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SAR-SLAM: Self-Attentive Rendering-based SLAM with Neural
Point Cloud Encoding

Anonymous Author(s)

ABSTRACT
Neural implicit representations have recently revolutionized simul-
taneous localization and mapping (SLAM), giving rise to a ground-
breaking paradigm known as NeRF-based SLAM. However, existing
methods often fall short in accurately estimating poses and recon-
structing scenes. This limitation largely stems from their reliance
on volume rendering techniques, which oversimplify the model-
ing process. In this paper, we introduce a novel neural implicit
SLAM system named SAR-SLAM to address these shortcomings.
Our approach reconstructs Neural Radiance Fields (NeRFs) using
a self-attentive architecture and represents scenes through neural
point cloud encoding. Unlike previous NeRF-based SLAM meth-
ods, which depend on traditional volume rendering equations for
scene representation and view synthesis, our method employs a
self-attentive rendering framework with the Transformer architec-
ture during mapping and tracking stages. To enable incremental
mapping, we anchor scene features within a neural point cloud,
striking a balance between estimation accuracy and computational
cost. Experimental results on three challenging datasets show the
superior performance and robustness of our SAR-SLAM compared
to recent NeRF-based SLAM systems. The code will be released.
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1 INTRODUCTION
Simultaneous Localization and Mapping (SLAM) [4] stands as a
fundamental challenge in computer vision, finding wide-ranging
applications in autonomous driving [3], robot navigation [5], aug-
mented reality (AR), virtual reality (VR), collision detection [7], and
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(a) With traditional volume rendering (NICE-SLAM)

(b) With generalizable NeRF transformer rendering (Ours)

Figure 1: The comparison of the NeRF-based SLAM with
different image rendering methods.

scene perception [27]. With the escalating demand for high-fidelity
3D scene reconstruction, there’s a critical shift towards represent-
ing target scenes more accurately, favoring continuous surfaces
over discrete point clouds. Despite the remarkable strides made in
3D scene reconstruction technology in recent years, achieving real-
time representation of high-quality scenes without compromising
accuracy and spatial resolution remains a persistent challenge.

The advent of low-cost visual sensors has led to the emergence
of numerous real-time dense visual SLAM systems, gaining substan-
tial attention across academia and industry. Traditional methods in
dense visual SLAM employ representations such as point clouds,
surfels, voxel grids, voxel hashing, or octrees to achieve real-time,
dense, and large-scale scene reconstruction [30, 47]. However, these
methods often struggle to provide accurate geometric estimations
for unobserved areas. In contrast, learning-based SLAM methods
exhibit predictive capabilities as they are typically trained on task-
specific datasets [1, 16, 38, 43, 48]. Yet, many of these methods rely
on ground truth depth or 3Dmesh for training, posing challenges in
generalization to unseen scenes during testing. Furthermore, deep
learning-based scene representation encounters challenges with
local scene updating and fixed network capacity during runtime,
constraining their capability for achieving high-fidelity reconstruc-
tion in large scenes.

With the introduction of Neural Radiance Fields (NeRF) [20] and
its diverse applications in inverse rendering [32], controllable edit-
ing [23], digital human body generation [40], multi-modality [37],
image and video processing [15], medical imaging [31], and various
other fields, researchers have begun integrating NeRF into SLAM
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research. The implicit representation produced by the continuous
radiance field enables high-quality rendering of both visible and
occluded regions, facilitating the extraction of underlying shapes
at any resolution. Compared to conventional methods, implicit
neural scene representations demonstrate superior noise and out-
lier suppression capabilities in mapping, enhanced hole-filling and
inpainting capacities for occluded scenes, and more robust data
compression abilities. Despite showcasing significant performance
advancements, these approaches often involve decoding the feature
volume into a radiance field and rely on classic volume rendering
formulas for view synthesis. It’s important to note that the volume
rendering equation utilized in NeRF oversimplifies optical modeling
concerning solid surfaces [45], reflectivity [6, 8], and inter-surface
scattering effects. Consequently, within NeRF, the brightness field
associated with volume rendering does not present a universal
imaging model, thereby limiting the generalizability of NeRF-based
SLAM algorithms when encountering new scenes.

