
A CART Loss

Let ⌧i,j be the indicator variable for whether Xi is chosen for the jth estimator. We recall that CART
loss for the a cell A along dimension k for the position cut z in tree j is:

1P
i IXi2A⌧i,j

X

i

(Yi�ȲA)
2IXi2A⌧i,j�

1P
IXi2A⌧i,j

X

i

(Yi�ȲALIX(k)
i <z

�ȲARIX(k)
i �z

)2IXi2A⌧i,j ,

(5)
where the superscript (k) denotes the k-th coordinate, and where

ȲA =

P
YiIXi2A⌧i,jP
IXi2A⌧i,j

, ȲAL =

P
YiIXi2AIX(k)

i <z
⌧i,j

P
IXi2AIX(k)

i <z
⌧i,j

, and ȲAR =

P
YiIXi2AIX(k)

i �z
⌧i,j

P
IXi2AIX(k)

i �z
⌧i,j

.

If any of the denominators are 0, by convention, the CART loss is 1P
i IXi2A⌧i,j

P
i(Yi �

ȲA)2IXi2A⌧i,j .

B Proofs

B.1 Proof of Theorem 3

Recall that cuts under the CART splitting criterion are the cuts given by Algorithm 2, which uses the
CART loss given by Equation 5. In [32] theoretical cuts are defined as the cuts that follow Algorithm
2, but with the CART loss replaced by a “theoretical loss”. The theoretical loss, in turn, is defined for
a cell A along dimension k for the position cut z as:

L⇤(k, z) := V (Y |X 2 A)� P (X(k) < z|X 2 A)V (Y |X(k) < z,X 2 A)

�P (X(k) � z|X 2 A)V (Y |X(k) � z,X 2 A)

The reason for the name “theoretical cuts” is that by the strong law of large numbers CART loss
converges almost surely to the theoretical loss, which is not dependent on the data.

We first remark that in [32] their proof of Lemma 1 in fact proves more than its statement:
Lemma 1. Under Assumption 2.2, let x 2 Rd

, let Ik be the hyperrectangle containing x after k
theoretical cuts, and let Dx := \kIk. Then with probability 1 we have that E(Y |X) is almost surely

constant over Dx.

Proof. This is immediate from the proof of Lemma 1 in [32]. (Note that the randomness of Dx in
the statement comes from the choice of splitting dimensions, governed by ✓.)

As Assumptions 1a, 1b and 1c are trivially satisfied under the additive regression model assumption,
similarly to the proof of Theorem 1 it suffices to show that E(V (E(Y 0|X 0)|X)) ! 0, where (X 0, Y 0)
is an IID copy of (X,Y) restricted to the sub probability space where X 0 2 RX,n. This is an
immediate corollary of the following lemma:
Lemma 2. Under Assumption 2.2, let DX := \kIk, where Ik is the hyperrectangle containing X
after k theoretical cuts. Then the volume Vol(RX,n\DX) converges to 0 in probability.

Proof. Fix ", � > 0. As in [32], let Ak,n(X, ✓) be the cell containing X after only k cuts, and let
A⇤

k(X, ✓) be the cell containing X after k theoretical cuts. By definition, there exists a k0 so that
P (Vol(A⇤

k0
(X, ✓)\DX) > "

2) <
�
2 . By Lemma 3 in [32], the cuts up to the kth0 step are arbitrarily

close to the theoretical cuts with as high a probability as we want. In particular, for any n big enough,
we have that

P (Vol(Ak0,n(X, ✓)\A⇤
k0
(X, ✓)) >

"

2
) <

�

2
.

As one can observe from a simple Venn diagram,

Vol(Ak0,n(X, ✓)\DX) Vol(Ak0,n(X, ✓)\A⇤
k0
(X, ✓)) + Vol(A⇤

k0
(X, ✓)\DX).

14

Therefore,

P (Vol(Ak0,n(X, ✓)\DX) > ")

 P
⇣
Vol(Ak0,n(X, ✓)\A⇤

k0
(X, ✓)) >

"

2
or Vol(A⇤

k0
(X, ✓)\DX) >

"

2

⌘

<
�

2
+

�

2
= �.

Finally, since the volume only gets smaller for more cuts than k0, the result follows.

B.2 Proof of the Main Theorem (Theorem 4)

We follow the same general outline as [32], with some notable exceptions. There they used the
methods in [15], which provides tools for proving consistency results for estimators that minimize
mean square loss among a data-dependent classes of functions. Note that both mean regression RFs
and QRFs fall into this category.

