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Hi3D: Pursuing High-Resolution Image-to-3D Generation with
Video Diffusion Models

Anonymous Authors

Input image Generated multi-view consistent and high-resolution sequential images Mesh

Figure 1: Hi3D is capable of generating multi-view consistent and high-resolution (1,024×1,024) sequential images from an
input single-view image of any style (top to bottom: images created by artists, generated by AI, or captured from the real world).
Subsequently, we manage to reconstruct a high-fidelity 3D mesh conditioned on such high-resolution multi-view images.

ABSTRACT
Despite having tremendous progress in image-to-3D generation,
existing methods still struggle to produce multi-view consistent
images with high-resolution textures in detail, especially in the
paradigm of 2D diffusion that lacks 3D awareness. In this work, we
present High-resolution Image-to-3D model (Hi3D), a new video
diffusion based paradigm that redefines a single image to multi-
view images as 3D-aware sequential image generation (i.e., orbital
video generation). This methodology delves into the underlying
temporal consistency knowledge in video diffusion model that gen-
eralizes well to geometry consistency across multiple views in
3D generation. Technically, Hi3D first empowers the pre-trained
video diffusion model with 3D-aware prior (camera pose condition),
yielding multi-view images with low-resolution texture details. A
3D-aware video-to-video refiner is learnt to further scale up the
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multi-view images with high-resolution texture details. Such high-
resolution multi-view images are further augmented with novel
views through 3D Gaussian Splatting, which are finally leveraged
to obtain high-fidelity meshes via 3D reconstruction. Extensive
experiments on both novel view synthesis and single view recon-
struction demonstrate that our Hi3D manages to produce superior
multi-view consistency images with highly-detailed textures.

KEYWORDS
Image-to-3D generation, Diffusion model, 3D generation

1 INTRODUCTION
Image-to-3D generation, i.e., the task of reconstructing 3D mesh
of object with corresponding texture from only a single-view im-
age, has been a fundamental problem in multimedia and computer
vision fields for decades. In the early stage, the typical solution is
to capitalize on regression or retrieval approaches [27, 57] for 3D
reconstruction, which tend to be confined to close-world data with
category-specific priors. This direction inevitably fails to scale up
in real-world data. Recently, the success of diffusion models [18, 19]
has led to widespread dominance for open-world image content cre-
ation [40, 48–50]. Inspired by this, modern image-to-3D studies turn
the focus on exploring how to exploit 2D prior knowledge from the
pre-trained 2D diffusion model for image-to-3D generation in a two-
phase manner, i.e., first multi-view images generation and then 3D

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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reconstruction. One representative practice Zero123 [29] remoulds
the text-to-image 2D diffusion model for viewpoint-conditioned
image translation, which exhibits promising zero-shot generaliza-
tion capability for novel view synthesis. Nevertheless, such inde-
pendent modeling between the input single-view image and each
novel-view image might result in severe geometry inconsistency
across multiple views. To alleviate this issue, several subsequent
works [21, 30, 32, 51, 52, 55] further upgrade the 2D diffusion para-
digm by simultaneously triggering image translation between the
input single-view image and multi-view images. Despite improving
multi-view images generation, these approaches in 2D diffusion
paradigm still suffer from multi-view inconsistency issues espe-
cially for complex object geometry. The underlying rationale is
that the pre-trained 2D diffusion model is exclusively trained on
individual 2D images, therefore lacking 3D awareness and resulting
in sub-optimal multi-view consistency. Moreover, the geometry
inconsistency among the output multi-view images will affect the
overall stability of single-to-multi-view image translation during
training. Hence, existing Image-to-3D techniques [21, 30, 32] mostly
reduce the image size to low resolution (256×256). Such way prac-
tically increases batch size and improves training stability, while
sacrificing the visual quality of output image of each view. This
severely hinders their applicability in many real-world scenarios
that require high-fidelity 3D mesh with higher-resolution texture
details, such as Virtual Reality and 3D film production.

In response to the above issues, our work paves a new way to
formulate image translation across different views as 3D-aware
sequential image generation (i.e., orbital video generation) by capi-
talizing on the pre-trained video diffusion model. Different from
2D diffusion model that lacks 3D awareness, video diffusion model
is trained with a large volume of sequential frame images, and the
learnt temporal consistency knowledge among frames can be nat-
urally interpreted as one kind of 3D geometry consistency across
multi-view images, especially for orbital videos. This motivates us
to excavate such 3D prior knowledge from the pre-trained video dif-
fusionmodel to enhance image-to-3D generation.More importantly,
such video diffusion based paradigm enables more stable sequential
image generation with amplified 3D geometry consistency. It in
turn allows flexible scaling up of higher-resolution sequential im-
age generation (e.g., 256×256→ 1,024×1,024), triggering 3D mesh
generation with higher-resolution texture details.

