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In this supplementary we first provide detailed experimental set-
tings in Section A. We also provide more comparisons in Section B.
Further ablation experiments are described in Section C. Finally,
we present more qualtative results and attention visualizations in
Section D.

A EXPERIMENTAL SETTINGS
A.1 Datasets

• The MSVD dataset [2] consists of 1970 videos and nearly
80K caption annotations. We followed the standard train /
validation / test split of 1200/100/670 videos.

• The MSR-VTT dataset [27] consists of 10K videos with
20 captions per video. For video captioning, we used the
standard train/validation/test split of 6513/497/2990 videos.
For video retrieval, we use 9K videos and 18K captions for
training and 1K video-caption pairs for testing, following
[18].

• The VATEX dataset [24] is a bilingual annotated dataset
with 35K videos, each having 10 English annotations. Due
to unavailability of some videos, we utilized 100% of the
training set, 100% of the validation set, and 90% of the public
test set.

• The VALOR-32K dataset [3] focuses on audio-based video
captioning and comprises 32K videos, each having an audio-
visual caption. It also has a pretrained version called VALOR-
1M, containing 1M videos, which is not yet available. The
videos in this dataset are sampled from AudioSet, ensuring
that they contain valid audio information. The captions are
manually annotated and encompass both visual and audio
content descriptions. Some videos, amounting to approxi-
mately 4% of the dataset, are no longer available.

• The DiDeMo dataset [9] contains 10464 videos, each an-
notated with multiple sentences describing different mo-
ments in the video. We follow other works [3, 18] to use
standard split and concatenate multiple sentences into long
paragraphs for retrieval.

A.2 Feature Extraction
For vision, we uniformly sample 8/16 frames from the video and
follow [12] to extract patch-level features before pooling using
CLIP-ViT-L/141 [20]. For audio, we divide the audio into 1-second
non-overlapping segments and use AST2 [8] to extract the features

1https://github.com/openai/CLIP
2https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593

pooled from each segment, which are then concatenated to form a
sequence. We pre-extract these features to accelerate training.

A.3 Model Architecture
Due to the need for inheritingweights, the architecture of ourmodel
is set the same as the Q-Former in BLIP-2 ViT-L OPT [12], which
is a 12-layer 768-dim 12-head Bert-like Transformer encoder. Note
that we use the Q-Former weights from its representation learning
stage, not the large language model with billions of parameters.
On this basis, the new parameters we add include the audio FFN,
temporal embedding, and audio feature projection; for the former,
we duplicate the weights of the visual FFN, and for the latter two,
we reinitialize them.

A.4 Training
The hyperparameters used during the training phase are listed
in Table 1. We conducted all experiments using the PyTorch and
LAVIS3 [11] frameworks on two NVIDIA A40 GPUs. Most training
experiment can be completed within half a day.

Table 1: Hyperparameter settings during training.

Dataset MSR-VTT VATEX MSVD VALOR DiDeMo

optimizer AdamW
lr 2 × 10−5 2 × 10−5 2 × 10−5 2 × 10−5 5 × 10−6
scheduler linear_warmup_cosine_lr
warmup lr 1 × 10−8
warmup steps 100
weight decay 0.05
epoch 5 5 10 10 10
batch size 128 for captioning, 64 for retrieval
max seq length 50

A.5 Inference
For the video captioning task, we employ beam search with a beam
size of 3, set a minimum length of 5, and a maximum length of
30, without using sampling or other post-processing methods. For
the video retrieval task, we follow the inference pipeline in [12–
14], which involves selecting the top 50 items based on the cosine
similarity of features and then obtaining finer-grained scores using
the matching head. Additionally, we use DSL [6] to post-process
the scores.
3https://github.com/salesforce/LAVIS
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A.6 Efficiency Analysis
In the main text of our paper, we present Table 7 for efficiency
analysis, and we will now describe its detailed settings. Our analysis
focuses on the model’s efficiency during training, with processing
time statistics gathered under batch size = 64 and without beam
search. To control variables, we calculate the average processing
time per batch on the GPU during a single training epoch, excluding
the time for data loading and feature extraction.

