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S1 FURTHER RELATED WORK

S1.1 SIMPLICITY BIAS AND DOMAIN GENERALISATION

Representation learning relies on proxy metrics to determine which features should be learned. Typ-
ical methods seek to optimise desirable properties of the representation, such as maximising the
mutual information between embeddings (Chen et al., 2020; Ozsoy et al., 2022), or minimising the
covariance between features (Bardes et al., 2022). Simplicity bias (Shah et al., 2020) is the tendency
of machine learning models to learn the simplest features required to satisfy any given objective
(Robinson et al., 2021; Chen et al., 2021), deteriorating the quality of models’ learned representa-
tions. Models must seek to reduce redundancy in their representations so learning every possible
complex feature is not possible, as these could be mostly noise. However, in many cases, learn-
ing the simplest features is a shortcut solution that neglects the complexity of the true underlying
manifold (Geirhos et al., 2020).

The encoder architecture has been shown to have little effect on this bias (Pinto et al., 2022). A
natural avenue for development is to incorporate additional sources of information into training
which make it easier to identify these features. Whilst not explicitly designed to solve simplicity
bias, recent work has established the effectiveness of this method, such as vision-language modelling
(Radford et al., 2021) and knowledge distillation from paired data (Farndale et al., 2023b). However,
these additional sources of information may not always be available.

Shortcut solutions are often exposed with transfer learning, as these features typically do not gener-
alise as well as solutions which capture the complexity of the underlying manifold (Vasudeva et al.,
2023). Sometimes simpler features are desirable in this setting, as they are usually more robust to
minor changes in appearance. However, many simple features such as texture or background can be
artefacts of a training set and consequently are harmful to domain generalisation.

S1.2 SELF-SUPERVISED LEARNING FEATURE COMPLEXITY

It has been shown that self-supervised models learn features with a variance greater than that im-
posed by the augmentation regime, as these are the only features which can be reliably predicted
under augmentation (Jing et al., 2021). In this setting, features which either only exhibit small
changes in appearance or have larger, infrequent changes, will typically be very hard to differentiate
from noise induced by augmentation. This reduces overfitting on trivial or undesirable features, but
also results in models failing to learn the potentially large space of features which are valuable but
have low variance. Naturally, features can not be easily normalised to unit variance, as they are
not known a priori. For example, these interesting low-variance features could be minor changes in
shape which are hidden by elastic deformations induced by the augmentation regime such that the
model does not learn to identify them. If there are few features with sufficient variance to be learned
relative to the augmentation regime, this phenomenon can lead to dimensional collapse, where a
model produces a low-rank representation (Jing et al., 2021) and deteriorates performance (Wang &
Qi, 2022).

Sridharan & Kakade (2008) showed that retaining predictive features while discarding superfluous
information requires a multi-view assumption about the relationship between the views and down-
stream labels. This is the assumption that for two SSL inputs x1, x2, the meaningful semantics
which should be learned are shared by both inputs (views). Formally, we write that for two views
x1, s and some task label ¥, there exists some €;,5, > 0 such that

I(y; x1|22) < €info,  L(y522]|71) < €info- (S1)

This is the foundational assumption underpinning self-supervised JE architectures (Shwartz-Ziv &
LeCun, 2023). Several attempts have been made to relax this assumption (Kahana & Hoshen, 2022;
Wang et al., 2022), although these rely on reconstructing the input image, which results in learning
redundant features such as precise landmark locations and colours (Balestriero & LeCun, 2024), and
consequently producing worse representations for downstream tasks in general. Thus, designing an
architectural framework for relaxing the multi-view assumption is an open problem (Shwartz-Ziv &
LeCun, 2023).

While the multi-view assumption is not especially restrictive for standard, multi-view approaches,
these approaches become problematic in multimodal setting. This is because information not shared
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between inputs can be ignored, degrading performance (Farndale et al., 2023b). Consequently,
information in inputs cannot be divided as neatly into superfluous and predictive information based
on being shared between inputs. From Equation S1 we can see that any information not shared
between views is superfluous under mutual-information maximisation, hence additional modalities
may stop the model learning useful unshared features. This is seen in ImageBind (Girdhar et al.,
2023). Despite the emergence of alignment between modalities with no paired training data, the
performance of the model is considerably worse than standard approaches. Nevertheless, aligning
multiple inputs by mapping into shared latent spaces remains a promising approach for finding
emergent alignment between feature sets.