Drawing inspiration from IBRNet [39], we present SAR-SLAM,
a NeRF Transformer-based SLAM system with neural point cloud
encoding designed for improving generalizability. As illustrated in
Fig. 1, our approach hinges on several key ideas. 1) Instead of rely-
ing on classical volume rendering equations for view synthesis, we
employ a ray transformer that utilizes self-attention mechanisms
to compose coordinate-wise point features along traced rays. This
departure allows for inducing view synthesis in a more effective
manner. 2) To balance memory usage and accuracy, we leverage
scene-adaptive neural point clouds for scene representation [42].
Each neural point encapsulates both geometric and color features
of the local map. During rendering, we employ scene-adaptive
ray-based rendering facilitated by learned attention mechanisms,
enabling the translation of these features into scene geometry and
color estimates. 3) By utilizing the depth and color images rendered
from the ray transformer outputs, we optimize scene representa-
tions and camera poses by minimizing re-rendering losses through-
out the tracking and mapping processes. Our method is extensively
evaluated across synthetic and real-world datasets, showcasing ad-
vancements in tracking, mapping, and rendering. In summary, the
contributions of this paper are three-fold:

(1) We propose SAR-SLAM, a novel neural implicit SLAM system
designed to operate in real-time and demonstrate robustness
across diverse challenging scenarios of various scales.

(2) SAR-SLAM’s core innovation lies in the implicit attention-
based ray rendering idea. Differing from the traditional volume
rendering equation, this approach reconstructs NeRF without
requiring an explicit rendering formula, thereby enhancing
strength, scalability, and versatility in graphical rendering.

(3) Comprehensive evaluations performed across various datasets
validate the superiority of our approach in terms of tracking,
mapping, and rendering capabilities.

2 RELATEDWORK
Dense Visual SLAM. In recent years, visual SLAM has seen signif-
icant activity in both academia and industry. Unlike sparse visual
SLAM algorithms that utilize sparse point clouds for scene map
representation and camera pose estimation, dense visual SLAM al-
gorithms leverage dense point clouds, meshes, or accelerated grids

to reconstruct detailed scene maps. Generally, map representations
fall into two categories: view-centered and world-centered. The
former often represents 3D geometry as depth maps of keyframes,
as seen in approaches like DTAM [22], ORB-SLAM [21], and sub-
sequent works. DTAM’s straightforward pipeline is widely used
in SLAM systems employing deep learning for depth and pose
estimation. Similarly, DeepFactors [9] simplify optimization by em-
ploying a collection of basic depth maps. Other methods, such as
CodeSLAM [2], SceneCode [49], and NodeSLAM [35], optimize la-
tent representations decoded into keyframes or object depth maps.
DROID-SLAM [36] utilizes regression optical flow for geometric
refinement, while TANDEM combines multi-view stereo with DSO
for real-time dense SLAM. DeepSLAM [17] utilizes autoencoder
networks and recurrent convolutional neural networks to predict
scene depth and 6DoF pose, respectively. Alternatively, another
approach employs a world-centered map representation that an-
chors 3D geometry in unified world coordinates, representing scene
maps as surfels [30, 41] or occupancies/TSDF values in voxel grids
[11, 24].
NeRF-based Visual SLAM. Thanks to neural implicit representa-
tions facilitating object-level reconstruction [46], scene completion
[19, 25], new view synthesis [26], and various other aspects, sev-
eral NeRF-based Visual SLAM methods aim to jointly optimize
the neural radiance field and camera pose. BARF [18] utilizes a
neural rendering network for implementing Bundle Adjustment
(BA), a crucial process in traditional SLAM systems, executing it-
erative optimizations for both model and camera pose. iMAP [34]
utilizes the neural rendering model to establish two threads: track-
ing and mapping. The tracking thread leverages current model
parameters to reason and optimize the camera pose of the current
frame, while the mapping thread refines the network model param-
eters and camera pose after integrating new keyframes. Building
upon iMAP, NICE-SLAM [51] employs feature grids to encode the
scene into multi-dimensional vectors and utilizes an MLP to de-
code the implicit representation into occupancy and color. Further
advancements, such as NICER-SLAM [50], have proposed a dense
RGB-SLAM system that concurrently optimizes camera poses and
multi-level neural implicit representations, enabling high-precision
positioning and the synthesis of new views with exceptional fi-
delity. Similarly, in literature [29], the exclusive use of RGB images
as input introduces a photometric consistency transformation error
based on multi-view geometric constraints, resulting in enhanced
constraints for camera pose estimation and the geometric structure
of the scene.

Unlike the NeRF-based Visual SLAM approaches mentioned ear-
lier that rely on classic volume rendering for view synthesis subse-
quent to feature encoding or aggregation, our proposal introduces
a self-attentive ray transformer to model this process. This method-
ology constructs a more versatile imaging model for the SLAM
system, capable of synthesizing higher-quality images within re-
stricted viewing angles. Consequently, it enhances the accuracy of
localization and mapping of NeRF-based SLAM algorithms. Diverg-
ing from methods like NICE-SLAM that utilize multi-scale feature
grids to represent the scene, our approach involves neural point
cloud encoding [28, 42]. The neural points offer a user-friendly rep-
resentation, facilitating faster neighborhood search and achieving
a balanced trade-off between accuracy and efficiency.