B MORE COMPARISONS
B.1 VQA Comparisons
For a more comprehensive evaluation of our method, we report our
additional open-ended VQA experiments results on two datasets,
MSR-VTT-QA and MSVD-QA [25], following [3, 5] in Table 2. Dur-
ing training, the questions and answers are concatenated with learn-
able queries and are fed to the encoder. Note that we use simplest
prompts like Question: <ques> Answer: <ans>. Then we calculate
cross-entropy loss of the predicted answer part. The hyperparame-
ters are same as other tasks as in Table 1. During inference, only
questions (and prompts) are provided, and the model needs to freely
generate tokens until it meets the end token. The results shows that
our method outperforms others without additional pre-training
when PT ≤ 10𝑀 . Compared to models with larger training scales,
ours obtains comparable results with higher training efficiency
and fewer parameters. For example, our method outperforms GIT2,
which has 5.1B parameters.

Table 2: Comparisons with SOTA methods on VQA. PT de-
notes pre-training video-text pairs. Methods are grouped by
PT.

Methods PT Params MSR-VTT-QA
Accuracy

MSVD-QA
Accuracy

VideoCoCa [28] 8.7M 297M 42.6 53.6
VideoOFA [5] 2.2M 400M 45.4 55.5
VALOR𝐿 [3] 13.5M 593M 49.2 60.0
VAST [4] 297M 1300M 50.1 60.2
JuskAsk [29] 0M 157M 39.6 41.2
GIT𝐵 [23] 0M 129M 41.0 51.2
GIT𝐿 0M 347M 42.7 55.1
GIT2 0M 5100M 45.6 58.2
Ours 0M 240M 45.9 -
Ours(no audio) 0M 183M - 55.9

B.2 Comparisons with PEFT methods
We present discussions and comparisons with parameter efficient
finetune (PEFT) methods as follows. From a methodological per-
spective, both our approach and the PEFT methods aim to obtain a
model that performs well on a new dataset at a lower cost. How-
ever, most PEFT methods (e.g., LoRA [10], Prefix-Tuning [15]) are
performed on the same tasks (e.g., QA from general domain to med-
ical domain). Thus, they cannot adapt pre-trained image models to
the video domain. Some PEFT methods can achieve that, but are

Table 3: Comparisons with PEFT methods. † denotes method
that also inherit BLIP-2 weights. Gray item is estimated by
us. Here we report results without any post-processing oper-
ations (e.g., DSL [6]) during inference.

MSR-VTT DiDeMo
Methods PT Params QA Acc Ret R@1 Ret R@1

UniAdapter [17] 0M 19M 44.7 50.6 53.7
Aurora [22] 0M 0.1M 44.8 52.4 53.1
Side4Video [30] 0M 22M - 51.4 -
CrossTVR† [7] 0M 200M - 54.0 55.0
Ours 0M 240M 45.9 59.4 62.1

Table 4: Cross-dataset evaluation.We use CIDEr as themetric.
V denotes VATEX. Blue and Green denote multi/single-
modal model.

Training ⇒ MSR-VTT MSVD
Testing ⇒ PT Params MSVD V-val V-test MSR-VTT V-val V-test

SwinBERT [16] 0M 230M 84.2 24.9 20.3 34.7 31.1 25.1
VALOR𝐵 [3] 3.5M 342M 120.7 29.1 23.6 - - -
VALOR𝐿 13.5M 593M 134.4 57.3 50.5 - - -
Ours 0M 240M 148.9 50.7 45.8 - - -
Ours 0M 183M - - - 69.5 45.8 35.1

Table 5: Cross-dataset novel sentences analysis (MSR-VTT
⇒ VATEX-test).

Methods Novel CIDEr ↑ Vocab Size ↑ Novel Sent. (#/pct.) ↑
SwinBERT [16] 5.75 848 4/0.07%
VALOR𝐵 [3] 28.28 956 19/0.36%
VALOR𝐿 68.51 1569 156/2.9%
Ours 46.74 1514 112/2.1%

limited to non-generative tasks or visual channel [7, 17, 19, 22, 30].
Our method differs from them by adapting and expanding a pre-
trained image-text model to a multi-channel multi-task video-text
model. Moreover, our method improves efficiency through optimiz-
ing encoding operations, while PEFT methods focus on number of
learnable parameters. We believe PEFT methods are complemen-
tary to ours, and it would be our further research. As shown in 3,
our method significantly outperforms others. Even for the method
using the same pre-training weights (CrossTVR [7]), we get 10.0%
and 12.9% improvement on the two datasets, respectively.