S1.3 MINIMAL SUFFICIENT REPRESENTATION

Representation learning is the task of finding a mapping f from an input x to a representation z
which is informative about some feature(s) of the data y. A sufficient representation of z for y is
one which is as informative about y as the input data itself, with no loss of information due to the
encoding. Formally, this requires that the conditional mutual information I(x; y|z) = 0 (Wang et al.,
2022).

Federici et al. 2020 show that conditional mutual information can be subdivided into predictive and
superfluous information using the chain rule of information theory:

Iwz) = I(wszly)  +  I(yz) . (82)
—— S——
superfluous information  predictive information

The minimal sufficient representation is the sufficient representation that most minimises the first
term. In self-supervised learning, the label is assumed to be a priori unknown. Multi-view SSL
methods therefore seek to minimise redundancy, with augmentations designed such that any infor-
mation not shared between views will be an artefact of the augmentation, not helpful for a future
predictive task. An input z is augmented in two different way to give augmented inputs x, x2,
which are then mapped by the encoder f to representations z1, zo. A projector g then maps z1, 22
to embeddings e;, es, on which the loss is applied. Reformulating Equation S2 for the unsupervised
setting gives

I(xl;el) = I($1;61|(L'2) —+ I(xg;el) . (83)

—_— ——

superfluous information  predictive information

In practice, it is not necessarily desirable for an encoder to learn a strictly sufficient representation,
as this may only be possible by retaining an undesirable amount of superfluous information. As
such, solutions typically seek to minimise the relaxed Lagrangian objective £ = L£1_,5 + Lo_,1,
where

Li2(M2) = I(z15e1]|r2) — M2l (223 €1), (S4)

where \15 is the Lagrange multiplier induced by the optimisation problem, controlling the trade-off
between the amount of superfluous information learned by the model and the amount of predictive
information not learned, and £5_,; is defined symmetrically (Federici et al., 2020).

S1.3.1 TRIDENT AND MULTIPLE LATENT-SPACE MODELS

TriDeNT (Farndale et al., 2023b) is a model which was developed to address the restrictions of the
multi-view assumption by adding an additional branch to the model architecture to create three si-
multaneous joint-embeddings. This allows the model to trade off learning simple features against
complex features which receive a strong supervisory signal from the paired data. For a joint-
embedding loss £, TriDeNT minimises }; ;¢ o .3 £(€;,€;). TriDeNT is effective for distilling
information in a medical image setting, with significant performance improvements over baseline
methods.

Despite TriDeNT’s success with using knowledge distillation to guide the model to relevant, low-
variance features, it is limited in scope by only being able to utilise one source of paired data.
Additional joint-embeddings can overconstrain the model, leading to worse performance, as features
shared between additional inputs but not present in the primary input receive a strong supervisory
signal that does not relate to anything seen by the encoder. Alternatively, additional inputs may share
few or no features, and cause the encoders to limit the variance of their learned features to avoid large
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penalties from this mismatch. A natural approach might be to create joint embedding only between
the primary branch and each additional branch in order to limit the effect of additional branches on
each other, however, it has been shown that this still leads to emergent alignment between branches
(Girdhar et al., 2023), meaning features not shared between branches are ignored.

