, 66] that seek to augment the data applying73

transformations on the available samples to generate new ones preserving specific properties. We74

refer the reader to [62] for an extensive treatment of the matter. Particularly relevant to our work are75
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distance metric learning approaches: in this direction, [57] suggest embedding both supports and76

queries and then labeling the query with the label of its nearest neighbor in the embedding space.77

By obtaining a class distribution for the query using a softmax over the distances from the supports,78

they then learn the embedding space by minimizing the negative log-likelihood. [49] generalize this79

intuition by allowing k supports for class to be aggregated to form prototypes. Given its effectiveness80

and simplicity, we chose this approach as the starting point for our architecture.81

Graph Data Augmentation. Data augmentation follows the idea that in the working domain,82

there exist transformations that can be applied to samples to generate new ones in a controlled way83

(e.g., preserving the sample class in a classification setting while changing its content). Therefore,84

synthetic samples can meet the needs of large neural networks that require training with high85

volumes of data [62]. In Euclidean domains (e.g., images), this can often be achieved by simple86

rotations and translations [5, 43]. Unfortunately, in the graph domain, it is challenging to define such87

transformations on a given graph sample while keeping control of its properties. To this end, a line of88

works takes inspiration from Mix-Up [38, 71] to create new artificial samples as a combination of89

two existing ones: [24, 27, 41, 64] propose to augment graph data directly in the data space, while90

[65] interpolates latent representations to create novel ones. We also operate in the latent space, but91

differently from [65], we suggest creating a new sample by selecting only certain features of one92

representation and the remaining ones from the other by employing a random gating vector. This93

allows for obtaining synthetic samples as random compositions of the features of the existing samples94

rather than a linear interpolation of them. We also argue that the proposed Mix-Up is tailored for95

distance metric learning, making full use of the similarity among samples and class prototypes.96

Few-Shot Graph Representation Learning. Few-shot graph representation learning is concerned97

with applying graph representation learning techniques in scarce data scenarios. Similarly to standard98

graph representation learning, it tackles tasks at different levels of granularity: node-level [15, 59, 69,99

73, 74], edge-level [2, 36, 44, 60] and graph-level [12, 25, 30, 33, 37, 61, 63]. Concerning the latter,100

GSM [12] proposes a hierarchical approach, AS-MAML adapts the well known MAML [21] architecture to101

the graph setting and SMF-GIN [30] uses a Prototypical Network (PN) variant with domain-specific102

priors. Differently from the latter, we employ a more faithful formulation of PN that shows far103

superior performance. This difference is further discussed in Appendix B.4. Most recently, FAITH104

[61] proposes to capture episode correlations with an inter-episode hierarchical graph and SP-NP105

[33] suggests employing neural processes [23] for the task.106

3 Approach107

Setting and Notation. In few-shot graph classification each sample is a tuple (G = (V, E), y)108

where G = (V, E) is a graph with node set V and edge set E , while y is a graph-level class. Given109

a set of data-abundant base classes Cb, we aim to classify a set of data-scarce novel classes Cn.110

We cast this problem through an episodic framework [58]: during training, we mimic the few-shot111

setting dividing the base training data in episodes. Each episode e is a N -way K-shot classification112

task, with its own train (Dtrain) and test (Dtest) data. For each of the N classes, Dtrain contains K113

corresponding support graphs, while Dtest contains Q query graphs. A schematic visualization of an114

episode is depicted in Figure 1. We refer the reader to Appendix B.2 for an algorithmic delineation of115

the episode generation.116

Prototypical Network (PN) Architecture. We build our network upon the simple-yet-effective117

idea of Prototypical Networks [49], originally proposed for few-shot image classification. We employ118

a state-of-the-art Graph Neural Network as node embedder, composed of a set of layers of GIN119

convolutions [68], each equipped with a MLP regularized with GraphNorm [10]. In practice, each120

sample is first passed through a set of convolutions, obtaining a hidden representation h(ℓ) for each121

layer. According to [68], the latter is obtained by updating at each layer its hidden representation as122

h(ℓ)
v = MLP(ℓ)

((
1 + ϵ(ℓ)

)
· h(ℓ−1)

v +
∑

u∈N (v)
h(ℓ−1)
u

)
(1)

where ϵ(ℓ) is a learnable parameter. Following [67], the final node d-dimensional embedding hv ∈ Rd123

is then given by the concatenation of the outputs of all the layers. The graph-level embedding is then124

obtained by employing a global pooling function, such as mean or sum. While the sum is a more125
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Figure 2: Prototypical Networks architecture. A graph encoder embeds the supports graphs, the
embeddings that belong to the same class are averaged to obtain the class prototype p. To classify a
query graph q, it is embedded in the same space of the supports. The distances in the latent space
between the query and the prototypes determine the similarities and thus the probability distribution
of the query among the different classes, computed as in Equation (3).

expressive pooling function for GNNs [68], we observed the mean to behave better for the task in126

most considered datasets and will therefore be the aggregation function of choice when not specified127

differently. The K embedded supports s(n)1 , . . . , s
(n)
K for each class n are then aggregated to form the128

class prototypes p(n),129

p(n) =
1

K

K∑
k=1

s
(n)
k (2)

In the same way, the Q query graphs for each class n are embedded to obtain q
(n)
1 , . . . ,q

(n)
Q . To130

compare each query graph embedding q with the class prototypes p1, . . . ,pN , we use an L2-metric131

scaled by a learnable temperature factor α as suggested in [40]. We refer to this metric as dα. The132

class probability distribution ρ for the query is finally computed by taking the softmax over these133

distances134

ρn =
exp (−dα(q,pn))∑N

n′=1 exp(−dα(q,pn′))
. (3)

