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ABSTRACT
Large-scale pretrained image-language models have shown remark-
able performance recently. However, building a video-language
model is more challenging due to the complexity of video and
the difficulty of collecting high-quality data. This paper builds a
video-language model in an adaptive manner, which transfers the
knowledge from the image domain and can achieve state-of-the-art
performance without any further massive video pretraining. The
main contributions include a Visual Perception Adapter that seam-
lessly and efficiently adapts a pretrained image-language model
to the video domain and a fine-grained contrastive learning with
Inter-modal Token Alignment that bridges semantic gaps between
vision, audio, and language with less data. The proposed model is
evaluated on video captioning and retrieval. Experiments demon-
strate that the proposed model exhibits competitive performance
compared to models pretrained on millions of video-text pairs. No-
tably, our model’s CIDEr and R@1 scores on the MSR-VTT dataset
exceed the existing state-of-the-art by 6.3% and 1.3%.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; Natu-
ral language generation.
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1 INTRODUCTION
Recently, there has been a growing interest in video-language mul-
timodal learning. Among various tasks, video captioning and video
retrieval stand out as two quintessential tasks, demanding models
with robust generative and representational capabilities, respec-
tively. While traditional approaches [11, 29, 33, 35, 61] study differ-
ent video multimodal tasks independently, recent works [7, 23, 25,
48, 60] unify representational and generative tasks through flexible
architectures and scale up the model and dataset. While these meth-
ods improve the model’s generalization, their significant training
costs pose challenges for research and application.

As shown in Figure 1, current Vision-Language Models (VLMs)
struggle to achieve both low training costs and high generalization.
Traditional VLMs [11, 29, 33, 35, 61] are trained on datasets corre-
sponding to different downstream tasks, which are usuallymanually
annotated and high in quality but small in scale. These models lack
multi-task capability (including generative and representational
tasks) and are insufficiently generalizable. Recently, with the rise of
the Big Convergence concept [3, 15], large-scale pretrained VLMs
that unify various multimodal tasks have emerged. Some [9, 42]
are trained on large-scale video-text datasets [36], achieving fair
generalization performance. However, the difficulty of collecting
high-quality video-text data results in unsatisfactory performance
and incurs high training costs [15]. Some [7, 48, 53] go further by
unifying video and image with a flexible architecture, leveraging
higher-quality image datasets. They are trained on mixed datasets
or through multiple stages, thus achieving excellent performance
on multiple downstream tasks. However, the computational costs
sharply increase, making training such models a severe problem
in scenarios with limited resources. Some methods [30, 31] skip
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Figure 1: Comparison between previous Vision-Language
Models (VLMs) and ours. Previous methods utilize multiple
datasets to boost generalization of video-language tasks. But
they need to trade off between training costs, generalization,
and multi-task capacity, whereas our proposed method per-
forms better and has lower training costs.

heavy pre-training but mostly focus on representational tasks like
retrieval or classification. Our method skips video-text pre-training
and utilizes an existing image-language model to achieve high gen-
eralizability, low training costs and strong multi-task capacity.

To perform multitasking, a unified architecture is crucial. In ad-
dition, the strong generalization ability of large-scale pretrained
VLMs is largely derived from large-scale image-text datasets, so
models trained on such datasets contain valuable knowledge. Em-
ploying an image-text pretrained Multiway Transformer [23] as
baseline, this paper proposes an adaptive methodology to build a ro-
bust, multi-channel, low-training-cost model with satisfactory gen-
eralization performance in generative and representational tasks.

We propose two modules to achieve the goal. Firstly, we seam-
lessly adapt the baseline to the video domain with our proposed
Visual Perception Adapter (VPA), which improves the original
attention mechanism and enables to model videos with lower costs.
Inspired by parameter-efficient fine-tuning (PEFT) methods [19],
VPA is designed to adapt the model to data with different distri-
butions while minimizing disturbance to the original structure as
much as possible. It is worth noting that most PEFT methods fo-
cus on the same tasks and the number of learnable parameters,
while ours empower the model to conduct new tasks. VPA com-
prises a Grouped Temporal Attention (GTA) module and a Patch
Feature Dropout (PFD) module. GTA actively reduces complexity
by constraining the attention range in cross-attention, which is
easy to implement and does not introduce new parameters or al-
ter the entire attention mechanism like other variants with linear
complexity [39, 50, 52, 62]. PFD passively reduces complexity by
randomly dropping keys/values at each layer. While some works
explore token masking during the input stage[17], our PFD works
more like dropout, functioning at the feature level and varying at
each layer. In addition, to utilize the audio channel in videos, we
add audio modality experts to the baseline as in [4], which only in-
crease a small number of Feed Forward Network (FFN) parameters.

Secondly, we propose a fine-grained trimodal contrastive learning
with Inter-modal Token Alignment (ITA). To avoid massive
video-text pretraining, we directly train the adapted model using
high-quality downstream datasets, inevitably facing the semantic
gap between images and videos. To address this issue, we better
utilize these high-quality data by employing a top-k strategy for
finer-grained semantic alignment between different modalities in-
stead of traditional coarse-grained alignment at the sentence/video
level. In summary, our contributions are as follows:

• We establish a robust multi-channel video-language model
in an adaptive way that maximally leverages the knowledge
learned by existing image-language models from large-scale
datasets. It seamlessly transfers the knowledge to the video
domain without the need for massive video pretraining and
is able to perform both representative and generative tasks.