S2 EXTENDED DATASET DESCRIPTIONS

S2.1 MNIST-CIFAR

The MNIST-CIFAR dataset is the standard test used to assess simplicity bias, and is designed to
assess models’ ability to learn complex features (Shah et al., 2020; Morwani et al., 2023; Tiwari &
Shenoy, 2023). The dataset consists of digits from MNIST (LeCun et al., 1998) concatenated to
images from the CIFAR10 dataset (Krizhevsky et al., 2009), as shown in Figure 2a. The MNIST
images contain very simple features, and models typically achieve close to 100% accuracy on this
test. In contrast, the features in CIFAR10 are more complex, and are not as easily learned. After
training on the concatenated images, the level of simplicity bias can be assessed by randomising
either the MNIST (denoted rMNIST) or CIFAR (denoted rCIFAR) component. The model’s dif-
ference in performance between INONE (no randomisation) and rMNIST determines the level of
simplicity bias. If only the simple MNIST features have been learned, the performance will drop
from near perfect to random guessing, while better accuracy indicates complex features have been
learned from the CIFAR images. Conversely, if there is a performance drop on rCIFAR, the model
has neglected some MNIST features and only learned the complex features.

Even if the encoder has learned both simple and complex features, the MNIST features will in-
evitably be more predictive and have greater variance. This means that the classifier will be biased
towards the simpler MNIST features. A better test is therefore to train the classifier on the rMNIST
dataset. This means that the classifier can only use the complex CIFAR features for classification,
and directly assesses the complexity of the learned representations. In this setting we begin to see
differences depending on the pretraining method.

S2.2 EUROSAT

EuroSAT (Helber et al., 2019) is a well-established benchmark in geospatial image analysis. It
consists of 27,000 64 x 64px images at a resolution of 10 meters per pixel from the Sentinel-2
satellite, which is a part of the European Space Agency’s Copernicus program. The images contain
13 spectral bands, which each correspond to a different region of the electromagnetic spectrum.
These bands each contain different information about the land use and environmental properties of
the region depicted in the image, such as cloud cover, soil moisture, and biomass estimation. The
downstream task associated to EuroSAT is 10 class classification of the categories Annual Crop,
Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent Crop, Residential, River,
Sea Lake.

S2.3 MMEARTH

The MMEarth dataset (Nedungadi et al., 2024) is a large multimodal dataset containing data from
12 modalities for 1.2 million locations. We only utilise the Sentinel-2 data, which consists of 1.2
million 64 x 64px patches, with the same 13 spectral bands as EuroSAT. As there is no associated
downstream task with MMEarth, we use EuroSAT to evaluate models trained on MMEarth.

S2.4 NCT-CRC-100K

The NCT-CRC-100K dataset (Kather et al., 2019) is a widely used benchmark dataset in computa-
tional pathology. It features 100,000 224 x 224px patches taken from 86 patients with colorectal
cancer, approximately evenly split into 9 categories: Adipose, Background, Debris, Lymphocytes,
Mucus, Smooth Muscle, Normal Colon Mucosa, Cancer-Associated Stroma, and Colorectal Ade-
nocarcinoma Epithelium. There is also an associated test dataset containing 7180 patches from a
separate 25 patients.
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Figure S1: (a) Average intra-image variance of channels in Orion-CRC subsets (b) Gating strategy
used to create tasks for downstream analysis (c) Projector ablations on Orion-CRC

S2.5 CAMELYON

To assess the robustness of the models trained on NCT-CRC-100K to distribution shift, we use the
WILDS Camelyon17 dataset (Koh et al., 2021). This is a variant of the original Camelyon17 (Bandi
et al., 2018) dataset, which features 1400 whole slide images of H&E stained lymph node sections.
The dataset is constructed to assess robustness to distribution shift, with slides from three hospitals
used for training, and slides from a different hospital used for testing. The dataset features 96 x 96px
patches with a train/test split of 179,394/146,722. We resize the patches to 224 x 224px for consis-
tency with NCT-CRC-100K. The evaluation task associated with Camelyon is binary classification
of the presence of metastasis.

S2.6 ORION-CRC

To the best of our knowledge, there are no existing benchmarks for machine learning on multi-
plex images. We therefore construct two datasets by subsampling the publicly available Orion-CRC
dataset (Lin et al., 2023). Orion-CRC contains 41 pathology slides, images with both H&E stain-
ing and 17-plex multiplex immunofluorescence. The markers used were Hoechst, CD31, CD45,
CD68, CD4, FOXP3, CD8«, CD45RO, CD20, PD-LI, CD3e, CD163, E-cadherin, PD-1, Ki67,
Pan-CK, and SMA, and the images contain an autofluorescence channel (AF1) and a negative con-
trol (Argo550).