The model is then trained end-to-end by minimizing via SGD the log-probability L(ϕ) = − logρn135

of the true class n. We will refer to this approach without additions as PN in the experiments.136

Task-Adaptive Embedding (TAE). Until now, our module computes the embeddings regardless of137

the specific composition of the episode. Our intuition is that the context in which a graph appears138

should influence its representation. In practice, inspired by [40], we condition the embeddings on139

the particular task (episode) for which they are computed. Such influence will be expressed by a140

translation β and a scaling γ.141

First of all, given an episode e we compute an episode representation pe as the mean of the prototypes142

pn for the classes n = 1, . . . , N in the episode. We consider pe as a prototype for the episode and a143

proxy for the task. Then, we feed it to a Task Embedding Network (TEN), composed of two distinct144

residual MLPs. These output a shift vector β(ℓ) and a scale vector γ(ℓ) respectively for each layer145

of the graph embedding module. At layer ℓ, the output h(ℓ) is then conditioned on the episode by146

transforming it as147

ĥ(ℓ) = γ ⊙ h(ℓ) + β. (4)

As in [40], at each layer γ and β are multiplied by two L2-penalized scalars γ0 and β0 so to to promote148

significant conditioning only if useful. Wrapping up, defining gΘ and hΦ to be the predictors for the149
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Figure 3: Mixup procedure. Each graph is embedded into a latent representation. We generate a
random boolean mask σ and its complementary 1− σ, which describe the features to select from s1
and s2. The selected features are then recomposed to generated the novel latent vector s̃.

shift and scale vectors respectively, the actual vectors to be multiplied to the hidden representation150

are respectively β = β0gΘ(pe) and γ = γ0hΦ(pe) + 1. When we use this improvement in our151

experiments, we add the label TAE to the method name.152

MixUp (MU) Embedding Augmentation. Typical learning pipelines rely on data augmentation to153

overcome limited variability in the dataset. While this is mainly performed to obtain invariance to154

specific transformations, we use it to improve our embedding representation, promoting generalization155

on unseen feature combinations. In practice, given an episode e, we randomly sample for each pair156

of classes n1, n2 two graphs G(1) and G(2) from the corresponding support sets. Then, we compute157

their embeddings s(1) and s(2), as well as their class probability distributions ρ(1) and ρ(2) according158

to Equation (3). Next, we randomly obtain a boolean mask σ ∈ {0, 1}d. We can then obtain a novel159

synthetic example by mixing the features of the two graphs in the latent space160

s̃ = σs(1) + (1− σ)s(2), (5)

where 1 is a d-dimensional vector of ones. Finally, we craft a synthetic class probability ρ̃ for this161

example by linear interpolation162

ρ̃ = λρ(1) + (1− λ)ρ(2), λ =

(
1

d

d∑
i=1

σi

)
(6)

where λ represents the percentage of features sampled from the first sample. If we then compute the163

class distribution ρ for s̃ according to Equation (3), we can ask it to be similar to Equation (6) by164

adding the following regularizing term to the training loss165

LMU = ∥ρ− ρ̃∥22. (7)

Intuitively, by adopting this online data augmentation procedure, the network is faced with new166

feature combinations during training, helping to explore unseen regions of the embedding space.167

Moreover, we argue that in a distance metric learning approach, the distances with respect to all the168

prototypes should be considered, and not only the ones corresponding to the classes that are used169

for interpolation. On the other hand, in standard MixUp [71], the label for the new artificial sample170

x′ = αx1 + (1 − αx2) is obtained as the linear interpolation of the one-hot ground-truth vectors171

y1 and y2. This way, the information only considers the distance/similarity w.r.t. the classes of the172

two original samples. On the contrary, the proposed augmentation also maintains information on the173

distance from all the other prototypes and hence classes, thereby providing finer granularity than174

mixing one-hot ground truth vectors. The overall procedure is summarized in Figure 3.175

4 Experiments176

4.1 Datasets177

We benchmark our approach over two sets of datasets: the first one was introduced in [12], and178

consists of: (i) TRIANGLES, a collection of graphs labeled i = 1, . . . , 10, where i is the number179
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Model TRIANGLES Letter-High ENZYMES Reddit mean

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

K
er

ne
l WL 59.3 ± 7.7 64.5 ± 7.4 69.8 ± 7.2 74.1 ± 5.8 54.9 ± 9.1 57.0 ± 9.1 29.3 ± 4.5 34.2 ± 4.9 53.3 57.5

SP 61.0 ± 8.0 66.7 ± 7.4 67.3 ± 6.8 71.2 ± 6.6 58.8 ± 9.1 61.5 ± 8.8 51.0 ± 5.8 52.7 ± 4.9 59.5 63.0
Graphlet 69.2 ± 10.2 79.3 ± 8.1 35.4 ± 4.2 39.4 ± 4.4 58.8 ± 10.6 59.8 ± 9.8 42.7 ± 11.3 45.4 ± 11.2 51.5 56.0

M
et

a MAML 87.8 ± 4.9 88.2 ± 4.5 69.6 ± 7.9 73.8 ± 5.7 52.7 ± 8.9 54.9 ± 8.5 26.0 ± 6.0 37.0 ± 6.9 59.0 63.5
AS-MAML [37] 86.4 ± 0.7 87.2 ± 0.6 76.2 ± 0.8 77.8 ± 0.7 - - - - - -
AS-MAML⋆ 79.2 ± 5.9 84.0 ± 5.3 71.8 ± 7.6 73.0 ± 5.2 45.1 ± 8.2 53.1 ± 8.1 33.7 ± 10.8 37.4 ± 10.8 57.4 61.9