• Wepropose two components for the adaptive buildingmethod:
VPA and ITA. VPA optimizes the patch-level spatio-temporal
attention mechanism while keeping minor disturbance to
the inherited knowledge. ITA establishes token-level fine-
grained semantic alignment across three modalities to effi-
ciently utilize downstream datasets.

• Experiments demonstrate the state-of-the-art performance
of our model. We take video captioning and retrieval as ex-
amples of representative and generative tasks. In particular,
our model’s CIDEr and R@1 scores on the MSR-VTT dataset
exceed the existing state-of-the-art by 6.3% and 1.3%.

2 RELATEDWORKS
2.1 Vision-Language Pretraining
Vision-language pretraining aims at acquiring powerful vision-
language representations through large-scale training of noisy
image/video-text pairs collected from theWeb. Thesemodels [21, 25,
40, 60] are usually trained by the contrastive loss or the language
modeling loss. BLIP-2 [23] is a state-of-the-art image-language
model which combines the advantages of [1, 4, 20, 24] from both
architectural and data perspective, however, it cannot handle video
tasks. Due to difficulties in utilizing videos effectively, video-text
pretraining is more challenging. Videos are usually modeled by
temporal encoding modules [27, 43], 3D local attention features
[27, 29, 42] or global patch-level self-attention [9]. Furthermore,
many video-languagemodels [27, 29, 42] are trained solely on video-
text datasets, neglecting the use of high-quality image data, while
some also exploit image-text data [9, 48, 53, 56] and achieve better
performance. However, these methods incur higher training over-
head, and this paper proposes a method that achieves comparable
results without extensive video-text pretraining by adapting image
models to video tasks.

2.2 Adapting Image Models to Video Tasks
Instead of combining image-text data with video-text data for large-
scale pretraining, transferring a pretrained imagemodel to the video
domain is more efficient. Several approaches improve the effective-
ness of video recognition by extending pretrained image models
[2, 5, 37, 59]. In addition to these unimodal methods, VideoOFA [9]
and VideoCoCa [56] are the closest works to the idea proposed in
this paper. They transfer image-text models OFA [49] and CoCa [60],
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Figure 2: Architecture of the proposed model (a) with detail architecture of the baseline encoder (b) [4, 23] and our improved
encoder (c). We first extract visual and audio features using pretrained models and then feed them along with text tokens
and learnable queries into a Multiway Transformer Encoder. Finally, the model is supervised by multiple losses, including
our proposed ITA loss. The baseline encoder consists of a shared self-attention layer, a visual cross-attention layer, and two
modality-specific FFNs. Our improved encoder adds a audio pathway and replaces the cross-attention layer with the proposed
VPA, which is further composed of PFD and GTA.

respectively. However, these approaches still require video-text pre-
training and suffer from the inefficiency of processing patch-level
features. This paper demonstrates that our adapted model achieves
better results without further video pretraining. Furthermore, we
reduce the computational cost of processing patch-level features
through dimension reduction and local attention.

2.3 Video Captioning and Video Retrieval
Video captioning and video retrieval are two downstream tasks
performed in this paper to validate the adapted model. Most of the
previous approaches improve the performance by adopting new
network architectures, such as multi-way feature fusion [11, 33, 44],
attention mechanisms[11, 58, 61], multimodality[10, 33, 61], special
text generation mechanisms[61]. Although these approaches en-
hance performance in diverse aspects, they are constrained to small-
scale datasets with careful labeling. This paper focuses on adapting
a pretrained image-language model and transferring knowledge
from large-scale datasets to downstream tasks.

3 METHOD
Ourworkflow constructs aMultiway Transformer [4, 23] as baseline
network first, followed by adaptive enhancements. This section
begins with the constructed overall framework (Figure 2), followed
by individual sections on the proposed VPA and ITA modules.

3.1 Overall Framework
We start by uniformly sampling 𝐿𝑣 frames from the video to form
the keyframes set F. Each frame undergoes individual encoding
utilizing a pretrained vision encoder (E𝑣 ) based on Vision Trans-
former [14], resulting in patch-level features (𝒗𝑝 ), supplemented
with temporal encoding (𝜺) [46].

𝒗𝑖𝑝 = E𝑣 (F𝑖 ) + 𝜺𝑖 , 𝒗𝑝 ∈ R𝐿𝑣×𝐷𝑣 , (1)

where 𝑖 represents the 𝑖-th frame in 𝐿𝑣 frames and𝐷𝑣 denotes visual
feature dimension. The audio is partitioned into 𝐿𝑎 non-overlapping
segments A. And a Transformer-based pretrained encoder (E𝑎) [16]
and a linear layer is then applied to extract segment-level features
(𝒂), which are also supplemented with temporal encoding (𝜉 𝑗 ).