Using the segmentation mask provided for the CRCO02 slide, we randomly subsampled 1% of all
cells to create a dataset of 12,606 cells, which were extracted in 64 x 64px patches. We then
created two zero-shot downstream evaluation tasks from CRCO1, following the same protocol but
randomly selecting 2000 cells from each desired cell type, split evenly into train and test sets. Cells
were defined by the gating strategy in Figure S1b For the Cell Types task, this was Tumour, B Cells,
Macrophages and T Cells. This task requires only simple features, as cells have very different marker
profiles and are mostly morphologically distinct (B and T cells are less morphologically distinct than
the others but express different markers). For the T Cells task, we randomly selected CD4", CD8™,
and regulatory T cells (Tregs) as our cell types, which are all T cell subsets. This requires more
complex features to be learned, as these channels have lower variance and are morphologically
indistinguishable.
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Cell Types T Cells Cell Types T Cells

Method (Simple)  (Complex) Method (Simple)  (Complex)
SpliCER 0.9003 0.8163 Baseline 0.8820 0.5665
Multiple Encoders 0.8928 0.8029 + additional branches 0.6578 0.5545
Double Hyperstack Branch 0.9035 0.8116 + distinct projectors 0.6715 0.5222
Baseline + chunking 0.8827 0.6069 + chunking (SpliCER) 0.9003 0.8163

(a) (b)

Figure S2: (a) Ablations on Orion-CRC tasks showing possible adaptations to SpliCER (b) Abla-
tions on Orion-CRC tasks breaking down each element of SpliCER

To analyse which channels models are most likely to focus on, we analyse the variance in the image
gradients of each channel. Hoechst has the largest variance by a significant margin, whereas some
stains, such as FOXP3, can have three orders of magnitude less variance. This means that models
are likely to ignore features in FOXP3, which are uncommon and therefore can incur large penalties
in the pretraining loss. In contrast, features in Hoechst will be readily learned. We also observe
large differences between intensities of different subsets of cells. For example, there is much greater
variance among T cells than among all cells in the sample, as FOXP3 is a marker for Tregs. In
contrast, there is considerably less variance in CD20 and pan-CK, as T cells do not express the these
proteins, so any expression is likely to be either off-target staining or a T cell being adjacent to a
tumour cell or B cell.

S2.7 MEDMNIST

Inspired by the MNIST handwritten digits dataset (LeCun et al., 1998), MedMNIST (Yang et al.,
2023) is a collection of 18 standardised biomedical datasets which have been preprocessed to ensure
ease of use. The images are available in 28, 64, 128, and 224px sizes, and each dataset has one or
more associated classification tasks. In this work we use both ChestMNIST and PneumoniaMNIST,
which feature chest radiographs from the NIH-ChestXray14 dataset (Wang et al., 2017) and a dataset
from Kermany et al.(Kermany et al., 2018).

ChestMNIST features 112,120 frontal-view X-rays from 30,805 patients, split into train, validation,
and test sets of size 78468, 11,219, ad 22,433 respectively. PneumoniaMNIST features 5856 frontal-
view chest X-rays, with train/validation/test splits of 4708/524/624 respectively.

S3 TRAINING AND IMPLEMENTATION DETAILS

Models were trained for 100 epochs with a batch size of 256. The backbone encoder was a ResNet-
18 (He et al., 2016) for all tasks except the histology segmentation training, where ResNet-50 was
used. Primary models were always trained from random initialisation and were appended with
three layer projection heads with layer size 8192, batch normalisation between layers, ReLU activa-
tions, and a linear final layer. Figure S1c shows the results are robust to this choice. For SpliCER,
the primary projection head was split into evenly distributed chunks, and the projection head was
scaled accordingly by the number of channels. For example, there are 19 channels in the Orion-
CRC dataset, so each projection head had output dimension 431. In the Orion-CRC and MMEarth
examples, a single paired encoder was used for all single-channel inputs — two in total. For the
MNIST-CIFAR and histology segmentation examples, a separate encoder was used for each branch,
giving three encoders in total. An Adam optimiser (Kingma & Ba, 2014) with a warmup cosine
learning rate was used, warming up the learning rate from 0 to 10~* over the first 10% of epochs.
There were no differences in the hyperparameters used for SpliCER and any baselines.