M
et

ri
c SMF-GIN [30] 79.8 ± 0.7 - - - - - - - - -

FAITH [61] 79.5 ± 4.0 80.7 ± 3.5 71.5 ± 3.5 76.6 ± 3.2 57.8 ± 4.6 62.1 ± 4.1 42.7 ± 4.1 46.6 ± 4.0 62.9 66.5
SPNP [33] 85.2 ± 0.7 86.8 ± 0.7 - - - - - - - -

Tr
an

sf
er

GIN 82.1 ± 6.3 83.6 ± 5.4 68.4 ± 7.3 74.5 ± 5.7 54.2 ± 9.3 55.9 ± 9.4 49.8 ± 7.0 53.4 ± 6.3 63.6 66.8
GAT 82.8 ± 6.1 83.4 ± 5.5 74.1 ± 6.2 76.4 ± 5.1 53.6 ± 9.4 55.4 ± 9.1 39.0 ± 6.7 41.7 ± 6.1 62.4 64.2
GCN 82.0 ± 6.1 82.7 ± 5.5 71.3 ± 6.8 74.9 ± 5.5 53.4 ± 9.3 54.6 ± 9.4 44.7 ± 7.4 50.8 ± 6.3 62.8 65.7
GSM [12] 71.4 ± 4.3 75.6 ± 3.6 69.9 ± 5.9 73.2 ± 3.4 55.4 ± 5.7 60.6 ± 3.8 41.5 ± 4.1 45.6 ± 3.6 59.5 63.8
GSM⋆ 79.2 ± 5.7 81.0 ± 5.6 72.9 ± 6.4 75.6 ± 5.6 56.8 ± 10.3 58.4 ± 9.7 40.7 ± 6.8 46.4 ± 6.3 62.4 65.4

O
ur

s

PN+TAE+MU 87.4
±0.9

87.5
±0.8

77.2
±5.5

79.2
±4.8

56.8
±10.1

59.3
±9.4

45.7
±6.7

48.5
±6.3

66.8 68.7±4e94 ±3e94 ±2e93 ± 1e93 ±4e93 ±3e93 ±2e93 ±2e93

Table 1: Macro accuracy scores over different k-shot settings and architectures. They are partitioned
into baselines (upper section) and our full architecture (lower section). The best scores are in bold.
We report standard deviation values in blue and 0.9 confidence intervals in orange. Cells filled with -
indicate lack of results in the original works for the corresponding datasets.

of triangles in the graph. (ii) ENZYMES, a dataset of tertiary protein structures from the BRENDA180

database [11]; each label corresponds to a different top-level enzyme. (iii) Letter-High, a collection181

of graph-represented letter drawings from the English alphabet; each drawing is labeled with the182

corresponding letter. (iv) Reddit-12K, a social network dataset where graphs represent threads, with183

edges connecting users interacting. The corresponding discussion forum gives the label of a thread.184

We will refer to this set of datasets as DA. The second set of datasets was introduced in [37] and185

consists of: (i) Graph-R52, a textual dataset in which each graph represents a different text, with186

words being connected by an edge if they appear together in a sliding window. (ii) COIL-DEL, a187

collection of graph-represented images obtained through corner detection and Delaunay triangulation.188

We will refer to this set of datasets as DB. The overall dataset statistics are reported in Appendix A.189

It is important to note that only the datasets in DB have enough classes to permit a disjoint set of190

classes for validation. In contrast, a disjoint subset of the training samples is used as a validation set191

in the first four by existing works. We argue that this setting is critically unfit for few-shot learning,192

as the validation set does not make up for a good proxy for the actual testing environment since193

the classes are not novel. Moreover, the lack of a reliable validation set prevents the usage of early194

stopping, as there is no way to decide on a good stopping criterion for samples from unseen classes.195

We nevertheless report the outcomes of this evaluation setting for the sake of comparison.196

4.2 Baselines197

We group the considered approaches according to their category. We note, however, that the taxonomy198

is not strict, and some works may considered to belong to more categories.199

Graph kernels. Starting from graph kernel methods, we consider Weisfeiler-Lehman (WL)200

[46], Shortest Path (SP) [7] and Graphlet [45]. These well-known methods compute similarity201

scores between pairs of graphs, and can be understood as performing inner-product between graphs.202

We refer the reader to [32] for a thorough treatment. In our implementation, an SVM is used as the203

head classifier for all the methods. More implementation details can be found in Appendix B.204

Meta learning. Regarding the meta-learning approaches, we consider both vanilla Model-Agnostic205

Meta-Learning (MAML) [21] and its graph-tailored variant AS-MAML [37]. The former employs a206

meta-learner trained by optimizing the sum of the losses from a set of downstream tasks, encouraging207

the learning of features that can be adapted with a small number of optimization steps. The latter208

builds upon MAML by integrating a reinforcement learning-based adaptive step controller to decide the209

number of inner optimization steps adaptively.210

Metric learning. For the metric based approaches, the considered works are SMF-GIN [30], FAITH211

[61] and SPNP [33]. In SMF-GIN, a GNN is employed to encode both global (via an attention over212

different GNN layer encodings) and local (via an attention over different substructure encodings)213
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Category Model Graph-R52 COIL-DEL mean