Let Fn be the set of cell-wise constant functions on the (data dependent) partition given by the
generalized tree from Theorem 4; and let In be the (random) set of indices of the subsample chosen.

We will now recast Theorem 3 from [32] (see also [15]), which was originally about mean regression,
to the situation of using a generalized random forest estimator for quantile regression: (As P (Y
y|X) is bounded, we may omit the truncation operators appearing in the original statements.)
Theorem 5. Let Fn, In be as above. Assume that there is a sequence of real numbers �n such that:

1. limn!1 �n = 1.

2. The approximation error goes to 0:

lim
n!1

E

inf
g2Fn,||g||1�n

EX((g(X)� P (Y y|X))2)

�
= 0.

3. The estimation error goes to 0, namely for all L > 0:

lim
n!1

E

sup
g2Fn,||g||1�n

�����
1
an

X

i2In

(g(Xi)� TLIYiy)
2 � E((g(X)� TLIY y)

2)

�����

�
= 0,

where TL(u) := sign(u)min(|u|, L).

then

lim
n!1

E(|⌘̂1(X)� P (Y y|X)|2) = 0.

Further, if the approximation and estimation errors converge uniformly in y, then so does E(|⌘̂1(X)�
P (Y y|X)|2).

We will now show that under the assumptions of Theorem 4 the conditions of Theorem 5 hold for
�n = (ln(an

tn ln(an)
))

1
4 ; and so Theorem 4 would follow.

B.2.1 The approximation error goes to 0 (uniformly in y)

Let h(X) = E(P (Y 0 y|X 0)|X) 2 Fn, where (X 0, Y 0) is an IID copy of (X,Y) restricted to the
sub probability space where X 0 2 RX,n. We see that

E

inf
g2Fn,||g||1�n

EX((g(X)� P (Y y|X))2)

�
 E(EX((h(X)� P (Y y|X))2))

= E((h(X)� P (Y y|X))2)

As all of these quantities are bounded, it suffices to show that |h(X) � P (Y y|X)| goes to
0 in probability. Assume by contradiction that there exists an " > 0 for which there exists an
"0 > 0 satisfying P (|P (Y y|X) � h(X)| > ") > "0 for all n big enough. Assumption 1b in
particular implies that for every "00 > 0 there exists a � > 0 so that P (X 0 2 B"00(X)|X) > �.
(P (X 0 2 B"00(X)|X) = P (X 00 2 B"00(X)|X,X 00 2 RX,n) for an IID copy X 00 of X , which in

15

turn is at least P (X 00 2 B"00(X) \RX,n|X); and since B"00(X) \RX,n with probability 1 includes
a ball of radius at least c"00 it follows that there exists a � > 0 satisfying P (X 0 2 B"00(X)|X) > �.)
In particular P (X 0 2 B"00(X)||P (Y y|X)� h(X)| > ") > �. Using Assumption 1a choose "00

so that |P (Y 0 y|X 0)� P (Y y|X)| < "0

2 a.s. given X 0 2 B"00(X). Then we have:

P (|P (Y 0 y|X 0)� h(X)| > ")

� "0�P

|P (Y 0 y|X 0)� h(X)| >"

����|P (Y y|X)� h(X)| > ", X 0 2 B"00(X)

�

By our choice of "00, we have that given |P (Y y|X)�h(X)| > " and X 0 2 B"00(X) the following
holds:

|P (Y 0 y|X)� h(X)| � ||P (Y y|X)� h(X)|� |P (Y 0 y|X 0)� P (Y y|X)|| � "0

2

Thus, P (|P (Y 0 y|X 0) � h(X)| > ") � "02�
2 , and so does not converge to 0, in contradiction to

the assumption that E(V (P (Y 0 y|X 0)|X)) ! 0 uniformly in y.

B.2.2 The estimation error goes to 0 (uniformly in y)

This follows the same pattern as in the proof of Theorem 1 in [32], except that in our case we can be
more lax about our choice of �n, because we don’t have to concern ourselves with the untruncated
situation.