B.3 Cross-dataset evaluation
To further validate the generalizability of our method, we conducted
cross-dataset experiments as in Table 4 and Table 5. The results in
Table 4 are based on open source codes and weights. Our model
outperforms the traditional model (SwinBERT) and is comparable
to the model with a larger size and more pre-training (VALOR),
showing our strong generalization. Moreover, following [21], we
count the vocabulary sizes of the predictions, find the sentences
containing novel words, and present CIDEr scores of these novel
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sentences to measure the correctness (Table 5). Correct novel sen-
tences indicate that the model leverages the generalization ability
from pre-training. For instance, with our model, trained on the
MSR-VTT training set and tested on the VATEX test set, we found
a vocabulary size of 1514. Among the results, 112 sentences (2.1%)
contain new words not present in the MSR-VTT training set. The
accuracy of these new sentences, measured by the CIDEr metric,
reached 46.74. These results indicate that our model obtains strong
generalizability comparable to much larger models.

C MORE ABLATIONS
C.1 Ablations of GTA
We explore the impact of different window sizes on the proposed
model through ablation experiments on DeDiMo [9] dataset. As
depicted in Table 6, we gradually increase the number of queries,
and find that the number of queries used in BLIP-2 (32) was not
enough to represent the rich information in the video, and the op-
timal number we found is 64. Row 2-5 explore the case where a
set of queries applies attention globally over space and locally over
time. We achieve the best result by restricting a group of queries
to apply attention to two adjacent frames. According to our sparse
frame sampling strategy, a single frame represents about 1.8s. In
such a short time range, it is easier for queries to capture motion
information (e.g., a person running from the left side to the right
side). While there may be shot cut in a longer time range, which
can lead to noise from other shots interfering with the query to
capture key information. We also try to spatially limit the atten-
tion area of the queries, and the results indicate that this would
degrade the performance. We analyze that this is because the query
is responsible for extracting the key information from a complete
image during pretraining, and limiting it spatially would lead to
the domain shift problem.

C.2 Ablations of ITA
The hyperparameters in ITA include the weight for the loss (𝜆𝑖𝑡𝑎)
and the number of selected token-wise similarities for each pair of
modalities. We conduct ablation experiments on both captioning
and retrieval tasks. As shown in the upper part of Figure 1, since
the value range of this loss is similar to the others, there is no need
to scale the weight. Moreover, for ease of comparison, we kept
the proportion of 𝐾 token-wise similarities selected from different
modal pairs the same, and used this proportion as a variable for
comparison. As depicted in the lower part of Figure 1, the optimal
performance is achieved when this proportion is 5%, correspond-
ing to 𝐾 = 32, 160, 25 for visual-audio, visual-text, and audio-text,
respectively.

C.3 Other baseline with VPA
To substantiate the effectiveness of VPA, we integrated this module
into another baseline. We apply VPA to mPLUG-2’s two universal
layers [26] and train it for 1 epoch on MSVD [2]. As shown in
Table 7, despite applying it only on limited layers, VPA enhances
the performance of the new baseline while reducing training costs.
It should be noted that, in theory, our method can be applied to
other VLMs that incorporate multi-query attention pooling (e.g.,
CoCa [31]).

Table 6: Ablation experiments of local window size and num-
ber of queries on DiDeMo dataset.

# Number of
queries depth height width DiDeMo R@1

1 32 1 16 16 57.8
2 64 1 16 16 58.9
3 64 2 16 16 60.0
4 64 4 16 16 58.8
5 64 8 16 16 58.4
6 64 2 8 8 58.6
7 64 8 4 4 57.2
8 64 4 4 4 54.3
9 128 1 16 16 59.4
10 128 2 16 16 58.6
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Figure 1: Ablation experiments on loss weight and the pro-
portion of the selected topK similarities in ITA on MSR-VTT
and DiDeMo datasets. Top-1 indicates that only the largest
similarity is used.