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Kernel
WL 88.2 ±10.9 91.4 ±9.1 56.5 ±12.7 64.0 ±12.8 72.4 77.7
SP 84.3 ±11.3 88.9 ±9.6 39.6 ±9.6 45.5 ±11.3 61.9 67.2
Graphlet 57.4 ±10.3 58.3 ±10.1 57.6 ±12.2 61.3 ±11.5 57.5 59.8

Meta
MAML 64.9 ±13.3 70.1 ±12.7 76.7 ±12.6 78.8 ±11.5 70.8 74.4
AS-MAML [37] 75.3 ±1.1 78.3 ±1.1 81.5 ±1.3 84.7 ±1.3 78.4 81.5
AS-MAML⋆ 72.3 ±14.8 72.0 ±15.5 77.2 ±11.1 80.1 ±9.9 74.7 76.0

Transfer

GIN 67.2 ±13.9 66.4 ±13.7 72.3 ±11.4 74.0 ±11.3 69.8 74.4
GAT 75.2 ±12.8 77.5 ±12.4 79.3 ±10.3 80.8 ±9.9 77.2 79.1
GCN 75.1 ±13.0 74.1 ±14.5 75.2 ±11.4 77.1 ±10.8 75.1 75.6
GSM⋆ 70.3 ±15.7 71.6 ±14.9 74.9 ±11.4 79.2 ±10.3 72.6 75.4

Metric SPNP [33] - - 84.8 ±1.6 87.3 ±1.6 - -

Ours

PN 73.1 ±12.1 78.0 ±10.6 85.5 ±9.8 87.2 ±9.3 79.3 82.6
PN+TAE 77.9 ±11.8 81.3 ±10.6 86.4 ±9.6 88.8 ±8.5 82.1 85.0

PN+TAE+MU 77.9
±11.8

81.5
±10.4

87.7
±9.2

90.5
±7.7

82.8 86.0
±3e93 ±4e93 ±4e93 ±3e93

Table 2: Macro accuracy scores over different k-shot settings and architecture. The best scores are in
bold. We report standard deviation values in blue and 0.9 confidence intervals in orange. Cells filled
with - indicates lack of results in the original works for the corresponding datasets.

properties. We point out that they include a ProtoNet-based baseline. However, their implementation214

does not accurately follow the original one and, differently from us, leverages domain-specific prior215

knowledge. FAITH proposes to capture correlations among meta-training tasks via a hierarchical216

task graph to transfer meta-knowledge to the target task better. For each meta-training task, a set of217

additional ones is sampled according to its classes to build the hierarchical graph. Subsequently, the218

knowledge from the embeddings extracted by the hierarchical task graph is aggregated to classify the219

query graph samples. Finally, SPNP makes use of Neural Processes (NPs) by introducing an encoder220

capable of constructing stochastic processes considering the graph structure information extracted by221

a GNN and a prototypical decoder that provides a metric space where classification is performed.222

Transfer learning. Finally, transfer learning approaches include GSM [12] and three simple223

baselines built on top of varying GNN architectures, namely GIN [68], GAT [56] and GCN [31]. The224

latter follow the most standard fine-tuning procedure, i.e. training the embedder backbone over the225

base classes and fine-tuning the classifier head over the k supports. In GSM, graph prototypes are226

computed as a first step and then clustered based on their spectral properties to create super-classes.227

These are then used to generate a super-graph which is employed to separate the novel graphs.228

The original work however does not follow an episodic framework, making the results not directly229

comparable. For this reason, we also re-implemented it to cast it in the episodic framework. We230

demand the reader to Appendix B for more details.231

4.3 Experimental details232

Our graph embedder is composed of two layers of GIN followed by a mean pooling layer, and the233

dimension of the resulting embeddings is set to 64. Furthermore, both the latent mixup regularizer234

and the L2 regularizer of the task-adaptive embedding are weighted at 0.1. The framework is trained235

with a batch size of 32 using Adam optimizer with a learning rate of 0.0001. We implement our236

framework with Pytorch Lightning [17] using Pytorch Geometric [19], and WandB [6] to log the237

experiment results. The specific configurations of all our approaches are reported in Appendix B.238

5 Results239

We report in this section the results over the two sets of benchmark datasets DA, DB . Given the240

lack of homogeneity in the evaluation settings of previous works, we will report both the standard241

deviation of our results between different episodes and the 0.95 confidence interval. Moreover, when242

possible, we provide the re-implementation of the methods, indicating them with a ⋆.243
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Benchmark DA. As can be seen in Table 1, there is no one-fits-all approach for the considered244

datasets. In fact, the best results for each are obtained with approaches belonging to different245

categories, including graph kernels. However, the proposed approach obtains the best results if we246

consider the average performance for both k = 5, 10. In fact, considering previous published works,247

we obtain an overall margin of +7.3%, +4.9% accuracy for k = 5, 10 compared to GSM [12], +9.4%248

and +6.8% compared to to AS-MAML⋆ [37], and +3.9%, +2.2% with respect to FAITH [61]. However,249

we again stress the partial inadequacy of these datasets as a realistic evaluation tool, given the lack of250

a disjoint set of classes for the validation set. Interestingly, our re-implementation of GSM⋆ obtains251

slightly better results than the original over Reddit and Letter-High, a significant improvement252

over TRIANGLES and a comparable result over ENZYMES. The difference may be attributed to the253

difference in the evaluation setting, as the non-episodic framework employed in GSM does not have a254

fixed number of queries per class, and batches are sampled without episodes.255

BenchmarkDB. Table 2 shows the results for the two datasets in the benchmark. Most surprisingly,256

graph kernels exhibit superior performance over R-52, outperforming all the considered deep learning257

models. It must be noted, however, that the latter is characterized by a very skewed sample distribution,258