𝒂 𝑗 =𝑾𝑖𝑛𝑝E𝑎 (A𝑗 ) + 𝜉 𝑗 , 𝒂 ∈ R𝐿𝑎×𝐷𝑚 , (2)

where 𝑗 represents the 𝑗-th segment in 𝐿𝑎 segments,𝑾𝑖𝑛𝑝 is the
learnable weight matrix, and 𝐷𝑚 denotes model dimension. For
text, we utilize tokenizing and embedding methods identical to [13],
obtaining 𝐿𝑡 token-level embedding vectors.

𝒕 =𝑾𝑒𝑚𝑏T, 𝒕 ∈ R𝐿𝑡×𝐷𝑚 , (3)

where T is the tokenized one-hot vector of text, and𝑾𝑒𝑚𝑏 is the
learnable embedding matrix. The pretrained visual encoder and
audio encoder are kept frozen through the whole process.

Next, these features are fed into aMultiway Transformer encoder
[4, 23] comprising𝑀 blocks. For simplicity, we will omit the block
index and incorporate pre-layer normalization and residual connec-
tion within the layer function. Several learnable queries and text
tokens are concatenated in a token sequence and fed into a shared
self-attention layer. Additionally, by controlling attention mask
m, we can either block information interaction between different
modalities or implement causal self-attention. Formally,

[𝒒𝑠 , 𝒕𝑠 ] = Ψ𝜃𝑠 ( [𝒒, 𝒕],m), (4)

where Φ𝜃𝑠 denotes the self-attention layer. Then, the encoded
queries and video patch features are fed into cross-attention to ob-
tain visual information. Furthermore, the outputs of self-attention
and cross-attention are encoded by modality-independent FFNs:

𝒒𝑓 = F𝜃 𝑓 𝑞 (Φ𝜃𝑐 (𝒒
𝑠 , 𝒗𝑝 )), 𝒕 𝑓 = F𝜃 𝑓 𝑡 (𝒕

𝑠 ), (5)

where Φ𝜃𝑐 denotes the cross-attention layer, F denotes the FFN
layer with parameters of different modalities.
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Finally, after𝑀 blocks of encoding, the outputs of the last block
are denoted [�̃�, 𝒕] for loss function. The baseline employs three
loss functions described in [23], namely, language modeling loss,
contrastive loss, and matching loss:

L(�̃�, 𝒕) = L𝑙𝑚 + L𝑐𝑜𝑛 + L𝑚𝑎𝑡𝑐ℎ . (6)

These losses cover generative and encoding objectives, which can
facilitate both video captioning and retrieval tasks. For more details,
we recommend readers to refer to [23].

Our improvements to the baseline are threefold: Firstly, we add
input for audio features and its corresponding modality FFN. Sec-
ondly, we replaced the cross-attentionmodule with the VPAmodule,
which will be detailed in Section 3.2. Thirdly, we enhanced the con-
trastive loss to the fine-grained ITA loss, which will be detailed in
Section 3.3. It is important to note that the improved model inherits
all parameters except for the Audio FFN, thus preventing loss of
learned knowledge. Formally, Equations (4)(5)(6) are improved as:

[𝒒𝑠 , 𝒂𝑠 , 𝒕𝑠 ] = Ψ𝜃𝑠 ( [𝒒, 𝒂, 𝒕],m), (7)

𝒒𝑓 = F𝜃 𝑓 𝑞 (Φ
′
𝜃𝑐
(𝒒𝑠 , 𝒗𝑝 )), 𝒂 𝑓 = F𝜃 𝑓 𝑎 (𝒂

𝑠 ), 𝒕 𝑓 = F𝜃 𝑓 𝑡 (𝒕
𝑠 ), (8)

L(�̃�, �̃�, 𝒕) = L𝑙𝑚 + 𝜆𝑖𝑡𝑎L𝑖𝑡𝑎 + L𝑚𝑎𝑡𝑐ℎ, (9)
where Φ′

𝜃𝑐
denotes VPA and L𝑖𝑡𝑎, 𝜆𝑖𝑡𝑎 denote ITA loss and its

weight.

3.2 Visual Perception Adapter
VPA is employed to enable a fix number of learnable vectors to per-
ceive video patch-level features through enhanced cross-attention
mechanism while maintaining low complexity. As shown in Fig-
ure 2(c), VPA replaces the cross-attention module in the baseline
and consists of two parts: PFD and GTA. Video features first un-
dergo random dropout through PFD. Subsequently, they serve as
keys/values for grouped local attention with perceptual vectors.

3.2.1 Patch Feature Dropout. This module directly reduce the num-
ber of patches for efficiency during training. As shown in Figure 3,
𝑃% of patches are randomly dropped before cross-attention:

𝒗−𝑝 = PFD(𝒗𝑝 ) =
(
𝒗ℎ1
𝑝 𝒗ℎ2

𝑝 · · · 𝒗ℎ𝑖𝑝 · · · 𝒗ℎ𝑛𝑝

)
(10)

where ℎ𝑖 is the index of the randomly selected patches and 𝒗−𝑝
is the features after PFD, whose length is decreased from 𝐿𝑣 to
𝑛 = ⌊𝐿𝑣 · (1 − 𝑃%)⌋. Our method implements this specific dropout
at the feature level rather than the pixel level, so that the patch
features of the video can be pre-extracted, which also expedites
the training process. Moreover, dropping on patch level allows the

Table 1: Comparison of different attention mechanisms.
𝑇,𝐻,𝑊 denote dimensions in time, height, and width. 𝐷𝑚 de-
notes feature dimension, 𝐿𝑞 denotes the number of queries,
and𝐾,𝐺 denotemodel-specific hyperparameters. CA denotes
cross-attention.