Table 7: Ablations with mPLUG2 on MSVD.

Methods Training Time GPU Mem. METEOR CIDEr

mPLUG2 [26] 4.4h 23.2G 39.2 128.9
mPLUG2+VPA 3.5h(-20%) 21.8G(-6%) 40.2(+1.0) 131.3(+2.4)

D QUALITATIVE RESULTS
D.1 Video Captioning Results
Figure 2 and Figure 3 are the qualitative examples of our model.
In Figure 2, each example is generated from the model trained on
the corresponding dataset, and the examples are randomly sam-
pled from the validation set or test set. For datasets with multiple
ground truths, we sample three. We also show the predictions of
two other models [16, 23] for comparison, but some models trained
on specific sets have not been published. In the first example, our
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model successfully infers from the audio modality what the woman
was talking about in the video, while others provide either a vague
or incorrect description, confirming that our model is able to use
additional audio modality. In the last example, where other models
predict similarly simple descriptions, our model predicts more fine-
grained descriptions, which we attribute to our use of fine-grained
features and the fine-grained objective function. In the remain-
ing examples, our model also successfully recognizes the subjects,
actions, locations, and relationships, and provides syntactically
correct generated results.

In Figure 3, we randomly download some videos in the wild. All
results are generated by the model trained on the VATEX dataset
[24]. The first two examples show that our model is able to recog-
nize landmarks in movies and music videos, which we attribute to
the knowledge learned from large-scale image-text pairs. The GIT
[23] also has been pretrained on a large number of image-text pairs,
which does not provide a satisfactory description, showing that it
may be forgetful when fine-tuned with videos. In the third example,
our model detects an accident based on a surveillance video, demon-
strating the potential of the our model to be applied in real-world
tasks. In the last example, our model recognizes fine-grained targets
(e.g., the poster on the wall in Andy’s cell in the movie). Overall, our
proposed model generalizes well and has excellent performance in
real application scenarios.

D.2 Video Retrieval Results
Figure 4 presents examples from our video retrieval model tested on
the MSR-VTT dataset. We conducted a qualitative comparison with
CLIP4Clip [18]. For the first query, the textual description focuses
on the purpose of the video rather than the overt actions being
performed; that is, the text describes the video as being produced
to promote helping others, with specific scenes showing feeding
hungry children, etc. This requires the model to possess a solid
ability to understand semantics. Our model ranks the correct result
at the top, while the other model does not display the correct result
within the top 3 results. For the second query, given the presence
of multiple similar results in the retrieval library, our model’s top-3
retrieved videos largely corresponded to the query, correctly placing
themost relevant video at the top (the second-ranked retrieval result
featured a classroom and a teacher in an animation, and the third-
ranked result also depicted a classroom and a teacher, but without
dialogue). In contrast, the other model incorrectly placed the video
in the top-2, with its top-ranked video featuring multiple teachers
teaching in scenarios similar to the query but did not match in
detail. These results demonstrate our model’s ability to achieve
fine-grained, discriminative representations.

D.3 Attention Visualization
We also visualize the model’s attention by the post-processing
method in [1]. As shown in Figure 5, in the heat map, each row
indicates the attention applied to vision queries and audio tokens
when generating a text token, with the first 64 columns being the
vision queries and the last 10 columns being the audio tokens in this
example. The two sets of images on the left side, from top to bottom,
respectively represent the model’s attention to various regions of
the video when generating sheep and the original frames of the

video (three frames are selected for convenient visualization). The
attention maps are obtained by averaging the attention weights of
the top-5 most attended visual queries. From the results, we can see
that the model selectively focuses on key information when gener-
ating different concepts. When generating sheep, the model mainly
focuses on the sheep in the video. When generating the wind, the
attention to the audio tokens increases. The results demonstrate
that our proposed VPA aligns the semantics of different modali-
ties, while VPA is capable of perceiving various visual elements
depending on the context.
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GT1: a woman in a purple suit begins a course on written english
GT2: a woman in violet t-shirts explains something on camera
GT3: a woman is talking about a second part the college writing
SwinBERT: a woman with blonde hair is talking about something
GIT-Large(*vatex): a woman is talking about the benefits of a video
Ours: a woman is talking about college writing