with few classes accounting for most of the samples. In this regard, deep learning methods may259

end up overfitting the most frequent class, while graph kernel methods are less prone due to the260

smaller parameter volume and stronger inductive bias. Nevertheless, the latter also hinders their261

adaptivity to different distributions: we can see, in fact, how the same methods perform miserably262

on COIL-DEL. This can be observed by considering the mean results over both sets of datasets, in263

which graph kernels generally perform the worst. Compared to existing works, our approach obtains264

an average margin of +4.37% and +4.53% over AS-MAML [37] and +10.2%,+10.6% over GSM for265

k = 5, 10 respectively. Finally, the last three rows of Table 2 show the efficacy of the proposed266

improvements. Task-adaptive embedding (TAE) allows obtaining the most critical gain, yielding an267

average increment of +2.82% and +2.42% for the 5-shot and 10-shot cases, respectively. Then, the268

proposed online data augmentation technique (MU) allows obtaining an additional boost, especially269

on COIL-DEL. In fact, in the latter case, its addition yields a +0.65% and +1.72% improvement in270

accuracy for k = 5, 10. We speculate that the less marked benefit on Graph-R52 may in part be271

caused of its highly skewed class distribution, as discussed in Appendix C.4.Remarkably, a vanilla272

Prototypical Network (PN) architecture with the proposed graph embedder is already sufficient to273

obtain state-of-the-art results.274

Qualitative analysis. The latent space learned by the graph embedder is the core element of our275

approach since it determines the prototypes and the subsequent sample classification. To provide a276

better insight into our method peculiarities, Figure 5 depicts a T-SNE representation of the learned277

embeddings for novel classes. Each row represents different episodes, while the different columns278

show the different embeddings obtained with our approach and its further refinements. We also279

highlight the queries (crosses), the supports (circles) and the prototypes (star). As can be seen, our280

approach separates samples belonging to novel classes into clearly defined clusters. Already in PN,281

some classes naturally cluster in different regions of the embedding. The TAE regularization improves282

the class separation without significantly changing the disposition of the clusters in the space. Our283

insight is that the context may let the network reorganize the already seen space without moving284

far from the already obtained representation. Finally, MU allows better use of previously unexplored285

regions, as expected from this kind of data augmentation. We show that our feature recombination286

helps the network better generalize and anticipate the coming of novel classes.287

6 Conclusions288

Limitations. Employing a graph neural network embedder, the proposed approach may inherit289

known issues such as the presence of information bottlenecks [53] and over smoothing [13]. These290

may be aggravated by the additional aggregation required to compute the prototypes, as the readout291

function to obtain a graph-level representation is already an aggregation of the node embeddings.292

Also, the nearest-neighbour association in the final embedding assumes that it enjoys a euclidean293

metric. While this is an excellent local approximation, we expect it may lead to imprecision. To294

overcome this, further improvements can be inspired by the Computer Vision community [51].295

Future works. In future work, we aim to enrich the latent space defined by the architecture, for296

instance, forcing the class prototypes in each episode to be sampled from a learnable distribution297
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Figure 4: Visualization of latent spaces from the COIL-DEL dataset, through T-SNE dimensionality
reduction. Each row is a different episode, the colors represent novel classes, the crosses are the
queries, the circles are the supports and the stars are the prototypes. The left column is produced
with the base model PN, the middle one with the PN+TAE model, the right one with the full model
PN+TAE+MU. This comparison shows the TAE and MU regularizations improve the class separation
in the latent space, with MU proving essential to obtain accurate latent clusters.

rather than directly computed as the mean of the supports. Moreover, it may be worth introducing an298

attention layer to have supports (or prototypes, directly) affect each other directly and not implicitly,299

as it now happens with the task embedding module. We also believe data augmentation is a crucial300

technique for the future of this task: the capacity to meaningfully inflate the small available datasets301

may result in a significant performance improvement. In this regard, we plan to extensively test302

the existing graph data augmentation techniques in the few-shot scenario and build upon MixUp to303

exploit different mixing strategies, such as non-linear interpolation.304

Conclusions. In this paper, we tackle the problem of few-shot graph classification, an under-305

explored problem in the broader machine learning community. We provide a modular and extensible306

codebase to facilitate practitioners in the field and set a stable ground for fair comparisons. The latter307

contains re-implementations of the most relevant baselines and state-of-the-art works, allowing us to308

provide an overview of the possible approaches. Our findings show that while there is no one-fits-all309

approach for all the datasets, the overall best results are obtained by using a distance metric learning310

baseline. We then suggest valuable additions to the architecture, adapting a task-adaptive embedding311

procedure and designing a novel online graph data augmentation technique. Lastly, we prove their312

benefits for the problem over several datasets. We hope this work to encourage a reconsideration of313

the effectiveness of distance metric learning when dealing with graph-structured data. In fact, we314

believe metric learning to be incredibly fit for dealing with graphs, considering that the latent spaces315

encoded by graph neural networks are known to capture both topological features and node signals316

effectively. Most importantly, we hope this work and its artifacts to facilitate practitioners in the field317

and to encourage new ones to approach it.318
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Dataset avg # nodes avg # edges # samples # samples / class # classes # base # val # novel

DB
COIL-DEL 21.54 54.24 3900 39 96 60 16 20
Graph-R52 30.92 165.78 8214 unbalanced 28 18 5 5

DA

TRIANGLES 20.85 35.5 2010 201 10 7 0 3
ENZYMES 32.63 62.14 600 100 6 4 0 2
Letter_high 4.67 4.5 2250 150 15 11 0 4
Reddit-12K 391.41 456.89 1111 101 11 7 0 4