Method Complexity per Layer No Extra
Params

Applicable
to CA

Self-attention[46] O(𝑇 2𝐻2𝑊 2𝐷𝑚) - -
Cross-attention[46] O(𝑇𝐻𝑊𝐿𝑞𝐷𝑚) ✓ ✓

LinFormer[50] O(𝐾𝐿𝑞𝐷𝑚) ✗ ✓
InFormer[62] O(𝑇𝐻𝑊 log𝐿𝑞𝐷𝑚) ✓ ✓
CosFormer[39] O((𝑇𝐻𝑊 + 𝐿𝑞)𝐷2

𝑚) ✓ ✗

FlowFormer[52] O((𝑇𝐻𝑊 + 𝐿𝑞)𝐷2
𝑚) ✓ ✓

GTA(ours) O(𝑇𝐻𝑊
𝐺

𝐿𝑞𝐷𝑚) ✓ ✓
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Figure 4: The structure of GTA. GTA is a variant of cross-
attention that actively restricts the attention scope by group-
ing learnable queries and visual patch features. The size and
shape of the groups can be flexibly adjusted.

model to reason through partial information, facilitating themodel’s
understanding of videos and suppressing overfitting. Compared
to BERT [13] or BEiT [3], our method directly drops the tokens
instead of replacing them with [mask] tokens, which could lower
the computational costs. Compared to MAE [17], our approach
drops differently at each layer and refrains from reconstructing the
dropped (or masked) tokens, which gets rid of an extra decoder.

3.2.2 Grouped Temporal Attention. This module further alleviates
the increasing complexity of cross-attention with the growing num-
ber of video patches while introducing no extra training parameters.
As shown in Table 1, there are various works aiming to reduce the
quadratic complexity of self-attention. However, they either involve
additional training parameters (row 3), offer limited reduction in
complexity (row 4), cannot be applied to cross-attention (row 5),
or significantly changes the original attention calculation (row 6).
It is crucial to note that such works mainly focus on scaling up
language models or handling long sequence time-series data, which
differs from the case in this paper.
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Our approach targets a visual perception mechanism with learn-
able vectors as queries and video patch features as keys/values.
Therefore, prior methods like CosFormer[39], which enhances the
weights of the diagonal region in the attention matrix, are not ap-
plicable. However, our situation allows for the introduction of a
different prior knowledge: the high correlation between spatially
and temporally adjacent patches in videos. This correlation enables
the extraction of local structures and motion information, sharing
similarities with the benefits of using CNNs to process images.

Specifically, we first reshape 𝒗𝑝 of dimensions 𝐿𝑣 × 𝐷𝑣 into a
tensor of dimensions 𝑇 × 𝐻 ×𝑊 × 𝐷𝑣 , which can be viewed as a
cube where each small block is a vector of dimension 𝐷𝑣 . Then,
as shown in Figure 4, this cube is divided into 𝐺 non-overlapping
windows of size 𝑡 × ℎ ×𝑤 , and queries (𝒒) are also divided into 𝐺
groups, each with a length of 𝑙𝑞 . The size and shape of the windows,
as well as the number of queries, can be adjusted arbitrarily while
ensuring that 𝑡, ℎ,𝑤 are positives. The upper part of Figure 4 shows
a couple of examples. Next, queries and the windowed patches from
the same group perform cross-attention with a time complexity of
O(𝑡ℎ𝑤𝑙𝑞𝐷𝑚) = O(𝑇𝐻𝑊𝐿𝑞𝐷𝑚/𝐺2):

�̂�𝑔 = softmax(
𝑾𝑞G(𝒒)𝑔G(𝒗𝑝 )𝑔⊤𝑾⊤

𝑘√
𝐷𝑚

)𝑾 𝑣G(𝒗𝑝 )𝑔⊤, (11)

where G(·)𝑔 denotes the grouping operation as described above, the
subscript 𝑔 denotes the 𝑔-th group, and𝑾𝑞,𝑾𝑘 ,𝑾 𝑣 are learnable
matrices. Equation (11) is repeated 𝐺 times, which is implemented
by batching and results in a complexity of O(𝑇𝐻𝑊

𝐺
𝐿𝑞𝐷𝑚) for GTA.

In Figure 4, Example (a) represents the vanilla approach of full
attention (see Figure 2(b)). This method applies global spatiotem-
poral attention, exhibiting high complexity and the possibility of
introducing noise. Example (b) illustrates the case with a window
size of 1×4×4, involving global spatial attention and local temporal
attention modeling, similar to the approach in [23] for image pro-
cessing. Example (c) depicts the scenario of 2× 2× 2, incorporating
local spatiotemporal attention, allowing each query to focus on a
small spatiotemporal region. Example (d) showcases the situation
a of 2 × 4 × 4 window, featuring global spatial attention and lo-
cal temporal attention modeling. This aligns with the pretrained
model we used, mitigating the discrepancy between pretraining and
downstream tasks. Additionally, this method facilitates modeling of
short-term temporal information, avoiding introducing significant
noise when directly modeling long-term temporal information.