2
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Figure 2: System Overview. Our proposed SAR-SLAM takes RGB-D image sequences as input and concurrently generates
camera poses alongside a learned scene representation using neural point clouds. Upon receiving each new RGB-D image, we
incorporate a set of neural points using a specific sampling approach. Subsequently, we employ a versatile ray transformer to
render depth and color maps. The sampled point features encompass three components: color and geometry features derived
from the neural point cloud map interpolation, and positional features from learnable Gaussian position encoding. Following
the generation of rendered images (depth and RGB), we estimate camera poses and refine the scene representation through an
iterative optimization process that minimizes re-rendering losses. This iterative process involves the optimization of neural
point features and the ray transformer network during mapping. In an alternating manner, we optimize camera poses during
tracking while keeping the map and network fixed.

3 METHOD
The overview of our proposed method is depicted in Fig. 2. We
use neural point clouds to represent the scene, which is incremen-
tally added during the exploration process (Sec. 3.1). In contrast to
previous NeRF-based SLAM approaches that optimize scene rep-
resentation using fixed volume rendering equations, SAR-SLAM
leverages learnable self-attentive ray transformers for view syn-
thesis (Sec. 3.2). Throughout mapping and tracking, we minimize
re-rendering losses related to depth and color. This simultaneous
optimization enhances both camera poses and scene representation
(Sec. 3.3 ).

3.1 Scene Representation with Neural Point
Clouds

Differing from the majority of NeRF-based SLAM methods that use
a hierarchical grid for scene representation, we integrate geometry
and color features into the neural point cloud using scene-adaptive
point density, as proposed in [42]. We define a set of neural point
clouds with 𝑁 points as follows:

𝑃 = {(𝑝𝑖 , 𝑓 𝑔𝑖 , 𝑓
𝑐
𝑖 ) |𝑖 = 1, . . . , 𝑁 }, (1)

where 𝑝𝑖 ∈ R3 is the location of the anchored point, 𝑓 𝑔
𝑖
∈ R32 and

𝑓 𝑐
𝑖

∈ R32 are the geometric and color feature descriptors respec-
tively. During the mapping process, we conduct uniform sampling
and large gradient pixel sampling on RGB images. If the depth value
corresponding to the sampled pixel is valid, the 2D pixel is pro-
jected onto the 3D space. Subsequently, neighboring neural points
within the specified search radius are identified within the neural
point cloud. The density of the neural point cloud is intricately
linked to the chosen search radius, which is governed by the color
gradient-based dynamic resolution strategy outlined in [28].

In scenarios where no neural point is found in the vicinity, we
sample three points aligned with the depth value 𝐷 along the cam-
era ray: (1 − 𝜌)𝐷 , 𝐷 , and (1 + 𝜌)𝐷 , where 𝜌 ∈ (0, 1) serves as a

hyperparameter, accounting for the anticipated depth noise. The
feature vectors of these newly added neural points are initialized
using Kaiming initialization [12]. As more frames are processed,
the neural point cloud expands progressively to encompass the
exploration of the scene. It tends to converge to a finite set of points
once all parts of the scene have been accessed. Unlike many grid-
based scene representations, this approach doesn’t necessitate the
specification of scene boundaries before reconstruction.

3.2 Self-Attentive Rendering
Current NeRF-based SLAM methods employ a fixed volumetric
rendering pipeline to synthesize novel view images for poses and
scene representation optimization. This pipeline combines the color
and density of points along each ray cast from the image plane to
produce the final pixel color. Given camera intrinsic parameters and
the estimated camera pose, we can obtain the camera ray r = (o, d),
where o is the origin and d is the ray direction. We sample a set of
points 𝑥𝑖 along this ray as:

𝑥𝑖 = o + 𝑧𝑖d, 𝑖 ∈ {1, . . . , 𝑁𝑠 }, (2)

where 𝑧𝑖 ∈ R is the point depth. For pixels with valid depth value𝐷 ,
we sample 5 points uniformly between the limited band (1 − 𝜌)𝐷
and (1 + 𝜌)𝐷 . With this scene depth prior, we can sample fewer
samples along the ray, which achieves a computational speed-up
during rendering.

The volume rendering can be conceptualized as a weighted ag-
gregation of all point-wise outputs, where the weights are globally
determined by points along traced rays for occlusion modeling. We
argue that this aggregation process can be effectively learned by a
transformer model, referred to as the ray transformer in this paper.
Specifically, the point-wise colors are mapped to token features,
while the attention scores correspond to transmittance, represent-
ing the blending weights in the rendering process.