Table 3: Statistics of all the considered datasets. These are grouped according to whether they
encompass a disjoint set of classes to be used for validation. Graph-R52 is the only one with a
skewed distribution of samples over its classes.

editors, Proceedings of the 28th ACM International Conference on Information and Knowledge588

Management, CIKM 2019, Beijing, China, November 3-7, 2019, pages 2357–2360. ACM, 2019.589

3590

A Data statistics591

We report in Table 3 general statistics of the datasets considered in this work.592

B Additional details593

B.1 Evaluation setting594

The models are trained in an episodic framework by considering N -way K-shot episodes with the595

same N and K considered for the novel classes at test time. We use for each dataset the same N and596

K proposed by the works in which they were introduced. In particular, K = 5, 10 for all the datasets,597

while the number of classes N is reported in Table 4. The best model used for evaluation is picked by598

employing early stopping over the validation set. The latter is composed of a random 20% subset599

of the base samples for datasets in DA while it is composed of samples from a disjoint set of novel600

classes, different from the ones used for testing, for datasets in DB .601

N Train (base classes) Validation Test (novel classes)

Graph-R52 2 {3, 4, 6, 7, 8, 9, 10, 12, 15, 18, 19, 21, 22, 23, 24, 25, 26, 27} {2, 5, 11, 13, 14} {0, 1, 16, 17, 20}

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, {64, 65, 66, 67, 68, {80, 81, 82, 83, 84, 85, 86
COIL-DEL 5 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 69, 70, 71, 72, 73, 87, 88, 89, 90, 91, 92, 93,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52,53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63} 74, 75, 76, 77, 78, 79} 94, 95, 96, 97, 98, 99}

ENZYMES 2 {1, 3, 5, 6} * {2, 4}

Letter-High 4 {1, 9, 10, 2, 0, 3, 14, 5, 12, 13, 7} * {4, 6, 11, 8}

Reddit 4 {1, 3, 5, 6, 7, 9, 11} * {2, 4, 8, 10}

TRIANGLES 3 {1, 3, 4, 6, 7, 8, 9} * {2, 5, 10}

Table 4: Split between base and novel classes for each dataset, chosen to be the same as the
competitors. Datasets marked with a (*) do not have a disjoint set of classes for validation, so the
validation set is a disjoint subsample of samples from the base classes.

The epochs contain 2000, 500 and 1 episodes for train, val and test respectively. Finally, the number602

of queries Q is set to 15 for each class and for each dataset. Each episode has therefore in total N ∗Q603

queries. The number of episodes in a batch is set to 32 for all the datasets except that for Reddit, for604

which is set to 8.605

We follow the same base-novel splits used by GSM and AS-MAML. These are shown in Table 4.606

The model configurations are described in Table 5. Hyperparameter values for TRIANGLES and607

Letter-High were found via Bayesian parameter search, while those for Graph-R52, COIL-DEL,608

ENZYMES and Reddit were set to the same set of manually found values after having observed an609

overall small benefit in employing searched parameters. For the evaluation, we randomly sample610

5000 episodes containing support and query samples from the novel classes. We then compute the611

accuracy over the query samples.612
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DA DB

ENZYMES Letter-High Reddit TRIANGLES COIL-DEL Graph-R52

LR 1e-4 1e-2 1e-4 1e-3 1e-4 1e-4
Scaling factor 7.5 90.0 7.5 7.5 7.5 7.5
γ0 init. 0.0 0.0 0.0 0.0 0.0 0.0
β0 init. 1.0 5.0 1.0 1.0 1.0 1.0
λmixup 0.1 0.1 0.1 0.6 0.1 0.1
λreg 0.1 0.3 0.1 0.8 0.1 0.1
Global Pooling mean sum mean mean mean mean
Embedding dim. 64 32 64 64 64 64
# convs 2 3 2 2 2 2
Dropout 0.0 0.7 0.0 0.5 0.0 0.0
# GIN MLP layers 2 2 2 1 2 2

Table 5: Model hyperparameters for the various datasets.

In GSM, the reported standard deviation is computed among a different number of runs of the613

same pretrained model for different support and query sets. Since they do not employ an episodic614

framework neither for training and for evaluation, their setting is not directly comparable to ours615

and therefore led us to re-implement it. We used the same hyperparameters employed in the original616

manuscript for the datasets in DA. For the datasets in DB , over which the original model has never617

been employed, we chose the number of superclasses to match the increased number of classes in the618

latter datasets, choosing a value of 4 and 10 for Graph-R52 and COIL-DEL respectively. Furthermore,619

for the transfer learning baselines we use the same setting of our re-implementation of GSM, but we620

set repeat the fine-tuning phase of the supports 10 times.621

For the graph kernel methods, we use the Grakel library [47]. A SVM is used as the classifier for622

all three approaches with the kernel sets to “precomputed” as the graph kernel methods pass to it623

the similarity matrix. We employ the default parameters for all the graph kernels for all the datasets,624

excluding Graphlet on R-52 and Reddit where we use a graphlet size equals to 3 instead of the625

default value 5, where the computational costs were infeasible due to the size of graphs.626

Finally, since AS-MAML reports the 0.95 confidence interval, we also re-implement this work using627

the same hyperparameters of the original work, allowing us to retrieve the results on the remaining628

datasets.629

B.2 Episodes generation and training procedures630

We outline in Algorithm 1 the pseudo-code to generate the N -way K-shot episodes. Algorithm 2 and631

Algorithm 3 then present the training pipeline for ProtoNet and MAML respectively.632

Algorithm 1 Episodes generation.