To accelerate training using mini-batches and when simultane-
ously using GTA and PFD, it is necessary to keep the number of
dropped patches within each window to be the same. Therefore,
Equation (11) is rewritten as:

�̂�𝑔 = softmax(
𝑾𝑞G(𝒒)𝑔G(𝒗𝑝 )−𝑔 ⊤𝑾⊤

𝑘√
𝐷𝑚

)𝑾 𝑣G(𝒗𝑝 )−𝑔 ⊤, (12)

where the superscript minus symbol denotes the PFD operation as
in Equation (10). Therefore the Φ′

𝜃𝑐
in Equation (8) is rewritten as:

Φ′
𝜃𝑐
(𝒒𝑠 , 𝒗𝑝 ) = Concat(�̂�1; �̂�2; · · · ; �̂�𝐺 ), (13)

where Concat(·) denotes concatenation. As shown in Figure 2, the
[𝒒𝑓 , 𝒂 𝑓 , 𝒕 𝑓 ] of the last block are denoted as [�̃�, �̃�, 𝒕].
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Figure 5: The process of the trimodal contrastive loss with
inter-modal token alignment.

3.3 Trimodal Contrastive Learning with
Inter-modal Token Alignment

Contrastive learning has been demonstrated in a number of works
to be beneficial in bridging the semantic gap between different
modalities [7, 23, 40, 58]. To enable the adapted model to fully
exploit the information from multichannel videos, we propose a
fine-grained vision-audio-text contrastive loss to align multimodal
features. The vanilla contrastive loss based on InfoNCE [45] is as
follows:

L𝑁𝐶𝐸 (𝒙,𝒚,N𝑦) = − log ( 𝑒𝑆 (𝒙,𝒚 )/𝜂

𝑒𝑆 (𝒙,𝒚 ) /𝜂 +∑
𝒚′∈N𝑦

𝑒𝑆 (𝒙,𝒚′ )/𝜂
), (14)

where 𝒙 and 𝒚 are positive pairs from two modalities (e.g., visual
queries and audio tokens), N𝑦 is the set of negative samples of 𝑦
modality from the rest of the batch, 𝜂 is the temperature coefficient,
and 𝑆 (·, ·) is the similarity function, typically using cosine similarity.

In the context of this paper, both 𝒙 and 𝒚 are feature sequences.
To obtain the similarity between them, common approaches include
using pooling or additional encoding layers [34] to get the overall
features of the sequences, followed by calculating cosine similar-
ity. We argue that such methods either fail to utilize fine-grained
relations between modalities or introduce additional parameters.
Another model [23], which is also based on the Perceiver archi-
tecture [20], computes the similarity between each query and the
text’s [CLS] feature, and then selects the maximum value as the
final similarity. However, in our case, each query only represents
local visual information from the video, and combining information
from multiple queries is necessary for better alignment with the
text. Therefore, we generalize the calculation of 𝑆 using a top-K
strategy as illustrated in Figure 5 and following equations:

𝑺𝑥𝑦 =
𝒙𝒚⊤

| |𝒙 | |2 | |𝒚 | |2
, 𝑆 (𝒙,𝒚) =

∑︁
𝑠∈TopK(𝑺𝑥𝑦 )

𝑠

𝐾
, (15)

where TopK(·) indicates taking the largest 𝐾 value from the matrix.
The outputs of the last block of the backbone are denoted [�̃�; �̃�; 𝒕],
and we calculate the bidirectional contrastive losses between these
three modalities:

L𝑞𝑎

𝑖𝑡𝑎
=

1
2
(L𝑁𝐶𝐸 (�̃�, �̃�,N𝑎) + L𝑁𝐶𝐸 (�̃�, �̃�,N𝑞)), (16)

L𝑞𝑡

𝑖𝑡𝑎
=

1
2
(L𝑁𝐶𝐸 (�̃�, 𝒕,N𝑡 ) + L𝑁𝐶𝐸 (𝒕, �̃�,N𝑞)), (17)

L𝑎𝑡
𝑖𝑡𝑎 =

1
2
(L𝑁𝐶𝐸 (�̃�, 𝒕,N𝑡 ) + L𝑁𝐶𝐸 (𝒕, �̃�,N𝑎)), (18)
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Table 2: Comparison with state-of-the-art methods on video captioning. PT denotes pretraining. M, A, and O in Extra Modalities
respectively denotes motion, audio, and others. Blue indicates the highest metrics of large models and large-scale pretrained
models. Red indicates the highest metrics of the other models. † indicates methods optimized by SCST[41].