The detailed network architecture of the ray transformer is de-
picted in Fig. 3. Following the point sampling, we combine the

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Detailed network architecture of ray transformer
in SAR-SLAM.

geometry features 𝐹𝑔 (𝑥𝑖 ), color features 𝐹𝑐 (𝑥𝑖), and positional fea-
tures 𝐹𝑝 (𝑥𝑖 ) of the point 𝑥𝑖 to form 𝐹𝑖 via Feature Concatenation
(FC). Subsequently, by inputting the sequence {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5}
into the ray transformer, we conduct mean pooling over all the
predicted tokens. Finally, we map the pooled feature vector to RGB
through a Multilayer Perceptron (MLP):

𝐼 (𝑥𝑖 ) = 𝑀𝐿𝑃 ◦𝑀𝑃 ◦𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5), (3)

where MP represents the mean pooling operation. For each point
𝑥𝑖 , we find its closest eight neighbor points {𝑝𝑘 , 𝑘 = 1, . . . , 8} using
the corresponding per-pixel query radius, and use inverse squared
distance weighting for features trilinear interpolation:

𝐹𝑔 (𝑥𝑖 ) =
8∑︁

𝑘=1

𝑤𝑘∑
𝑘 𝑤𝑘

𝑓
𝑔

𝑘
,𝑤𝑘 =

1
∥𝑝𝑘 − 𝑥𝑖 ∥2

, (4)

𝐹𝑐 (𝑥𝑖 ) =
8∑︁

𝑘=1

𝑤𝑘∑
𝑘 𝑤𝑘

𝑓 𝑐
𝑘,𝑥𝑖

,

𝑤𝑘 =
1

∥𝑝𝑘 − 𝑥𝑖 ∥2
, 𝑓 𝑐
𝑘,𝑥𝑖

= F𝜃 (𝑓 𝑐𝑘 , 𝑝𝑘 − 𝑥𝑖 ),
(5)

where 𝑓 𝑔
𝑘
and 𝑓 𝑐

𝑘
are geometry features and color features of neural

point 𝑝𝑘 respectively, F𝜃 is a one-layer MLP inspired by [42]. For
pixels without valid depth, we sample 30 points along the ray within
a depth interval. As an additional output of the ray transformer,
the weights 𝛼𝑖 of each predicted token can be used for depth �̂�
rendering and variance 𝑆𝐷 computation along the ray as:

�̂� =

𝑁𝑠∑︁
𝑖=1

𝛼𝑖𝑧𝑖 , 𝑆𝐷 =

5∑︁
𝑖=1

𝛼𝑖 (�̂� − 𝑧𝑖 )
2
, (6)

where 𝑁𝑠 = 5 for sampled pixels with valid depth and 𝑁𝑠 = 30 for
invalid situation. This framework demonstrates superiority in view
synthesis compared to other approaches lacking a self-attentive
scheme (e.g., pure MLP. See Table 9 in Sec. 4.4).

3.3 Mapping and Tracking
In this section, we delve into the optimization specifics concerning
the color features and geometry features linked to the neural point
cloud. Additionally, we cover position features encoded through

learnable Gaussian positional encoding, along with insights into
the ray transformer network.
Implicit Mapping. In the mapping process, we conduct uniform
sampling of𝑀 pixels from the present RGB-D frame and the chosen
keyframes. The re-rendering loss 𝐿𝑚𝑎𝑝 , comprises geometric loss
𝐿𝑔 and photometric loss 𝐿𝑝 . Both losses are formulated as L1 loss
function:

𝐿𝑚𝑎𝑝 =
1
𝑀

𝑀∑︁
𝑚=1

��𝐷𝑚 − �̂�𝑚
��
1+𝜆𝑚𝑎𝑝

��𝐼𝑚 − 𝐼𝑚
��
1, (7)

where �̂�𝑚 and 𝐼𝑚 are the rendered depth and the color value for
given ground truth 𝐷𝑚 and 𝐼𝑚 , 𝜆𝑚𝑎𝑝 is the loss weighting factor
for mapping. This loss function optimizes the geometric and color
features, as well as the parameters of the ray transformer and inter-
polation decoder simultaneously. To ensure effective initialization
of the mapping optimization, the iteration count for the first frame
is set considerably higher than subsequent frames. Instead of di-
rectly assigning iteration parameters, we utilize the difference in
Peak Signal-to-Noise Ratio (PSNR) between the rendered image and
the ground truth as a criterion. This adaptive thresholding allows
us to dynamically adjust iteration numbers for different scenes,
resembling the initialization process in classical SLAM systems.
Camera Tracking. In a parallel process to mapping, we execute
frame tracking to optimize the camera pose {R, t} for the current
frame. We sample𝑀𝑡 pixels from the current frame and employ a
modified re-rendering loss, distinct from Eq. (7), as follows:

𝐿𝑡𝑟𝑎𝑐𝑘 =
1
𝑀𝑡

𝑀𝑡∑︁
𝑚=1

��𝐷𝑚 − �̂�𝑚
��
1√︃

𝑆𝐷

+𝜆𝑡𝑟𝑎𝑐𝑘
��𝐼𝑚 − 𝐼𝑚

��
1, (8)

where 𝑆𝐷 is the standard deviation of the depth prediction, 𝜆𝑡𝑟𝑎𝑐𝑘
denotes the loss weighting factor for tracking. For simplicity, we
initialize the new pose based on a constant speed assumptionwidely
adopted in existing methods [34, 51]. This assumption involves
transforming the last known pose using the relative transformation
between the second-to-last pose and the last pose.
Keyframe Selection. In line with many NeRF-based SLAM sys-
tems, we utilize a keyframe database to regulate the mapping loss.
We select a subset of keyframes that demonstrate significant over-
lap with the viewing frustum of the current frame, integrating pixel
samples from these keyframes. This selection method ensures ef-
ficient optimization for the neural points within the current view
and maintains geometric consistency throughout mapping. To be-
gin, we project all neural points onto the current frame using the
optimized camera pose to facilitate effective neural point selection.
Additionally, we project the neural points onto every keyframe in
the global keyframe list and arrange all keyframes in descending
order based on the number of projected neural points. Subsequently,
we select the top𝐾−1 keyframes from the sorted list to complement
the current frame, resulting in a total of 𝐾 active frames for local
bundle adjustment.

The detailed tracking and mapping process of SAR-SLAM is
illustrated in Alg. 1. Following system initialization, the tracking
and mapping operate simultaneously, optimizing camera poses and
scene representation alternatively.
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Algorithm1: Tracking andMapping Process of SAR-SLAM
Input: RGB-D image sequence {𝐼 𝑗 , 𝐷 𝑗 | 𝑗 = 1, . . . , 𝑁 }
Output: Optimized poses {T𝑗 }, neural point cloud 𝑃

1 Neural point cloud generation; ⇒ Eq. (1)
2 Adaptive system initialization; ⇒ Sec.3.3
3 for each 𝑗 ∈ [2, 𝑁 ] do
4 Camera pose initialization;
5 Sample points with depth prior; ⇒ Eq. (2)
6 Features extraction; ⇒ Eq. (4), Eq. (5)
7 RGB and depth image rendering; ⇒ Eq. (3), Eq. (6)
8 Construct tracking loss 𝐿𝑡𝑟𝑎𝑐𝑘 ; ⇒ Eq. (8)
9 Optimize camera pose T𝑗 ;

10 if 𝐼 𝑗 is keyframe then
11 Keyframe selection; ⇒ Sec.3.3
12 Construct mapping loss 𝐿𝑚𝑎𝑝 ; ⇒ Eq. (7)
13 Optimize 𝑃 and ray transformer parameters;
14 end
15 end

4 EXPERIMENTS
In Section 4.1, we provide an overview of our experimental setup,
encompassing datasets, baseline methods, metrics, and implementa-
tion details. Subsequently, in Section 4.2, we conduct qualitative and
quantitative comparisons with state-of-the-art NeRF-based SLAM
methods across synthetic and real-world datasets. Additionally, we
offer a thorough ablation study in Section 4.3.

4.1 Experimental Setup
Datasets. The synthetic dataset Replica comprises high-quality 3D
reconstruction of a variety of indoor scenes. We utilize the pub-
licly available dataset collected by Sucar et al [34]., which provides
ground truth trajectories and RGBD sequences. Further, we eval-
uate the performance of our framework in real-world scenes by
using TUM-RGBD [33] and the ScanNet [10] dataset. The poses
for TUM-RGBD were captured using an external motion capture
system while ScanNet uses poses from BundleFusion [11].
Baseline Methods.We primarily compare our proposed method
against existing state-of-the-art NeRF-based visual SLAM methods,
including NICE-SLAM [51], Vox-Fusion [44], ESLAM [14], Uncle-
SLAM [29], and Point-SLAM [28]. We derive most comparison
results directly from respective papers. For datasets or sequences
not available, we reproduce the results using open-source code with
default settings.
Evaluation Metrics. For tracking, we follow the conventional
SLAM evaluation pipeline by aligning the estimated camera trajec-
tory to the GT and using ATE RMSE to evaluate the accuracy. To
evaluate scene reconstruction, we produce the meshes by march-
ing cubes and adopt the F-score (harmonic mean of the Precision
and Recall) and depth L1 as the primary metrics with a distance
threshold of 1𝑐𝑚. Furthermore, we provide PSNR, SSIM, and LPIPS
for rendering evaluation, calculated based on rendering the full-
resolution image along the estimated trajectory every 5𝑡ℎ frame.
Implementation Details. We executed our SLAM system on a
desktop PC equipped with a 3.80GHz Intel i9-12900K CPU and

an NVIDIA RTX 3090 Ti GPU. For small-scale synthetic datasets
(Replica), we select 𝐾 = 5 keyframes for local bundle adjustment,
𝑀 = 5, 000 pixels for mapping, and𝑀𝑡 = 1, 500 pixels for tracking.
Conversely, for large-scale real datasets (ScanNet and TUM-RGBD),
we adjusted the parameters to 𝐾 = 10, 𝑀 = 10, 000 and 𝑀𝑡 =