Briefly, as in [32], by Theorems 9.1 and 9.4, and Lemma 13.1 in [15], as well as Assumption 2 in
Theorem 4, we have that for all " > 0, "0 > 0, and L > 0:

P

sup

g2Fn(✓),||g||1�n

������
1

an

X

i2In,✓

(g(Xi)� TLIYiy)
2 � E((g(X)� TLIYy)

2)

������
> "

�

 E(8 exp(�an
�4
n

Cn)|
tn ln(an)

an
< "0) + d"0,n;

where Cn =
"2

2048
� �4

ntn ln(dan)

an
� 2�4

ntn
an

ln(
333e�2

n

"
),

d"0,n is some sequence of non-negative numbers depending on "0 satisfying that limn!1 d"0,n = 0,
and where the randomness comes from the randomness of tn. By our choice of �n and the use of
L’Hôpital’s rule, we get that Cn converges to "2

2048 (uniformly in y, of course) in probability as "0
goes to 0. To be precise:

8"00 > 0 lim
"0!0

P

✓
|Cn � "2

2048
| > "00

���
tn ln(an)

an
< "0

◆
= 0.

Following the steps of the remainder of the argument in [32], mutatis mutandis, this property suffices
for the estimation error to go to 0. We remark that in [32] the number of cells tn is not a random
variable, which makes the computation there somewhat more straightforward.

C Conformalized Predictions

In what follows, let (X1, Y1), ..., (Xn, Yn) 2 Rd ⇥ R be the training set, and (Xn+1, Yn+1) be a
feature vector being queried at inference and its associated true value.

The classical conformalized prediction algorithm transforms a point prediction algorithm into an
algorithm that outputs prediction intervals. To be precise, given a confidence level ↵, we say that
an algorithm is an ideal prediction interval forecaster if it takes (X1, Y1), ..., (Xn, Yn), Xn+1 and
outputs an interval C satisfying that

P (Yn+1 2 C|Xn+1) = 1� ↵.

16

The conformalized prediction algorithm relaxes this requirement in two ways. First, it relaxes the
equality to an inequality, and secondly it asks that the inequality would hold without conditioning
(which roughly translates to the inequality holding on average on Xn+1):

P (Yn+1 2 C) � 1� ↵

It is this last condition that is guaranteed under exchangability assumptions on the data, and no
assurances are made on conditional coverage.

The conformalized predictions algorithm is defined as follows: split the training data into two I1 and
I2. Train a mean-regression point forecasting algorithm on I1, and let µ̂ be the resulting model.

The conformalized prediction interval for a new datapoint Xn+1 is then defined as the bootstrapping
interval:

C := [µ̂(Xn+1)�Q1�↵(I2), µ̂(Xn+1) +Q1�↵(I2)] ,

where

Q1�↵(I2) := (1� ↵)(1 + 1/|I2|)-th emperical quantile of {|Y � µ̂(Xi)|
��i 2 I2}.

We remark while this classical conformalized predictions algorithm behaves similarly to LSF in that
it takes a point forecasting algorithm and output a probabilistic forecasting algorithm, the basic idea
behind conformalized predictions is fundamentally different. Namely, conformalized predictions
begin with the premise that an ideal prediction interval forecaster is too much to ask for, and instead
of directly optimizing for it, it attempts to optimize instead the much weaker unconditional coverage
requirement. Some algorithms, such as Conformalized Quantile Regression ([29]), attempt to straddle
the two approaches: it takes two quantile regression point forecasters (rather than a single mean-
regression forecaster), and then adjusts them to optimize for the unconditional coverage requirement,
perhaps arriving at some regularizing effect. But they no longer serve as algorithms that turns point
forecasting algorithms into probabilistic forecasting algorithms.

D Tree-based Time Series Wrapper (TTSW)

TTSW is implemented in GluonTS under the name Rotbaum: https://github.com/awslabs/
gluon-ts/blob/master/src/gluonts/model/rotbaum/.

Algorithm 3: Tree-based Time Series Wrapper (TTSW)

Input: Datasets made of multiple time series, where we denote the ith time series by {Zi,t}t; a
context window size h; a forecast horizon l; and number of context windows to sample P .
train_data, target_data, model_list = [], [], []
for _ in [1,...,P] do

Choose a time series i and a beginning point within the time series t0 uniformly. Add the
context window Zi,t0 , Zi,t0+1, ..., Zi,t0+h�1 to train_data. Add
Zi,t0+h, Zi,t0+1, ..., Zi,t0+h+l�1 to target_data.

for i in [1,...,l] do
Train a model (XLSF/Quantile Regression/QRF) with training data train_data and target

data target_data[:, i], and add it to model_list.