Method Vision
Encoder

PT Video-
Text Data

Learnable
Params

Extra
Modalities

MSR-VTT VATEX MSVD

B@4 M R C B@4 M R C B@4 M R C

Methods with large model (> 1B) or large-scale video-text pretraining (> 10M)
CLIP4Cap[43] CLIP𝐵 136M - - 47.2 31.2 64.8 60.0 40.6 - 54.5 85.7 - - - -
MV-GPT[42] ViViT𝐵 136M - O 48.9 29.9 64.0 60.0 - - - - - - - -
VideoCoCa[60] ViT-40L 8.7M 1.1B - 53.8 - 68.0 73.2 39.7 - 54.5 77.8 - - - -
VALOR𝐿†[7] CLIP𝐿 13.5M 593M A 54.4 32.9 68.0 74.0 45.6 29.4 57.4 95.8 80.7 51.0 87.9 178.5
GIT2†[48] DaViT 0M 5.1B - 54.8 33.1 68.2 75.9 42.7 28.8 56.5 94.5 82.2 52.3 88.7 185.4
VAST†[8] CLIP𝐺 297M 1.3B A 56.7 - - 78.0 45.0 - - 99.5 - - - -

Methods with video-text pretraining
mPLUG-2-base†[53] CLIP𝐵 2.5M 618M - 52.2 32.1 66.9 72.4 - - - - 69.3 45.1 81.9 148.2
mPLUG-2† CLIP𝐿 2.5M 900M - 57.8 34.9 70.1 80.3 - - - - 75.0 48.4 85.3 165.8
VideoOFA†[9] ResNet101 2.2M 400M - 50.5 33.1 66.8 73.5 39.6 27.2 54.2 79.5 75.9 47.7 85.0 165.5
VALOR−

𝐵
† VidSwin𝐵 2.5M 342M A 48.1 30.4 64.3 61.5 40.7 26.1 53.8 71.6 74.3 47.1 83.8 156.1

VALOR𝐵† VidSwin𝐵 3.5M 342M A 53.8 32.3 67.0 66.6 41.9 26.6 54.6 73.9 76.1 48.0 85.2 162.1

Methods without video-text pretraining
OpenBook[61] IncepV2 0M - M+O 33.9 23.7 50.2 52.9 33.9 23.7 50.2 57.5 - - - -
SwinBERT[29] VidSwin𝐵 0M 230M - 41.9 29.9 62.1 53.8 38.7 26.2 53.2 73.0 58.2 41.3 77.5 120.6
GIT†

𝐵
CLIP𝐵 0M 129M - 46.6 29.6 63.2 57.8 37.9 24.4 51.9 60.0 69.3 44.5 81.4 142.6

GIT†
𝐿

CLIP𝐿 0M 347M - 48.7 30.9 64.9 64.1 41.6 26.2 54.3 72.5 75.8 48.7 85.5 162.9
GIT† CoSwin 0M 681M - 53.8 32.9 67.7 73.9 41.6 28.1 55.4 91.5 79.5 51.1 87.3 180.2
Ours(unimodal)† CLIP𝐿 0M 183M - 51.5 33.6 67.8 78.5 43.1 28.2 55.9 86.8 72.9 48.6 85.3 169.9
Ours† CLIP𝐿 0M 240M A 53.5 34.3 69.0 80.7 44.1 28.5 56.5 88.0 - - - -
Note: The grey item of MV-GPT is re-evaluated by [57]. The grey parameters count of mPLUG-2-base is estimated by us, and the grey results on MSR-VTT indicate they use a
different split, leading to an unfair comparison.

L𝑖𝑡𝑎 =
1
3
(L𝑞𝑎

𝑖𝑡𝑎
+ L𝑞𝑡

𝑖𝑡𝑎
+ L𝑎𝑡

𝑖𝑡𝑎) . (19)

4 EXPERIMENTS
4.1 Experiment setup
We perform a comprehensive evaluation of our proposedmethod on
six benchmarks covering two downstream tasks: video captioning
and video retrieval.

For video captioning, we evaluate on three widely used datasets
(MSVD [6], MSR-VTT [54], VATEX [51]), as well as one novel
dataset (VALOR-32k [7]). We utilize the following metrics to evalu-
ate the performance of our model: Bleu@4 (B@4) [38], METEOR
(M) [12], ROUGE-L (R) [28], and CIDEr (C) [47]. During the infer-
ence process, we employ beam search with a beam size of 3, which
is generally used in many video captioning methods. Video retrieval
performance is evaluated using the MSR-VTT dataset [54] and the
DiDeMo dataset [18]. We use text-to-video recall at rank K (R@K,
where K=1, 5, 10) as our evaluation metrics. And we follow the
same evaluation process as in [23]. We use CLIP-ViT-L/14 [40]
and AST [16] finetuned on AudioSet as the visual encoder and the
audio encoder. We also inherit the weights of BLIP-2 [23]. By de-
fault we empirically extract 8 frames at equal intervals for datasets
(MSR-VTT, MSVD, VATEX, VALOR) with shorter video lengths, and

16 frames for DiDeMo dataset. Please refer to the supplementary
material for detailed experimental setups.