5, 000. Rather than uniformly sampling pixels, we employed a scene-
adaptive scheme that selectively samples half of the pixels based
on the image gradient magnitude. Throughout all experiments,
we maintained a photometric loss weighting of 𝜆map = 0.2 and
𝜆track = 0.5. Training is done with the Adam optimizer and the
default hyperparameters 𝛽 = (0.9, 0.999), eps=1𝑒 − 08, and weight
decay=0. The learning rates (LR) were set to 0.002 for tracking on
Replica and 0.001 on TUM-RGBD and ScanNet. During the mapping
stage, we used LR=0.005 for color and depth optimization.

Figure 4: Reconstructed mesh comparison between different
NeRF-based SLAMmethods.

Method Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Avg.

ESLAM [14] 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
Vox-Fusion [44] 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94 3.09
NICE-SLAM [51] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
Point-SLAM [28] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.52
Ours 0.54 0.29 0.25 0.33 0.45 0.52 0.62 0.61 0.45

Table 1: Tracking performance onReplica (ATERMSE ↓[cm]).

Method fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.

DI-Fusion [13] 4.40 - - 2.00 5.80 -
Vox-Fusion [44] 3.52 6.00 19.53 1.49 26.01 11.31
iMAP [34] 4.90 - - 2.00 5.80 -
NICE-SLAM [51] 4.26 4.99 34.49 31.73 3.87 15.87
Point-SLAM [28] 4.34 4.54 30.92 1.31 3.48 8.92
Uncle-SLAM [29] 29.04 36.57 - 5.11 - -
Ours 2.79 3.08 16.86 1.16 2.89 5.36

Table 2: Tracking performance on TUM-RGBD (ATE RMSE
↓[cm]).

4.2 Evaluation of Tracking, Mapping, and
Rendering

Tracking Evaluation. The tracking results on the Replica dataset
are reported in Table 1. SAR-SLAM emerges as the superior per-
former among all comparison methods across the test sequences.
We attribute this success to the introduction of the self-attentive ray
rendering and the notably enhanced scene representation afforded
by the neural point cloud.
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Figure 5: Novel view synthesis results on the synthetic scenes dataset (Replica).

(a) Rendering results on the TUM-RGBD (b) Rendering results on the ScanNet

Figure 6: Novel view synthesis results on the real-world scenes dataset.

Method 0000 0059 0106 0169 0181 0207 Avg.

DI-Fusion [13] 62.99 128.00 18.50 75.80 87.88 100.19 78.89
Vox-Fusion [44] 68.84 24.18 8.41 27.28 23.30 9.41 26.90
NICE-SLAM [51] 12.00 14.00 7.90 10.90 13.40 6.20 10.70
Point-SLAM [28] 10.24 7.81 8.65 22.16 14.77 9.54 12.19
Ours 9.12 7.58 7.78 11.01 13.86 8.82 9.70

Table 3: Tracking performance on ScanNet (ATE RMSE
↓[cm]).

Moving to Table 2, the performance of our proposed method on
the real-world TUM-RGBD dataset is presented. Outperforming
all existing NeRF-based methods, our approach showcases remark-
able results. For the more intricate real-world ScanNet dataset, our
method achieves superior tracking results on average compared to
existing NeRF-based methods as shown in Table 3. However, it’s
important to note that the neural point cloud exhibits sensitivity to
motion blur and specularity, leading to a noticeable degradation in
Point-SLAM’s performance in selected sequences. In these complex
scenes, our method surpasses Point-SLAM due to the incorporation
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Method Metric Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Avg.