1: procedure GENERATE_EPISODES(G: dataset of graphs, Nepisodes: int, K: int, Q: int)
2: C ← classes in G
3: E ← []
4: for all i in Nepisodes do
5: e← []
6: Cepisode ← sample N classes from C
7: for all c in Cepisode do
8: S ← sample K graphs with class c
9: Q ← sample Q graphs with class c, S ∩ Q = ∅

10: e← (S,Q)
11: end for
12: E ← E + e
13: end for
14: return E
15: end procedure
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Algorithm 2 Prototypical Networks training.

1: procedure TRAIN(E : dataset of episodes, d: distance function,M: model)
2: ℓ← 0
3: for all e in E do
4: (S,Q)← e
5: S̄ ←M(S) ▷ embed supports
6: Q̄ ←M(Q) ▷ embed queries
7: P ← []
8: for all c in Cepisode do ▷ classes of the episode
9: S̄c ← supports with class c

10: pc ←mean
(
S̄c
)

11: P ← P + pc
12: end for
13: D← matrix ∈ RQ×N , Dij = d(Q̄i,Pj)
14: ℓ← ℓ+CrossEntropy(−D,YQ) ▷ YQ ground truth
15: end for
16: M← SGD(M, ℓ)
17: end procedure

Algorithm 3 Meta Learning pipeline.

1: procedure TRAIN(E : dataset of episodes, Nin: number of inner steps,M: model)
2: ℓout ← 0
3: for all e in E do ▷ outer loop
4: (S,Q)← e
5: M′ ← copy(M)
6: for all i in Nin do ▷ inner loop
7: ŶS ←M′(S)
8: ℓin ← CrossEntropy(ŶS ,YS) ▷ YS ground truth
9: M′ ← SGD(M′, ℓin)

10: end for
11: ŶQ ←M(Q)
12: ℓout ← ℓout +CrossEntropy(ŶQ,YQ) ▷ YQ ground truth
13: end for
14: M← SGD(M, ℓout)
15: end procedure

B.3 Efficiency analysis633

Table 6 reports the training time and number of episodes of our approach over each dataset. Table 7634

instead shows how the model compares in training and inference times with respect to the other635

considered models over Graph-R52.636

DA DB

ENZYMES Letter-High Reddit TRIANGLES COIL-DEL Graph-R52

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Time (seconds) 1058 817 8493 3698 1846 2156 1600 1252 4269 5948 1449 1388
Episodes 192 192 8320 1792 128 64 4608 3072 1856 4544 1920 1536

Table 6: Training time in seconds and number of episodes over the various datasets with varying
number of shots k. These include the whole training time with early stopping enabled. All the
computation was carried on a NVIDIA 2080Ti GPU with an Intel(R) Core(TM) i7-9700K CPU.

B.4 Difference with SMF-GIN637

The main difference of our ProtoNet baseline and the architecture proposed by SMF-GIN [30] lies638

in the loss computation, as in SMF-GIN the cross-entropy is computed over the one-hot prediction639
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GSM* MAML PN PN+TAE PN+TAE+MU

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Training time 0:50:03 0:56:03 0:32:57 0:32:28 0:12:07 0:19:11 0:16:21 0:25:15 0:24:09 0:23:08
Inference time 2.82s 3.18s 0.05s 0.05s 0.05s 0.07s 0.05s 0.06s 0.06s 0.06s

Table 7: Training and inference times of the considered models.

Pooling Graph-R52 COIL-DEL

5-shot 10-shot 5-shot 10-shot

mean 77.9 ±11.8 81.5 ±10.4 87.7 ±9.2 90.5 ±7.7
mean + var 74.41 ±12.67 79.45 ±10.12 86.45 ±10.19 88.78 ±8.99

Table 8: Macro accuracy scores for mean var pooling versus standard mean pooling.

for the query and the ground truth label. Differently, we instead directly compute the cross-entropy640

between the predicted class probability vector and the ground truth label vector, the first obtained as641

the softmax over the additive inverse of the query-prototypes distances. By doing so, we preserve642

the quantitative distance information for all the classes, which is discarded if only the one-hot vector643

prediction is considered. The superior performance can be appreciated in the results for the only644

common benchmark that is considered in SMF-GIN, i.e. TRIANGLES, where our our ProtoNet645

baseline achieves an accuracy of 86.64 versus the 79.8 reported by SMF-GIN. The latter result646

empirically confirms the importance of faithfully adhering to the original ProtoNet pipeline.647

C Qualitative Analysis648

More insight into the learned latent space is provided in Figures 5 to 7. In Figure 5, the latent space649

of different episodes for the Graph-R52 dataset is shown considering the three presented models.650

It is worth noting that, on the Graph-R52 dataset, the PN+TAE model creates better clusters than651

the PN model, and these are slightly improved with the addition of MU. Nevertheless, the benefits652

of adding MU are not as clearly visible as they are for COIL-DEL, and this is also reflected in the653

less prominent benefit in accuracy. Subsequently, in Figure 6 we present the latent space of a novel654

episode produced by the datasets belonging to DA, namely ENZYMES, Letter-High, Reddit and655