4.2 Comparison with SOTA methods
We compare the proposed model with other state-of-the-art models
in various aspects. As shown in Figure 6, our model achieves leading
results both in trainable parameters and the video-text pairs used,
demonstrating the superiority of our adaptive approach. In detail,
as shown in Table 2 and Table 3, compared to models without
video-text pretraining, our model basically achieves state-of-the-
art results on all five benchmarks. One exception is the GIT [48]
on video captioning, which utilizes up to 800M higher-resolution
image-text pairs for pretraining. In the captioning task, our model
outperforms methods with parameters below 1B and training pairs
below 10M. Compared to methods with higher training cost, our
approach still outperformsmethodswith pretraining data exceeding
100M (CLIP4Cap [43], MV-GPT [42]) and the model with 5 times the
parameters (VideoCoCa [56]). It even outperforms methods with
training parameters more than 20 times larger than ours (GIT2 [48])
on theMSR-VTT dataset. It’s important to note that the GIT2 model,
which achieved the best comprehensive metrics, constructs a model
with 5.1B parameters and uses up to 12.9B image-text pairs for
training, and thus exhibits a significant improvement compared to
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Table 3: Comparison with state-of-the-art methods on video retrieval. PT denotes pretraining. M, A, and O in Extra Modalities
respectively denotes motion, audio, and others. Blue indicates the highest metrics of video-text pretrained methods. Red
indicates the highest metrics of others. † indicates methods applying DSL [11].

Method Vision Encoder PT Video-Text Learnable
Params Extra Modalities MSR-VTT DiDeMo

R@1 R@5 R@10 R@1 R@5 R@10

Methods with video-text pretraining
VALOR𝐵[7] VidSwin𝐵 3.5M 342M A 43.0 72.2 82.1 52.2 80.8 86.8
CLIP4Clip[34] CLIP𝐵 136M - 44.5 71.4 70.1 43.4 70.2 80.6
mPLUG-2[53] CLIP𝐿 2.5M 900M - 53.1 77.6 84.7 56.4 79.1 85.2
CLIP-ViP†[55] CLIP𝐵 100M - O 57.7 80.5 88.2 55.3 82.0 89.3
UMT[26] CLIP𝐿 12.5M 304M - 58.8 81.0 87.1 70.4 90.1 93.5
VALOR†

𝐿
CLIP𝐿 13.5M 593M A 59.9 83.5 89.6 61.5 85.3 90.4

VAST[8] CLIP𝐺 297M 1300M A 63.9 84.3 89.6 72.0 89.0 91.4

Methods without video-text pretraining
CAMoE†[11] CLIP𝐵 0M - - 47.3 74.2 84.5 43.8 71.4 -
X-CLIP[35] CLIP𝐵 0M - - 49.3 75.8 84.8 47.8 79.3 -
HCMI-L[22] CLIP𝐿 0M - - 49.5 74.2 83.9 41.8 71.2 79.0
TABLE[10] CLIP𝐵 0M - M+A+O 52.3 78.4 85.2 51.8 77.5 85.1
STAN†[32] CLIP𝐵 0M - - 54.1 79.5 87.8 54.6 78.4 85.1
Ours CLIP𝐿 0M 240M A 59.4 80.8 87.4 62.1 82.3 83.3
Ours† CLIP𝐿 0M 240M A 60.7 81.9 87.0 65.3 82.6 85.1
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Figure 6: Comparison on MSR-VTT dataset with other meth-
ods in terms of (a) trainable parameters and (b) the number
of video-text pairs used.

all other methods. In contrast, our method focuses on constructing
a model with reasonable parameters, leveraging existing visual-
language models, and achieving superior performance without
additional video-text pretraining. In the retrieval task, compared
to methods with video-text pretraining, our approach achieves
competitive results, surpassing CLIP4Clip [34] and CLIP-ViP [55],
which utilize over 100 million video-text pairs. Additionally, our

Table 4: Comparison of VALOR dataset on video captioning.
Red and Blue indicate the optimal and sub-optimal metrics.

Method Params PT Audio B@4 M R C

SwinBERT[29] 230M 0M ✗ 5.4 10.7 27.2 27.3
VALOR−

𝐵
[7] 342M 2.5M ✗ 8.0 13.5 29.4 44.3

VALOR𝐵 342M 3.5M ✓ 8.9 14.8 30.8 55.7
VALOR𝐿 593M 13.5M ✓ 9.6 15.4 31.8 61.5
VAST[8] 1300M 297M ✓ 9.9 - - 62.2
Ours 240M 0M ✓ 9.6 15.4 30.8 52.1

model achieves comparable performance to UMT [26] and VALOR𝐿
[7], which employed video datasets exceeding 10 million instances.
For models with audio, we surpass them with R@1 scores of 60.7
and 65.3 in retrieval and a CIDEr score of 80.7 in captioning. We also
achieve the best results in B@4 andMETEORmetrics on the VALOR
dataset, which has a higher demand for audio understanding. It
is important to note that VALOR and VAST are trained on much
larger and audio-focused corpus. However, our method achieves
competitive results with much less audio for training. VideoOFA
[9] and VideoCoCa [56] are the closest works to our approach,
both aiming at enhancing video-language learning using existing
image-language models. Compared to them, our model has fewer
trainable parameters and achieves better results without millions
of videos for pretraining.

4.3 Ablation Study
4.3.1 Effectiveness of Each Component. As shown in Table 5, we
perform ablations experiments on three datasets and two tasks by
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Table 5: Ablation on each component on three datasets.

Audio GTA PFD L𝑖𝑡𝑎
MSR-VTT
CIDEr

VALOR
CIDEr

DiDeMo
R@1

72.6 43.0 55.7
✓ 73.1 45.3 60.0

✓ ✓ 75.1 49.1 60.5
✓ ✓ 73.8 50.4 60.1
✓ ✓ ✓ 74.9 49.3 60.7

✓ ✓ 75.2 49.9 60.7
✓ ✓ ✓ 76.6 50.6 61.4
✓ ✓ ✓ 76.7 51.3 60.8
✓ ✓ ✓ ✓ 77.5 52.2 62.1

Table 6: Comparison between GTA and some linear-
complexity attention mechanisms.

