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1 CLASSIFICATION EXPERIMENTS

Providing additional details to the CIFAR10 classification results from our method, we provide Table
1 for comparing our reported results with the results from the DFMS-SL/HL paper (Sanyal et al.,
2022). We also note that to extend the DFME method to hard-labels without using Dual Students, we
change their l1 loss to multi-margin loss (Truong et al., 2021). Multi-margin loss was tested for both
DFME and Dual Students, however, while multi-margin increased DFME by around 12% boost
compared with using cross-entropy loss, it reduced Dual Students accuracy on CIFAR10. Thus we
show the DFME hard label using multi-margin loss to provide a best-case scenario for DFME. We
also show additional results for the BIM attack (Kurakin et al., 2016) in Table 4.

Table 1: Percent student accuracy for different methods with and without the Dual Student (DS)
method when using different target models. [1]The first two new results for DFMS-SL and DFMS-
HL are taken directly from the DFMS-HL paper. For soft-labels, our new Dual Student method
outperforms their reported results. [3]For the hard label setting, although the reported DFMS-HL
results beat our Dual Student method alone, using our Dual Student method to fine-tune the fully
trained Generator and Student models improves the accuracy. [2]The bottom two results shown in
the table use a ResNet18 architecture for their Target model. We did not include these three rows in
the primary paper because the results are not directly comparable due to the use of different target
models with varying accuracies and architectures.

Dataset Target Accuracy Method Probabilities Hard-Labels

CIFAR10

95.5 DFME (ℓ1) 88.10 -
95.5 DFME (ce) - 56.35
95.5 DFME (multi-margin) - 68.40
95.5 DS 91.34 78.72
95.5 DFMS-SL/HL 83.02 79.61
95.5 DS + DFMS-SL/HL 89.38 85.06

CIFAR10
95.59 DFMS-SL 91.24[1] -
93.7[2] DFMS-HL - 85.92[1]

93.7[2] DS + DFMS-HL - 88.46[3]

∗Equal contribution
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2 DUAL STUDENTS TRAINING SETUP DETAILS

Referring to Algorithm 1, we use mostly the same hyperparameters outlined in DFME (Truong
et al., 2021). The generator architecture is the same used in the DFME method: 3 convolutional
layers with linear upsampling, batch normalization, and ReLU activations. For iG and iS we use 1
and 5 respectively. An ablation of this ratio is provided in Table 2. We use ℓ1 loss on soft-labels,
and cross-entropy loss on hard-labels for LS . For LG we only use ℓ1 loss. For student learning rates
in the SGD loss, we use αG = (0.0001, 0.0001) and αS = (0.3, 0.05) for soft-label and hard-label
training respectively, with weight decay of 0.0005 and momentum of 0.9. We use a moving average
momentum, as outlined in Cai et al. (2021) of 0.9, and balance the 20 million queries for CIFAR10
across 224 epochs. Visual examples of images generated during CIFAR10 training can be seen on
the left side of Figure 1.

Algorithm 1 Proposed Dual Students Method
Input: target model T , student models S1, S2, generator G, model parameters θS1

, θS2
, θG

generator iters iG, student iters iS , epochs iE , learning rates αG, αS

1: for e through iE do
2: for ig through iG do // Train Generator
3: z ∼ U(0, 1) // uniform noise
4: x← G(z; θG) // generate images
5: lG ← −LG(S1(x; θS1

), S2(x; θS2
)) // (maximize) distance between students

6: θG ← θG + αG∇θG lG // update Generator
7: end for
8: for is through iS do // Train Students
9: z ∼ U(0, 1)

10: x← G(z; θG)
11: t← T (x) // query Target Model
12: lS1 ← LS(S1(x; θS1), t) // (minimize) distance to Target
13: lS2 ← LS(S2(x; θS2), t)
14: θS1 ← θS1 + αS∇θS lS1 // update Student
15: θS2 ← θS2 + αS∇θS2

lS2

16: end for
17: end for
18: return S1

Table 2: Ratio between generator and student training iterations for CIFAR10 soft-labels on Dual
Students.