Two loss functions were tested: VICReg (Bardes et al., 2022) and SimCLR (Chen et al., 2020).
VICReg is a non-contrastive loss which contains terms to regularise the variance and covariance of
each embedding, and enforcing pairwise invariance between embeddings. SimCLR is a contrastive
method using the InfoNCE loss (Oord et al., 2018), which is also used in methods such as CLIP
(Radford et al., 2021). For VICReg, we used the standard parameters A = p = 25, v = 1, and for
SimCLR we used the temperature 7 = 0.5.
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Table S1: Effect of Normalisation

Task Method  None Normalise- Clip &

only Normalise
Cell Tynes  SPHCER ~ 0.9003  0.7550 0.6710
(Simylpe) YJE 06715  0.6242 0.6018
P Baseline 0.8820  0.5940 0.7285
Tces  SPHCER 08163 0.3558 0.6789
(Complex) =B 05222 03525 0.4812
OMPIEX) " Baseline 0.5665  0.3598 0.5582

Table S2: Evidence of usefulness of background features from the histology segmentation tasks

Loss Method NCT  Camelyon

SpliCER 0.9372 0.8230
TriDeNT (Nuclei Paired) 0.9209 0.7763
Baseline (Nuclei Paired) 0.8979 0.8013

Baseline 0.8855 0.6822

VICReg

For downstream tasks, encoder weights were frozen and a linear classifier with softmax activation
was used to perform classification. Classifiers were trained for 100 epochs with data augmented
with the same regime used for pretraining. All metrics reported are mean per-class accuracy.

S4 ABLATIONS

S4.1 NORMALISATION AND CLIPPING

We assess the effect of normalisation to demonstrate that simply normalising the inputs does not ad-
dress feature variance. We employ two different normalisation schemes: normalisation, and normal-
isation with clipping. Multiplexed immunofluorescence typically have a long tail and background
noise, so a standard approach is to clip the bottom and top 5% of values in each channel before
normalising to zero mean and unit variance (Wolflein et al., 2023).

We find that the improved performance of SpliCER cannot be explained by implicit normalisation.
In Table S1, we demonstrate that normalisation of the data only reduces performance, and SpliCER
on unnormalised data consistently outperforms the other methods. We postulate than normalisation
is harmful due to condensing the majority of values to a very small interval, as these images are
dominated by a small number of large values.

S4.2 ALTERNATIVE APPROACHES

In Figure S2 we investigate alternative design choices which could be made in SpliCER. We observe
marginally worse performance using a separate encoder for each branch and using one encoder for
all branches (in both cases there is a separate encoder for the primary branch). This could be due to
a single shared encoder essentially seeing 19x as many training examples. Intuitively, there could
be scenarios where it was more important to use different encoders, such as when we have prior
knowledge that different branches contain very different input images, or if there are different input
dimensions.

We also experiment with using a second hyperstack, following TriDeNT (Farndale et al., 2023b).
This does not appear to significantly affect the performance. This is likely because all of the infor-
mation in the hyperstack is also present in at least one branch of the paired data, so there are no
features which could be neglected by not being paired. We find that the embedding chunking mech-
anism alone is insufficient to achieve the performance gains of SpliCER. If there are not multiple
branches, the chunking is redundant, and is essentially equivalent to halving the size of the projector,
as the remaining half only receives signal from the variance and covariance loss terms.
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Table S3: MNIST-CIFAR results for original classes (0: car, 1: truck) and for new, out-of-
distribution classes (0: bird, 1: cat)

Original Classes New Classes
rNONE rMNIST rCIFAR 1NONE rMNIST rCIFAR

SpliCER  0.9980  0.6840  0.9974 0.9974  0.6638  0.9980
3-JE 0.9990  0.7485  0.9990 0.9990  0.5855 0.9985
Baseline  0.9969  0.6275  0.9964 0.9959  0.6265 0.9964

Method

In Figure S2b, we break down SpliCER into its constituent parts to assess the impact of each. We see
that naively adding branches makes the downstream performance considerably worse. This is not
significantly affected by adding distinct projectors, but the addition of chunking to create SpliCER
achieves significant performance gains on the complex T Cells task, and restores performance on
the simple Cell Types task.