Method Complexity VALOR CIDEr

Vanilla CrossAttention O(𝑇𝐻𝑊𝐿𝑞𝐷𝑚) 45.3
LinFormer[50] O(𝐾𝐿𝑞𝐷𝑚) 44.8
InFormer[62] O(𝑇𝐻𝑊 log𝐿𝑞𝐷𝑚) 50.0
FlowFormer[52] O((𝑇𝐻𝑊 + 𝐿𝑞)𝐷2

𝑚) 45.9
GTA(ours) O(𝑇𝐻𝑊

𝐺
𝐿𝑞𝐷𝑚) 52.2

gradually adding modules to the baseline (Figure 2(b) and Equa-
tion (6)). We found that the audio modality, GTA module, PFD mod-
ule, and ITA loss all effectively enhance the model’s performance.
The best results are obtained by employing all four strategies. More
ablations of GTA and ITA are in Section C of the supplementary.

4.3.2 Comparison between GTA and Linear-complexity Attention
Mechanisms. We compare several linear-complexity attentionmech-
anismsmentioned in Table 1, and the results are presented in Table 6.
We replace the cross-attention with their improved attention mech-
anism according to their open-source codes. We found that intro-
ducing new learnable parameters (LinFormer [50]) or changing the
operation of attention mechanism (FlowFormer [52]) can disrupt
the model’s original knowledge, leading to unsatisfactory perfor-
mance. InFormer [62] performs slightly better than others, but in
the context of this paper, limiting the length of the query has mini-
mal impact on efficiency improvement. Our proposed GTA involves
minimal modifications to cross-attention and is tailored for scenar-
ios that require adapting an image-text pretrained cross-attention
to the video domain while minimizing disruption to features.

4.3.3 Efficiency Analysis. The proposed model’s GPU processing
speed and peak memory consumption during training are measured
for analysis efficiency. As shown in Table 7, the model achieves a
time saving of 50.5% and a memory saving of 36.9% with a dropout
rate of 50%. Restricting attention to adjacent two sampled frames
saved 31.7% of the time, but due to the creation of intermediate vari-
ables, there is a slight increase in memory consumption. Combining
both strategies results in a slight decrease in model performance.

• Y9YhG2CFTz0_20.000_30.000.mp4 VALOR-32k test set

Ground Truth：In the room a child in a blue bib was laughing, and the boy laughed more 
as the man spoke.
SwinBERT: a baby is sitting in a high chair and laughing
GIT-Large: a baby is sitting in a high chair and smiling
Ours: in the room, a baby in a blue bib sat in a white chair laughing

• Y9YhG2CFTz0_20.000_30.000.mp4 VALOR-32k test set

Ground Truth：In the room a child in a blue bib was laughing, and the boy laughed more 
as the man spoke.
SwinBERT: a baby is sitting in a high chair and laughing
GIT-Large: a baby is sitting in a high chair and smiling
Ours: in the room, a baby in a blue bib sat in a white chair laughing

Figure 7: Qualitative analysis on video captioning.

Table 7: Ablation experiments of PFD and GTA on VALOR
dataset. The relative columns indicate the relative ratio of
the other experiments compared to the first row.

Ratio Window Time GPU Memory CIDEr
ms relative MB relative

0% - 5082 1.000× 36730 1.000× 43.3
10% - 4653 0.916× 34011 0.926× 44.5
30% - 2949 0.580× 28587 0.778× 44.8
50% - 2515 0.495× 23159 0.631× 45.2
70% - 1344 0.264× 17736 0.483× 44.4
0% 32x2x16x16 3471 0.683× 38995 1.062× 45.1
50% 64x2x16x16 2160 0.425× 28834 0.785× 44.3
30% 64x2x16x16 2813 0.554× 32380 0.882× 45.8

We attribute this to an excessive restriction on the model. The best
results are obtained when the dropout rate was reduced to 30%.

4.3.4 Visualization. Figure 7 is a sample from the dataset. In this
example, where other models predict similar simple descriptions,
our model predicts more fine-grained descriptions, which we at-
tribute to our fine-grained features and ITA loss function. More
qualitative results can be found in the supplementary.

5 CONCLUSIONS
This paper presents a novel and efficient approach to adaptively
construct a video-language model. The proposed method transfers
knowledge from the image-language domain to the video domain,
efficiently processes the abundant information in videos through a
Visual Perception Adapter, and narrows the semantic gaps between
vision, audio, and text modalities by employing a fine-grained tri-
modal contrastive learning with Inter-modal Token Alignment.
Extensive experiments validate that the constructed model attains
satisfactory performance without the need for large-scale video-
text pretraining. Limitation: Our model focuses on processing
short videos and is not able to handle longer videos. To address
this issue, we plan to explore efficient and low-data-demand meth-
ods for modeling longer videos. Broad Impact: The outstanding
performance of this model demonstrates its potential to be applied
to multimodal large language models, where it can serve as an
efficient video feature extractor.
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