• video7072.mp4 MSR-VTT testset
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GT1：a man chopping lobster and taking off the shell
GT2：a cook cracks open lobster and rubs butter onto the lobster
GT3：a man cutting open a crab and taking the meat out to prepare a food dish
SwinBERT: a chef is showing how to marinate a chicken dish
GIT-Large(*vatex): a lobster is shown on a platter and a person is talking about it
Ours: a man in a black shirt is cutting a lobster on a cutting board

• video9687.mp4 MSR-VTT test set
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GT1: a little girl is performing gymnastic figures 
in a hall.
GT2: a coach is giving some instructions to a 
young gymnast, and then she does a tumbling 
routine.
GT3: a man coaches a young girl on how to do 
gymnastics moves.
SwinBERT: a girl does a series of flips on a mat 
in a gym
GIT-Large: a man is standing on a mat
Ours: a young girl does a backflip on a 
trampoline in a gym.

• FsrD9In_oBM_000002_000012.mp4 VATEX validation set
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GT：In the room a child in a blue bib was laughing, and the boy laughed more as the man 
spoke.
SwinBERT(*vatex): a baby is sitting in a high chair and laughing
GIT-Large(*vatex): a baby is sitting in a high chair and smiling
Ours: in the room, a baby in a blue bib sat in a white chair laughing
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Figure 2: Qualitative comparison of the proposed model with other open-source models [16, 23] on three video captioning
datasets. The videos are sampled from the MSR-VTT, VATEX, and VALOR datasets. Models not trained on the corresponding
datasets are annotated with their training dataset in parentheses. GT is an abbreviation for Ground Truth.
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SwinBERT: a man is walking through the 
streets of a busy city.
GIT-Large: a man walking through a busy 
city.
Ours: a man is running in the street in 
times square.

SwinBERT:  a man walks around a building 
and then a light is shown.
GIT-Large: a building that is lit up.
Ours: a city is lit up at night with a view of 
the eiffel tower.

SwinBERT: a person is using a machine to 
extinguish a fire.
GIT-Large: a group of people are playing 
with a tank and a fire is coming out of the 
ground.
Ours: a group of people are working in a 
building that has a lot of fire coming out 
of it.

SwinBERT: a man is talking to a man who is 
wearing a suit and then a man is talking.
GIT-Large: a man in a uniform is directing a 
man in a security uniform.
Ours: a group of police officers are talking 
to each other in a room with posters on 
the walls.

1 2

43

Captain America: The First Avenger(2011) Greatest Works of Art MV(2022)

The Shawshank Redemption(1994)Random video of an accident from the internet

Figure 3: Qualitative comparison of our proposed model with other open-source models [16, 23] on out-of-domain videos. The
videos are sampled from the Internet, including various types (i.e., movies, music videos, surveillance footage). Ground truths
are not available. All models are trained on the VATEX dataset.
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Query: video showing helping attitude of human beings (GT: video8326.mp4)

CLIP4Clip

top1

top2

top3

Ours

Query: a man speaks to children in a classroom (GT: video9775.mp4)

top1

top2

top3

CLIP4ClipOurs

Figure 4: Qualitative comparison of the proposed model with CLIP4Clip [18] on MSR-VTT testset. GT is an abbreviation for
Ground Truth, which is marked by a green box.
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Prediction: a flock of sheep was walking on the grass, and the wind was blowing

a

flock

of

sheep

was

walking

on

the

grass

,

and

the

wind

was

blowing

[SEP]
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[SEP]

Attention maps when generating sheep.

The regions containing sheep are focused.
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Figure 5: Visualization results of our proposed model. The heat map matrix shows the attention applied to visual queries and
audio tokens when generating each text token. The heatmap overlaid on the images displays the model’s attention to various
regions of the video when generating sheep. The original frames of the video and its prediction result are also presented.
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