Finally, in Table S2, we confirm that the background provides useful information in the NCT and
Camelyon tasks. We train both a baseline VICReg model and a TriDeNT model with just the nuclei
as paired data. This improves performance compared to the unpaired baseline, but fails to reach
the performance of SpliCER. This indicates that by incorporating features from the background
SpliCER has a better set of learned features for these downstream tasks.

S5 ADDITIONAL ANALYSIS

S5.1 TRIDENT OPTIMISATION PROBLEM

TriDeNT (Farndale et al., 2023b) has been proposed as a method to balance learning features which
are strong in either the primary or paired inputs. This allows the model to use the paired data only
so far as it is useful, and neglect it if not. Concretely, the optimisation problem becomes

L= > Lis;(y)
4,5€{1,2,%}
i#] (S5)
= Z I(xi;ei|a:j) —)\ijl(acj;ei).
4,5€{1,2,*}
i#]
The increased degrees of freedom allow A;; to be implicitly adjusted to cater to the paired infor-
mation, such that information which may be considered superfluous in the unimodal formulation
can now be learned if it is shared between the primary and paired data. This mitigates the effects
of strong augmentation on the features learned, as features which would otherwise be lost to aug-
mentation can now have a strong supervisory signal from the paired information. The loss function
for TriDeNT does not achieve this optimally, as the optimisation process still penalises superflu-
ous information between primary views, even if the same information is not superfluous for the
primary/paired terms, and vice-versa.

S5.2 MAPPING INPUTS TO ONE SHARED LATENT SPACE OVERCONSTRAINS MODELS

We note that there is a significant difference in the performance of >-JE between the MNIST-CIFAR
and the other tasks. This can be understood in the context of the multi-view assumption, Equation
S1. There is no restriction on models’ ability to learn any features shared between all branches,
as these are present in all views. Features of the primary input which are not shared between all
branches inherently must be shared with at least one branch. When there are two paired branches,
as in MNIST-CIFAR, the supervisory signal for each feature is half coming from the branch with
the feature, and half coming from the branch without the feature. Therefore, the supervisory signal
for that feature to the main encoder can still be reasonably strong. In contrast, if there are a large
number of branches without the feature (or a strongly correlated feature), the signal is considerably
diluted by unrelated features or collapsed dimensions, making the feature difficult to learn unless its
underlying signal is very strong. This is discussed further in Section S5.3
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Table S4: Full MNIST-CIFAR Results