TRIANGLES. We compare the T-SNE obtained by our full model with the one obtained by GSM⋆ (our656

re-implementation of GSM). As can be seen, our model is more successful at separating samples into657

clusters than GSM⋆. Finally, in Figure 7 we show the latent space of a novel episode produced by the658

datasets belonging to DB. As before, the T-SNE plot demonstrates the better separation ability of our659

full model than GSM⋆ also for these datasets.660

C.1 Standard deviation-aware global pooling661

As it is typical in graph representation learning, graph-level embeddings are obtained in this work by662

aggregating the node embeddings with some permutation invariant function, such as the mean or the663

sum. As a prototype is already defined as the mean of the samples for the corresponding class, the664

risk of obtaining over-smoothed representations increases. Aiming to alleviate this issue, we also665

experiment with graph-level embeddings containing information about both the mean of the node666

embeddings as well as the standard deviation. In particular, we first halve the dimension of each node667

embedding with a learnable linear transformation, and then compute mean and standard deviation of668

the transformed embeddings. The final graph-level embedding will be the concatenation of the mean669

and standard deviation of its node embeddings. The model employing this variant of pooling is called670

‘mean + var’ in Table 8. Nevertheless, we observe on-par or slightly worse results in accuracy when671

employing this variant. Additional tuning may be required to take full advantage of this information,672

leaving an interesting future direction to investigate.673
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Figure 5: Visualization of novel episodes’ latent spaces from the Graph-R52 dataset, through T-SNE
dimensionality reduction. Each row is a different episode, the colors represent novel classes, the
crosses are the queries, the circles are the supports and the stars are the prototypes. The left column
is produced with the base model PN, the middle one with the PN+TAE model, the right one with the
full model PN+TAE+MU. This comparison shows that the TAE and MU regularizations improve the
class separation in the latent space, although less remarkably than in COIL-DEL.
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Figure 6: T-SNE visualization of a novel episode’s latent space from the datasets belonging to DA.
The first row shows the T-SNE produced with our full model (PN+TAE+MU), while the second one
shows the plots produced with GSM⋆. In each plot, the colors represent novel classes, the crosses are
the queries and the circles are the supports. In addition, since our model works with prototypes, these
are represented by the stars only in the plots of the first row.
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Figure 7: T-SNE visualization of a novel episode’s latent space from the datasets belonging to DB.
The first row shows the T-SNE produced with our full model (PN+TAE+MU), while the second one
shows the plots produced with GSM⋆. In each plot, the colors represent novel classes, the crosses are
the queries and the circles are the supports. In addition, since our model works with prototypes, these
are represented by the stars only in the plots of the first row.

Model Graph-R52 COIL-DEL mean

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

PN 73.1 ±12.1 78.0 ±10.6 85.5 ±9.8 87.2 ±9.3 79.3 82.6
PN+MU 73.49 ±12.39 78.25 ±11.04 85.41 ±10.1 87.65 ±9.21 79.45 82.95
PN+TAE 77.9 ±11.8 81.3 ±10.6 86.4 ±9.6 88.8 ±8.5 82.1 85.0
PN+TAE+MU 77.9 ±11.8 81.5 ±10.4 87.7 ±9.2 90.5 ±7.7 82.8 86.0

Table 9: Ablation study over different k-shot settings.

C.2 Ablation study674

We report here the results of the ablation study over Graph-R52 and COIL-DEL. As it is evident675

from the table, MixUp alone does not yield a significant boost in accuracy, while providing a more676

sensible increment when coupled with Task Adaptive Embeddings. The latter allows samples to677

be embedded in the most convenient way for the episode at hand, possibly also enabling more678

meaningful mixed samples. We note, however, that the MixUp configuration was evaluated with the679

same hyperparameters used in the full model, and hence the actual results may be slightly better.680

C.3 MixUp and class similarities681

In this section, we investigate the effect of MixUp on the similarity among different classes. To682

this end, we compute the mean of 100 random samples for each class, obtaining a representative683
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(a) COIL-DEL (b) Graph-52.

Figure 8: Difference in mean class similarity between PN+TAE and PN+TAE+MU.

for each class, and compute the similarity among all possible pairs of class representatives. The684

similarity is based on the squared L2 distance which is used during the optimization. We run the same685

computation for a model trained with MixUp and one without. In order to have a more immediately686

understandable visualization, we compute for each class its mean similarity with the other classes,687

which is basically the mean over the column dimension of the similarity matrix. We then compute the688

difference of these values between vanilla and MixUp, getting the vectors in Figure 8. It is immediate689

to see that the vectors contain all positive values, indicating that the classes are actually more different690

when employing MixUp. This observation is coherent with the improved classification scores, as it is691

particularly crucial for a metric-based model to have an embedding space in which classes are easily692

discriminable using the metric that is used in the optimization.693

C.4 Class imbalance694

We believe class imbalance to be under-investigated in episodic frameworks. In our case, the mean695

of the supports to create the prototype is still going to be computed over the same fixed number of696

samples (K) for each episode. While this avoids cases in which a class prototype is computed over a697

large number of samples and one is computed over just a few, it is not immediately clear how much698

effect data imbalance may have in such a scenario. In general, it is intuitive to assume that the model699
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Figure 9: Sample distribution for Graph-R52.

will learn a more suitable representation for data-abundant classes than for the rarer ones. To see the700

effect of data imbalance on our model, we also evaluated on the imbalanced dataset Graph-R52. As701

can be seen in Figure 9, the dataset in fact exhibits a severely skewed sample distribution among702

the classes. The lesser improvement compared to what we gain on other datasets may suggest that703

our model may be hindered by class imbalance. However, this behavior might be inherited from the704

episodic setting itself, as it has been speculated to yield worse results when dealing with imbalanced705

datasets [16]. We, therefore, aim to replace the random sample selection in the episode generation706

with an active one, as this has been shown to be particularly beneficial for class-imbalanced tasks707

[16]. This extension is left for future work.708
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