Ratio 1:1 1:4 1:5 1:6 1:10
Accuracy 66.59 91.12 91.34 91.07 76.05

Table 3: Number of queries (in millions) required by different methods to reach a target accuracy on
CIFAR10 using soft-labels. These are values are taken from the graph provided in Figure 1 (right).

Accuracy 75% 80% 85%
DFME 4.89 7.02 11.56

DFMS-SL 5.89 8.21 10.98
DS 3.57 5.54 6.43
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3 QUERY EFFICIENCY

The query efficiency of DFME compared with Dual Students is shown on the right side of Figure
1 and in Table 3. Referring to Algorithm 1, this query efficiency comes from removing the Target
model gradient estimate from the Generator loop that’s present in the DFME method. The DFME
method uses the same Generator-Student iterative training as Dual Students, and uses the same hy-
perparameters for number of Generator to Student iterations (1:5). Thus, the only queries are made
during Student training, which has the same number of queries as the DFME method student train-
ing. Ultimately this benefit results in around a 30% decrease in number of queries needed, however,
benefits from using a better gradient estimator in Dual Students result in even higher accuracies.

Figure 1: Examples of images generated during DS training on CIFAR10 (left), and query efficiency
of the different methods on CIFAR10 using soft-labels (right).

4 EVALUATING GENERATOR CLASS DISTRIBUTION

The Dual Student method does not use any explicit class distribution balance term in either Gener-
ator or Student loss. This is similar to DFME and helps simplify the loss for few-class datasets like
CIFAR10. However, when scaling up to CIFAR100, even class distribution becomes more impor-
tant. As is shown in Figure 2, Dual Students has a more balanced class distribution than the DFME
method on CIFAR10 throughout training. However, Dual Students suffers from class imbalance
when extended to CIFAR100. Of note in Figure 2 is that in the percent classes generated at the end
of training, there are particular classes like Class 8 that appear to be more difficult to generate than
other classes. These difficult classes persist across multiple runs, so a class distribution balancing
term may be beneficial to scaling up to datasets with more classes.

3



Published as a conference paper at ICLR 2023

Figure 2: Distribution of classifications of generator images during training. X-axis is number of
epochs during training, Y-axis is a stacked chart of the percent prevalence of classes, where the
different classes are different colors. The bars on either side of the graph are references for if the
distribution of classes was uniform.

Table 4: Additional results using the BIM attack, extending Table 2 in the main paper (Kurakin et al.,
2016; Goodfellow et al., 2015; Madry et al., 2017). Attack success percentage of different DFMS
methods on the Target Model trained on CIFAR10 when attack ϵ = 3

255 . All attacks are evaluated
on the Target Model. The Target Model row is a white-box attack, Proxy Model is a transfer-based
black-box attack where the proxy is trained using the same data as the target model. The other
DFMS methods provide trained student models which act as the proxy in transfer-based black-box
attacks.

Attack Method Untargeted Attacks Targeted Attacks
Probabilities Hard-Labels Probabilities Hard-Labels

FGSM

Target Model 45.00 19.64
Proxy Model 33.12 14.38

DFME 56.84 39.22 21.07 17.15
DS 62.35 44.58 21.58 21.04

DFMS-HL/SL 54.88 48.89 19.74 21.85
DFMS-HL/SL + DS 54.99 50.41 20.53 23.59

BIM

Target Model 96.74 76.90
Proxy Model 57.50 29.74

DFME 84.38 55.52 53.39 31.95
Dual Students 91.56 62.76 63.39 34.85
DFMS-HL/SL 83.25 73.19 52.99 41.00

DFMS-HL/SL + DS 82.23 74.60 51.89 43.47

PGD

Target Model 96.78 76.32
Proxy Model 55.01 28.33

DFME 83.59 54.71 51.97 31.49
DS 91.04 62.21 61.96 33.39

DFMS-HL/SL 81.97 72.40 52.64 39.95
DFMS-HL/SL + DS 81.04 73.08 51.38 42.53
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