NICE-SLAM [51]

Depth L1 (cm) ↓ 1.81 1.44 2.04 1.39 1.76 8.33 4.99 2.01 2.97
Precision (%) ↑ 45.86 43.76 44.38 51.40 50.80 38.37 40.85 37.35 44.10
Recall (%) ↑ 44.10 46.12 42.78 48.66 53.08 39.98 39.04 35.77 43.69
F1 (%) ↑ 44.96 44.84 43.56 49.99 51.91 39.16 39.92 36.54 43.86

Vox-Fusion [44]

Depth L1 (cm) 1.09 1.90 2.21 2.32 3.40 4.19 2.96 1.61 2.46
Precision (%) ↑ 75.83 35.88 63.10 48.51 43.50 54.48 69.11 55.40 55.73
Recall (%) ↑ 64.89 33.07 56.62 44.76 38.44 47.85 60.61 46.79 49.13
F1 (%) ↑ 69.93 34.38 59.67 46.54 40.81 50.95 64.56 50.72 52.20

Point-SLAM [28]

Depth L1 (cm) ↓ 0.53 0.22 0.46 0.30 0.57 0.49 0.51 0.46 0.44
Precision (%) ↑ 91.95 99.04 97.89 99.00 99.37 98.05 96.61 93.98 96.99
Recall (%) ↑ 82.48 86.43 84.64 89.06 84.99 81.44 81.17 78.51 83.59
F1 (%) ↑ 86.90 92.31 90.78 93.77 91.62 88.98 88.22 85.55 89.77

ESLAM [14] Depth L1 (cm) ↓ 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.06 1.18

Ours

Depth L1 (cm) ↓ 0.36 0.21 0.44 0.26 0.55 0.44 0.48 0.44 0.39
Precision (%) ↑ 98.46 99.14 98.66 99.21 99.48 98.34 96.83 96.21 98.29
Recall (%) ↑ 85.30 86.51 84.93 89.20 85.10 82.91 81.76 80.24 84.50
F1 (%) ↑ 91.41 92.35 91.28 93.94 91.68 89.17 88.31 87.51 90.71

Table 4: Reconstruction performance on Replica.

Method Metric Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Avg.

NICE-SLAM [51]
PSNR (dB) ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion [44]
PSNR (dB) ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

Point-SLAM [28]
PSNR (dB) ↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM ↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS ↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

Ours
PSNR (dB) ↑ 34.15 35.82 37.61 40.48 40.06 35.67 34.65 36.62 36.88
SSIM ↑ 0.982 0.983 0.988 0.990 0.990 0.970 0.966 0.985 0.982
LPIPS ↓ 0.087 0.095 0.088 0.068 0.104 0.126 0.112 0.107 0.098

Table 5: Rendering performance on Replica.

of the learnable ray transformer, which mitigates these challenges
more effectively.
Mapping Evaluation. Table 4 presents a comparison between our
method and several others, including NICE-SLAM [51], VoxFusion
[44], Point-SLAM [28], and ESLAM [14], focusing on reconstruction
accuracy. Across all evaluation metrics, our method outperforms
all others. Specifically, we showcase an average enhancement of
87%, 84%, 11%, and 67% on the depth L1 metric in comparison to
NICE-SLAM, Vox-Fusion, Point-SLAM, and ESLAM respectively. In
Fig. 4, we provide a visual comparison of the mesh reconstructions
generated by NICE-SLAM and our method against the ground truth.
Notably, our method exhibits a significant improvement by recon-
structing scene maps with higher accuracy and clarity, presenting
finer details compared to previous approaches. This enhancement
in reconstruction quality owes itself to two key components: the
ray transformer, capable of dynamically adjusting the attention
distribution to finely control the sharpness of the reconstructed
surface, and the neural point cloud, which adeptly adjusts point
density.

Rendering Evaluation. Table 5 presents a comparison of render-
ing results, demonstrating the superiority of our method over exist-
ing NeRF-based SLAM approaches. Additionally, in Fig. 5, Fig. 6(a),
and Fig. 6(b), we showcase exemplary novel view synthesis, high-
lighting how our proposed SAR-SLAM generates more accurate
details.

4.3 Memory and Runtime Analysis
We present a breakdown of the runtime and memory utilization
within Table 6 for the Replica Office 0 scene. The tracking and
mapping runtimes are detailed per iteration and frame. Our method
exhibits a significantly smaller GPU memory footprint compared
to NICE-SLAM, and slightly smaller than Point-SLAM. These run-
times were evaluated using a single Nvidia RTX 3090 Ti GPU. Fur-
thermore, the running time and GPU/RAM memory footprint in
various scenarios with different configurations are presented in
the following Table 7. Despite the increase in sampled pixels, the
corresponding increase in time and memory utilization remains
acceptable.
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Method Tracking
/Iteration

Mapping
/Iteration

Tracking
/Frame

Mapping
/ Frame

GPU Memory
Footprint

NICE-SLAM [51] 32ms 182ms 1.32s 10.92s 11.72GB
Point-SLAM [28] 21ms 33ms 0.85s 9.85s 7.98GB
Ours 19ms 29ms 0.78s 8.97s 7.81GB

Table 6: Runtime and memory footprint of different NeRF-
based SLAMmethods.