rNONE (All) rMNIST (Complex) rCIFAR (Simple)
Loss Paired Image  Method | INONE rMNIST rCIFAR ‘ rNONE rMNIST rCIFAR ‘ rNONE rMNIST rCIFAR
NONE TriDeNT | 0.9954  0.5165  0.9939 | 0.6765  0.6230  0.5434 | 0.9929  0.5160  0.9939
Baseline | 0.9908  0.5160  0.9908 | 0.6061 0.6410 04673 | 09918  0.5150  0.9918
SpliCER | 0.9974  0.5150 09985 | 0.6459  0.6425  0.5066 | 0.9974  0.5150  0.9974
MNIST TriDeNT | 0.9985  0.5160  0.9985 | 0.3668  0.4990  0.3449 | 0.9985  0.5160  0.9980
VICReg Baseline | 0.9980  0.5160  0.9980 | 0.6245  0.5270  0.6071 | 0.9985  0.5165  0.9980
SpliCER | 0.9888  0.5145 09878 | 0.7199  0.6840  0.5235 | 0.9867  0.5150  0.9852
CIFAR TriDeNT | 0.8699  0.6155  0.7577 | 0.6776  0.6645  0.5010 | 0.8291 0.5400  0.8041
Baseline | 0.7372  0.6745  0.5847 | 0.6883  0.6830  0.4827 | 0.6719  0.5020  0.7020
BOTH SpliCER | 0.9964  0.5155  0.9964 | 0.6781 0.6675  0.4893 | 0.9969  0.5170  0.9969
¥-JE 0.9934  0.4855  0.9929 | 0.6071 0.6530 04510 | 09934 04855  0.9934
NONE TriDeNT | 0.9974  0.5165  0.9974 | 0.6515  0.6390  0.5158 | 0.9974  0.5165  0.9969
Baseline | 0.9974  0.5160  0.9964 | 0.6301 0.6260 05179 | 0.9974  0.5170  0.9964
SpliCER | 0.9959  0.5175 09944 | 0.6224  0.6100  0.5036 | 0.9964  0.5170  0.9949
MNIST TriDeNT | 09980  0.5155  0.9985 | 0.5776  0.5670  0.4995 | 0.9985  0.5160  0.9985
SimCLR Baseline | 0.9980  0.5155  0.9974 | 0.5643  0.5875  0.4852 | 0.9980 05155  0.9974
SpliCER | 0.9908  0.5140 09893 | 0.7128  0.6940  0.5117 | 0.9903  0.5130  0.9888
CIFAR TriDeNT | 0.9408  0.5330  0.9250 | 0.7097  0.6760  0.5255 | 0.9066  0.5020  0.9219
Baseline | 0.8224  0.5950  0.7362 | 0.7005  0.6880  0.5158 | 0.7566 ~ 0.5030  0.7561
BOTH SpliCER | 0.9964  0.5165  0.9949 | 0.6469  0.6735  0.4781 | 0.9969  0.5165  0.9964
¥-JE 0.9959  0.4840  0.9964 | 0.6592  0.6840  0.4883 | 0.9969  0.4845  0.9959

S5.3 USE-CASE FOR MAPPING ALL CHANNELS INTO A SHARED LATENT SPACE

There is a highly specific use-case for mapping all channels into a shared latent space: when a
downstream task is known and all channels are strongly associated with the downstream label, there
is some utility in training aligning all embeddings. As there is no requirement that the features
learned by each branch are necessarily the same, there may be features that are highly correlated but
bare no resemblance to each other, such as associating the shape of Os and properties of cars. These
can be mapped to the same embedding element, but provide no meaningful information about the
other branch. In the extreme case, where the branches are not related to each other at all (such as
MNIST-CIFAR), this causes collapse to any shared feature. For MNIST-CIFAR, the shared feature is
the correspondence between e.g. 0 and car, or 1 and truck. In this case, we find that SSL training with
unrandomised MNIST and CIFAR in a shared latent space causes collapse to a low-rank solution
with very high correlation to the label. This essentially reduces the problem to supervised learning
with feature regularisation, as the signal from the additional branch serves only to differentiate cars
from trucks, or Os from 1s, with no information about the features learned.

This approach could be helpful in very specific cases, however, it is not useful for general represen-
tation learning, as the resultant representations are not robust to domain shift, much like supervised
learning. We show in Table S3 that changing the image classes used as CIFAR inputs considerably
reduces the performance of the 3-JE model, while SpliCER can generalise well. This is because
SpliCER creates a supervisory signal that encourages the learning of generic image features, which
3-JE lacks.

Table S4 shows the results for all models evaluated on all datasets, including those they were not
trained on. We see that this reproduces the results of (Shah et al., 2020), where models without paired
data collapse to random accuracy on rMNIST and achieve good results on rNONE and rCIFAR.
Interestingly, we observe that models paired with CIFAR can perform on rMNIST even when trained
on rNONE. This implies that they have neglected simple MNIST features in favour of learning
CIFAR features, as MNIST features would likely be used by the classifier head when training on
rNONE. We propose that SpliCER always performs poorly in this setting because it has learned both
MNIST and CIFAR features.
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