Inference: Given a new time series for inference Z1, ..., Zk, make inferences for the feature
vector (Zk�h+1, ..., Zk) from all of the models in model_list.

17

E Detailed TTSW Results

Table 4: Time Series Benchmarking

TTSW (XLSF) TTSW (QuantileReg) TTSW (QRF) DeepAR CNN-QR

P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90
electricity 0.0395 0.0726 0.0375 0.1203 0.2399 0.0833 0.0624 0.1190 0.0541 0.0497 0.0929 0.035 0.0476 0.0918 0.0408

parts 0.4371 1.3362 1.1396 0.2 1.017 1.0582 0.2826 1.3491 1.2536 0.2225 1.0135 1.7272 0.2028 1.0048 1.0623
m4_daily 0.013 0.0204 0.0112 0.0385 0.0281 0.018 0.0157 0.0263 0.0146 0.0217 0.0354 0.0149 0.0144 0.0209 0.0112

traffic 0.0797 0.1682 0.1158 0.0709 0.1406 0.1072 0.0752 0.1707 0.141 0.057 0.1307 0.0864 0.0641 0.1578 0.1186
wiki10k 0.2331 0.3573 0.2874 0.1696 0.3127 0.2782 0.1801 0.3571 0.3835 0.1458 0.3062 0.2743 0.1732 0.3048 0.2668
dcrideshare0.2028 0.5289 0.2829 0.1634 0.4887 0.2994 0.2148 0.6006 0.3636 0.1846 0.4318 0.2348 0.1764 0.4422 0.2277

F Choices of Hyperparameters

For the purpose of using Algorithm 3 for applying XLSF to time-series data, we always use
min_bin_size= 100, and the following hyperparameters for the underlying XGBoost model:

XGBModel(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None, gamma=None, gpu_id=None,
importance_type=’gain’, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=5,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=-1, num_parallel_tree=None,
objective=’reg:squarederror’, random_state=None, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None, subsample=None,
tree_method=None, validate_parameters=None, verbosity=1)

We use a context length h equal to the forecast horizon l, and we set the number of context windows
P to equal 1000000, unless the dataset is small, in which case it automatically chooses less. Since
QRF is much slower to train, we had to reduce P to 10000, which means it had 100 times less
data-points to train on. Even with this adjustment, it took considerably longer than the other methods.

In Section 6.1, we use min_bin_size= 100, and (since the resulting datasets are much smaller than
the ones used in time series prediction) the following hyperparameters for the underlying XGBoost
model:

XGBModel(base_score=0.5, booster=’gbtree’, colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type=’gain’, interaction_constraints=’’,
learning_rate=0.300000012, max_delta_step=0, max_depth=2,
min_child_weight=1, monotone_constraints=’()’,
n_estimators=100, n_jobs=-1, num_parallel_tree=1,
objective=’reg:squarederror’, random_state=0, reg_alpha=0,
reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method=’exact’,
validate_parameters=1, verbosity=1)

For the purpose of the M5 competition, we use min_bin_size= 200, since we query half-percent
quantiles.

For both QRFs and lightgbm quantile regression we use default hyperparameters:

RandomForestQuantileRegressor(bootstrap=True, criterion=’mse’, max_depth=None,
max_features=’auto’, max_leafodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10,
n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

18

and

LGBMRegressor(boosting_type=’gbdt’, class_weight=None, colsample_bytree=1.0,
importance_type=’split’, learning_rate=0.1, max_depth=-1,
min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,
n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,
random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,
subsample=1.0, subsample_for_bin=200000, subsample_freq=0)

G Detailed Tabular Data Experiments

We have re-run the tabular experiments from Section 6.1 five times to get confidence intervals. Note
that XLSF is deterministic because the hyperparameters we chose for XGBoost (see Appendix F)
preclude subsampling.