Dataset 𝑀𝑡 𝑀
Tracking
/Frame

Mapping
/ Frame

GPU Memory
Footprint

RAM Memory
Footprint

Replica 1,500 5,000 0.78s 8.97s 7.81GB 8.84GB
ScanNet 5,000 10,000 1.27s 11.91s 9.06GB 10.24GB
TUM 5,000 10,000 1.28s 11.32s 8.98GB 10.04GB

Table 7: Runtime and memory footprint of our method on
different datasets with different settings.

4.4 Ablation Study
System Ablation. We assess the performance of our proposed
SAR-SLAM under various system configurations. Table 8 presents
performance metrics obtained from the Replica Office 0 dataset.
Utilizing ray transformer significantly enhances tracking, map-
ping, and rendering performance, underscoring the efficacy of self-
attentive rendering for SLAM systems. Furthermore, employing
the keyframe selection (KS) scheme and local bundle adjustment
(BA) for mapping optimization leads to a further reduction in lo-
calization error. Moreover, comparing Sample Points per Ray (SPR)
reveals that 5 points suffice to ensure accuracy.
Network Ablation. In Table 9, we present a comparison of our
method across various network settings, as depicted in Fig. 3. Our
proposed method (Full) outperforms the variant without the self-
attention module (w/o SA), demonstrating the effectiveness of the
self-attentive rendering. When changing the multi-layer architec-
ture in the ray transformer into a single transformer layer (w/o ML),
we observe a decrease in evaluation metrics to varying degrees.
Additionally, excluding the Feed-Forward Network (w/o FFN) or
Feature Concatenation (w/o FC) leads to less accurate rendering of
depth and RGB images, consequently impacting the precision of
tracking and mapping
Keyframe Selection Ablation.We evaluated our method using
the keyframe selection strategies from iMAP and Point-SLAM, as
shown in Table 10. iMAP’s KS strategy randomly selects keyframes
from the global scene to mitigate the scene-forgetting problem. In
contrast, Point-SLAM’s KS strategy maintains the keyframe list by
evaluating view overlap, resulting in improved tracking accuracy
and faster convergence. Unlike Point-SLAM, which utilizes sample
pixels for overlap computation, our method employs the projec-
tion of neural points to obtain more effective pixels for bundle
adjustment optimization, thereby enhancing tracking performance.
Adaptive Initialization Ablation. Fig. 7 illustrates a comparison
of geometry optimization across various iteration settings for map-
ping initialization. Our proposed adaptive initialization method
demonstrates superior performance in achieving a balance between
running time and scene representation accuracy when compared
to a fixed iteration number.

Ray
Transformer

KS +
BA SPR Tracking Reconstruction Rendering

ATE RMSE (cm) ↓ Depth L1 (cm) ↓ F1 (%) ↑ PSNR (dB) ↑

% % 5 1.35 1.26 78.93 32.06
! % 5 0.48 0.29 93.85 40.34
% ! 5 0.38 0.30 93.77 38.26
! ! 3 0.39 0.28 93.76 40.16
! ! 5 0.33 0.26 93.94 40.48
! ! 7 0.38 0.28 93.85 40.19

Table 8: Ablation study of our SAR-SLAM system.

Network
Settings

Tracking Reconstruction Rendering
ATE RMSE (cm) ↓ Depth L1 (cm) ↓ F1 (%) ↑ PSNR (dB) ↑

w/o SA 0.51 0.35 91.89 37.29
w/o ML 0.47 0.30 91.66 38.27
w/o FFN 0.50 0.33 92.78 39.52
w/o FC 0.49 0.33 92.88 39.99
Full 0.33 0.26 93.94 40.48

Table 9: Ablation study of network architecture.

KS scheme fr1/desk fr1/desk2 fr1/room fr2/xyz fr3/office Avg.

w/ iMAP 3.10 7.72 21.33 6.88 9.32 9.67
w/ NICE-SLAM 2.98 3.14 18.32 1.88 3.45 5.95
Ours 2.79 3.08 16.86 1.16 2.89 5.36

Table 10: Ablation study of keyframe selection scheme (ATE
RMSE ↓[cm]).

Figure 7: Ablation study of mapping initialization.

5 CONCLUSION
We introduce SAR-SLAM, a novel neural implicit SLAM system
that integrates a ray transformer for view rendering and neural
point cloud encoding for scene representation. The ray transformer
synthesizes novel views via a self-attentive mechanism that de-
codes a sequence of point features sampled along the camera ray
into pixel color and blending weight, enabling end-to-end learning
and eliminating the necessity for fixed volume rendering equa-
tions. Experimental results on both synthetic and real-world scenes
consistently demonstrate the superior performance of SAR-SLAM
over existing NeRF-based SLAM methods. Notably, it exhibits en-
hanced tracking, reconstruction, and rendering accuracy, while also
showcasing superior runtime and memory efficiency.
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