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Goal: Giveny = f(x) + 1, infer p(x|y). Key idea: Using a conditional GAN for sampling from the

Results

Inverse heat conduction: Inferring conductivity Inverse heat conduction: Inferring initial condition
posterior in physics-based inverse problems.
Challenges: o o
* Measurement may be corrupted by unknown noise. Let — V. (x(S)V)’(S)) =b(s) *°7 thermal conductivity ou(s, t) — V. (k(s)Vu(S t)) = b(s) fe = thermal conductivity
* Inverse map may not be well-posed. z €Q, c R, x € Qy, y € Q, y(s) {2 — 0 y = temperature dt Q u := temperature
* Uncertainty in inferred solution critical for applications with z~p,, (X, Y)~Dy 00 b := heat source u(s,0)|g =x(s) x:= u(s,0)
high-stake decisions. Y u(s,t)|gg =0 y = u(s,1)
— heat
S Consider the generator and critic . , b St SOUTLE
Example: medlcltcal imaging Training samples = 8000, dim(z) =50 Training samples = 8000, dim(z) = 100
Un-safe
d: Oy XQy - R, g: 0, X0y - Oy Same distribution as training set Same distribution as training set
Define the loss Measurement Target Mean Measurement Target Mean
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Ld,g)= E [dx,y)—d(g(zy)y)]
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measurement inferred signal measurement inferred signal uncertainty zZ~p, : - : : :
. = [E [d(x — E [d(x9

* Example: geophysics [Adler et al, 2018} x~px|y[ (%, y)] <9 [d(x9,y)]

— - y~Dy x|y -0.1 1.0 : 0.0 :
Y~DPy
B | Under the constraint that d is 1-Lipschitz, solve

- N
A
L\ { v

0.6 9.3 : ' '
It)é"0
0os!®! (d* *) _ . L d 0.3 5.2 . .
_ ,g") = argminargmax £L(d, g)
measurement inferred signal measurement inferred signal  uncertainty ) d
% . :
[Isaac et al, 2015] — g (' . .Y) = drgmin Wl (px|y» 9 ( ’ Y)pz) -0.1 1.0 : 0.0 '
g

Out of distribution (OOD)

Convergence in Wasserstein-1 metric implies weak convergence
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Bayesian inference E [m(x)]= E [m(x9)] | > | |
X~Dx|y xg~px|y
_ N Q : 2.3 : :
* A principled approach to account for uncertainty in an inverse o Z,\I,Epz[m(g (z, )’))] vm € Cb( x)
problem. - 1.0 - - Out of distribution (OOD)
* Gives probability distribution over inferred field given some . 3.5 . 1.0 4.0
measurement. Procedure
Posterior distribution . | | | 5 5 | - L |
Py (xly) = —p'*e(ylx) pi " (x) | | y-
¢ Drior Algorithm | 1.0 | 0 | |
<oy — S Py (%) 1. Generate {x(i)}?il samples from p,. 0.7 - ' - - i e 2, -
(1) ° i (D) o
Challenge | : Sampling 2. For.each X\, solvg the forward mpdgl to obtain (noisy) y'*. . K
: L. . . N 3. Train the cGAN using the set of pairwise samples ' ' ' - - -
* Inferred signal is high dimensional (10°-107). oy \ L E
 Difficult to sample from high dimensional posterior space using {(x(l),y(l))}i=1- . h'-‘ ! o,
sampling-based methods like MCMC. 4. For agiven y, sample z ~p, and push it through g* (-, y) to o e : 3 L6
sample from the posterior. .1
Challenge Il : Priors 5. Compute the posterior MC statistics on the set - - 06
Difficult to characterize p}?rwr analytically when the prior {g*(z(j), y)}ly_l_ | | | | I | |
knowledge is given in terms of complex data or constraints. /= 0 o -

Network architecture: : : :
Challenge Il : Forward map Gradients: Locality of inverse map

: Generator:
 The forward model may be unknown (or a black-box simulator) . . . . 10 10
. . L * U-net architecture with convolution-residual blocks on each 060X 1 09k , /1~
* What is available? Pairwise (x, y) data. © X ~ orad, = —— _(Z(]) (l))
level. oa dy PR T 100 gy <Y
L * The latent information injected at various levels through =1 Jj=1
Challenge IV : Generalizability ditional inst oat 0.2 (D) )
Algorithms trained using dataset A may fail on dataset B conditionatinstance normatization. 0.0 Y Py» S

. .. : Critic:
containing out-of-distribution (OOD) samples. i i I
: ( ) P * Down-sampling with residual blocks, followed by dense layers. Intluence of x; Is the neighborhood of y; !

Key takeaways:

Paper: D. Ray,D. Patel, H. Ramaswamy, A. Oberai, “Efficient Posterior Inference & Generalization in Physics-based Bayesian Inference with
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Conditional GANs”, Deep inverse workshop (NeurlIPS 2021): https://openreview.net/pdf?id=VC7UtQ2j0XW CGANSs can learn the posterior distribution in physics-informed inference.

v' ¢cGANs have the capacity to generalize on OOD measurements.
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