Algorithm Dataset P05 P95 accuracy time (s)
XLSF facebook1 0.103+/-0.0 0.288+/-0.0 94.31%+/-0.0% 7.801+/-0.022

facebook2 0.097+/-0.0 0.294+/-0.0 95.327%+/-0.0% 14.883+/-0.051
meps19 0.101+/-0.0 0.563+/-0.0 93.38%+/-0.0% 6.285+/-0.335
meps20 0.101+/-0.0 0.664+/-0.0 92.79%+/-0.0% 5.926+/-0.037
meps21 0.101+/-0.0 0.556+/-0.0 92.688%+/-0.0% 6.386+/-0.132
concrete 0.037+/-0.0 0.039+/-0.0 76.699%+/-0.0% 0.712+/-0.005

star 0.012+/-0.0 0.012+/-0.0 78.522%+/-0.0% 1.108+/-0.001
bio 0.082+/-0.0 0.132+/-0.0 87.634%+/-0.0% 13.648+/-0.295

community 0.106+/-0.0 0.19+/-0.0 76.19%+/-0.0% 1.186+/-0.011
bike 0.057+/-0.0 0.06+/-0.0 87.741%+/-0.0% 3.452+/-0.02

QRF facebook1 0.103+/-0.005 0.319+/-0.013 92.383%+/-0.203% 30.368+/-0.121
facebook2 0.094+/-0.001 0.289+/-0.006 92.918%+/-0.147% 104.485+/-2.923
meps19 0.11+/-0.002 0.727+/-0.018 89.914%+/-0.516% 9.798+/-0.314
meps20 0.107+/-0.001 0.687+/-0.028 88.663%+/-0.331% 10.623+/-0.043
meps21 0.108+/-0.001 0.655+/-0.024 88.57%+/-0.371% 9.246+/-0.095
concrete 0.036+/-0.002 0.037+/-0.001 80.194%+/-2.109% 0.175+/-0.001

star 0.013+/-0.0 0.014+/-0.001 79.723%+/-0.853% 0.518+/-0.002
bio 0.072+/-0.0 0.098+/-0.001 84.682%+/-0.274% 33.258+/-0.283

community 0.088+/-0.005 0.168+/-0.007 87.569%+/-1.125% 1.14+/-0.008
bike 0.044+/-0.001 0.046+/-0.001 80.358%+/-0.461% 2.842+/-0.036

CP facebook1 0.452+/-0.011 0.425+/-0.005 90.147%+/-0.151% 7.028+/-0.049
facebook2 0.43+/-0.019 0.435+/-0.007 90.22%+/-0.162% 14.552+/-0.077
meps19 0.657+/-0.039 0.76+/-0.011 90.459%+/-0.455% 5.423+/-0.109
meps20 0.488+/-0.026 0.774+/-0.014 90.208%+/-0.166% 5.926+/-0.037
meps21 0.504+/-0.034 0.8+/-0.007 90.134%+/-0.711% 5.288+/-0.039
concrete 0.034+/-0.002 0.038+/-0.002 87.767%+/-3.482% 0.091+/-0.0

star 0.011+/-0.0 0.012+/-0.0 88.037%+/-0.717% 0.309+/-0.002
bio 0.104+/-0.001 0.13+/-0.001 89.672%+/-0.309% 4.561+/-0.039

community 0.134+/-0.003 0.181+/-0.006 92.632%+/-1.192% 0.959+/-0.007
bike 0.05+/-0.001 0.049+/-0.0 90.101%+/-0.783% 0.737+/-0.003

Table 5: Benchmarking results: the datasets were taken from https://github.com/yromano/
cqr/tree/master/datasets. Accuracy is percent of times the true value was in the prediction
interval. (It should revolve around 90%.) P05 and P95 are weighted quantile losses. The experiments
were run 5 times.

19

H Formula for Weighted Quantile Loss

The formula for weighted quantile loss for quantile ⌧ , for real values yi, and predictions qi:

wQLReg[⌧] := 2

P
i ⌧ max(yi � qi, 0) + (1� ⌧)max(qi � yi, 0)P

i |yi|

In the time series situation, if yi,t as t varies are the real values for time series number i in the dataset,
and qi,t is prediction for yi,t then the formula is:

wQLTS [⌧] := 2

P
i,t ⌧ max(yi,t � qi,t, 0) + (1� ⌧)max(qi,t � yi,t, 0)P

i,t |yi,t|

I LSF with Non-Tabular Data

One of the assumptions of LSF is that the base point-forecasting algorithm is tabular, and so that
raises the question of how to integrate LSF with neural networks dealing with non-tabular data. To
that end, LSF can come in at the embedding level of the architecture. To be a little more explicit,
if f1 is the portion of the neural network that embeds the data into a fixed dimensional space, and
the remainder of the network is f2, then after training you would cache pairs of embeddings and
true target values, and later feed them into LSF together with f2 as the base algorithm. At inference,
rather than feeding in the raw data, you would feed the data into f1 to obtain a fixed length feature
vector, and only then feed it into the LSF.

20

