USCUniversity of Southern California

Goal: Given
$$y = f(x) + \eta$$
, infer $p(x|y)$.

Challenges:

- Measurement may be corrupted by unknown noise.
- Inverse map may not be well-posed.
- Uncertainty in inferred solution critical for applications with high-stake decisions.

Bayesian inference

- A principled approach to account for uncertainty in an inverse problem.
- Gives probability distribution over inferred field given some measurement.
- Posterior distribution

$$p_X^{post}(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Q} p^{like}(\boldsymbol{y}|\boldsymbol{x}) p_X^{prior}(\boldsymbol{x})$$
$$\propto p_\eta(\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x})) p_X^{prior}(\boldsymbol{x})$$

Challenge I : Sampling

- Inferred signal is high dimensional (10³-10⁷).
- Difficult to sample from high dimensional posterior space using sampling-based methods like MCMC.

Challenge II : Priors

Difficult to characterize p_x^{prior} analytically when the prior knowledge is given in terms of complex data or constraints.

Challenge III : Forward map

- The forward model may be unknown (or a black-box simulator)
- What is available? Pairwise (x, y) data.

Challenge IV : Generalizability

Algorithms trained using dataset A may fail on dataset B containing out-of-distribution (OOD) samples.

Paper: D. Ray , D. Patel, H. Ramaswamy, A. Oberai, "Efficient Posterior Inference & Generalization in Physics-based Bayesian Inference with *Conditional GANs"*, Deep inverse workshop (NeurIPS 2021): <u>https://openreview.net/pdf?id=VC7UtQ2j0XW</u>

<u>Acknowledgement</u>: The support from ARO grant W911NF2010050 is acknowledged.

Efficient Posterior Inference & Generalization in Physics-based **Bayesian Inference with Conditional GANs** Deep Ray, Dhruv V. Patel, Harisankar Ramaswamy and Assad A. Oberai

cGAN as Posterior

Key idea: Using a conditional GAN for sampling from the posterior in physics-based inverse problems.

Let

 $\mathbf{z} \in \Omega_{\mathbb{Z}} \subset \mathbb{R}^n$, $x \in \Omega_X$, $y \in \Omega_Y$ $(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{x}\boldsymbol{y}}$ $z \sim p_z$,

Consider the generator and critic

$$d: \Omega_X \times \Omega_Y \mapsto \mathbb{R}, \ \boldsymbol{g}: \Omega_Z \times \Omega_Y \mapsto \Omega_X$$

Define the loss

$$\mathcal{L}(d, \boldsymbol{g}) = \underset{\substack{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{\boldsymbol{x}\boldsymbol{y}} \\ \boldsymbol{z} \sim p_{\boldsymbol{z}}}{\mathbb{E}} [d(\boldsymbol{x}, \boldsymbol{y}) - d(\boldsymbol{g}(\boldsymbol{z}, \boldsymbol{y}), \boldsymbol{y})]$$
$$= \underset{\substack{\boldsymbol{x} \sim p_{\boldsymbol{x}|\boldsymbol{y}} \\ \boldsymbol{y} \sim p_{\boldsymbol{y}}}{\mathbb{E}} [d(\boldsymbol{x}, \boldsymbol{y})] - \underset{\substack{\boldsymbol{x}^{\boldsymbol{g}} \sim p_{\boldsymbol{x}|\boldsymbol{y}}^{\boldsymbol{g}} \\ \boldsymbol{y} \sim p_{\boldsymbol{y}}}{\mathbb{E}} [d(\boldsymbol{x}, \boldsymbol{y})] - \underset{\substack{\boldsymbol{x}^{\boldsymbol{g}} \sim p_{\boldsymbol{x}|\boldsymbol{y}}^{\boldsymbol{g}} \\ \boldsymbol{y} \sim p_{\boldsymbol{y}}}{\mathbb{E}} [d(\boldsymbol{x}, \boldsymbol{y})]$$

Under the constraint that *d* is 1-Lipschitz, solve

$$(d^*, \boldsymbol{g}^*) = \operatorname{argmin}_{g} \operatorname{argmax}_{d} \mathcal{L}(d, \boldsymbol{g})$$

$$\Rightarrow \boldsymbol{g}^*(,, \boldsymbol{y}) = \operatorname{argmin}_{g} W_1(p_{\boldsymbol{x}|\boldsymbol{y}}, \boldsymbol{g}_{\#}(., \boldsymbol{y})p_{\boldsymbol{z}})$$

Convergence in Wasserstein-1 metric implies weak convergence

$$\mathbb{E}_{x \sim p_{x|y}}[m(x)] = \mathbb{E}_{x^{g} \sim p_{x|y}^{g}}[m(x^{g})]$$
$$= \mathbb{E}_{z \sim p_{z}}[m(g^{*}(z, y))] \quad \forall m \in C_{b}(\Omega_{x})$$

Procedure

Algorithm

- Generate $\{x^{(i)}\}_{i=1}^{M}$ samples from p_{x} .
- 2. For each $x^{(i)}$, solve the forward model to obtain (noisy) $y^{(i)}$.
- 3. Train the cGAN using the set of pairwise samples
- $\{(x^{(i)}, y^{(i)})\}_{i=1}^{M}$.
- 4. For a given y, sample $z \sim p_z$ and push it through $g^*(\cdot, y)$ to sample from the posterior.
- 5. Compute the posterior MC statistics on the set $\{ \boldsymbol{g}^{*}(\boldsymbol{z}^{(j)}, \boldsymbol{y}) \}_{i=1}^{N}$

Network architecture:

Generator:

- U-net architecture with convolution-residual blocks on each level.
- The latent information injected at various levels through conditional instance normalization.
- **Critic:**
- Down-sampling with residual blocks, followed by dense layers.

{deepray, dhruvvpa, hramaswa, aoberai}@usc.edu

ð.	100			12 H. F. F. S.	
		ж.	1920		
		23	- 1	- 1	 1.00
:	나라 같은 것이 없다.	1983 - H.S.			

Inverse heat conduction: Inferring initial condition $\frac{\partial u(\boldsymbol{s},t)}{\partial t} - \nabla \left[\left(k(\boldsymbol{s}) \nabla u(\boldsymbol{s},t) \right) \right]_{\Omega} = b(\boldsymbol{s})$ $k \coloneqq$ thermal conductivity $u \coloneqq$ temperature $u(\boldsymbol{s},0)|_{\Omega} = x(\boldsymbol{s})$ $x \coloneqq u(s, 0)$ $u(\mathbf{s},t)|_{\partial\Omega} = 0$ $y \coloneqq u(s, 1)$ $b \coloneqq$ heat source Training samples = 8000, dim(z) = 100Same distribution as training set Mean SD **Measurement** Target Out of distribution (OOD) $\frac{\partial x_k}{\partial x_k} \approx \overline{\text{grad}}_k = \frac{1}{100}$ Influence of x_k is the neighborhood of y_k !

Key takeaways:

- \checkmark cGANs can learn the posterior distribution in physics-informed inference.
- \checkmark cGANs have the capacity to generalize on OOD measurements.
- Locality of the learned inverse map (promoted by architecture) helps with generalizability.