By consolidating the idea of framing image-to-3D in video diffu-
sion based paradigm, we novelly present High-resolution Image-
to-3D model (Hi3D), to facilitate the generation of multi-view con-
sistent meshes with high-resolution detailed textures in two-stage
manner. Specifically, in the first stage, a pre-trained video diffusion
model is remoulded with additional condition of camera pose, tar-
geting for transforming single-view image into low-resolution 3D-
aware sequential images (i.e., orbit video with 512×512 resolution).
In the second stage, this low-resolution orbit video is further fed into
3D-aware video-to-video refiner with additional depth condition,
leading to high-resolution orbit video (1,024×1,024) with highly de-
tailed texture. Considering that the obtained high-resolution orbit
video contains a fixed number of multi-view images, we augment
them with more novel views through 3D Gaussian Splatting. The
resultant dense high-resolution sequential images effectively ease
the final 3D reconstruction, yielding high-quality 3D meshes.

The main contribution of this work is the proposal of the two-
stage video diffusion based paradigm that fully unleashes the power
of inherent 3D prior knowledge in the pre-trained video diffusion
model to strengthen image-to-3D generation. This also leads to the
elegant views of how video diffusion model should be designed
for fully exploiting 3D geometry priors, and how to scale up the
resolution of multi-view images for high-resolution image-to-3D
generation. Extensive experiments demonstrate the state-of-the-art
performances of our Hi3D on both novel view synthesis and single
view reconstruction tasks.

2 RELATEDWORKS
2.1 Image-to-3D
Reconstructing 3D models from a single view poses a significant
challenge. Early attempts [11, 13, 24, 27, 57] to reconstruct 3D
shapes from single images through regression [27] or retrieval
methods [57] struggled with generalization to real-world data or
new object categories. However, the rapid advancements in genera-
tive models, particularly diffusion models [18, 19], have opened up
new avenues. These models have demonstrated remarkable capa-
bility in generating a broad spectrum of images [35, 40, 48–50] and
videos [2, 3, 12, 23, 58, 68], offering fresh perspectives for 3D asset
generation using the strong priors inherent in 2D diffusion models.
Dreamfusion [44] firstly utilizes powerful text-to-image diffusion
models [50] as prior knowledge for text-to-3D generation, showcas-
ing remarkable improvements in 3D outputs. This pioneering work
has prompted a series of subsequent studies that further refine and
strengthen this method for image-to-3D generation [5, 36, 45, 47, 56,
63]. While these methods have shown promising results, they often
require extensive time for textual inversion [47] and optimization
of Neural Radiance Fields (NeRF) [37], leading to inefficiencies and
multi-faces (Janus) issue. The second category of research explores
the direct training of 3D diffusion models across various 3D rep-
resentations, including point clouds [34, 41, 65], meshes [15, 31],
and neural fields [1, 4, 6, 16, 22, 26, 38, 43, 60, 66]. Nonetheless, the
limited availability of diverse 3D data has hampered these models’
ability to generalize, with many studies being validated only on a
narrow range of shape categories.

The third line works involves using diffusion models to generate
multi-view images firstly, and reconstructing 3D model from the
images. The core of this category of methods lies in generating con-
sistent multi-view images. Zero123 [29] finetunes a stable diffusion
model [49] to generate novel views of an object. Zero123-XL [7],
Stable-Zero123 [54] improve the ability of Zero123 by improving
the training data. However, these approaches generate multi-view
images independently, leading to potential inconsistencies among
the views. [21, 30, 32, 51, 52, 55] propose to generate multi-views
of an object simultaneously. SyncDreamer [30] employs 3D feature
volume, Wonder3D [32] and EpiDiff [21] use multi-view atten-
tion mechanisms for maintaining multi-view consistency. However,
these methods typically produce only low-resolution images, re-
stricted by the significant memory requirements of 3D representa-
tions or the computational intensity of attention mechanisms. In
our work, we fall into the third group of Image-to-3D generation.
We approach multi-view generation as an image-to-video task, and
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design a two-stage video diffusion based paradigm that fully un-
leashes the power of inherent 3D prior knowledge in the pre-trained
video diffusion model to strengthen image-to-3D generation.

2.2 Reconstruction from Multi-view images
The recent success of neural radiance fields (NeRFs) [37] has in-
spired many follow-up works [14, 39, 59] to achieve impressive 3D
reconstruction. However, these methodologies typically necessitate
over a hundred images for training views, and their efficacy in
reconstructing 3D models from sparse multi-view images remains
suboptimal. To address this issue, several studies have endeavored
to minimize the requisite number of training views. For instance,
DS-NeRF [9] introduced additional depth supervision to enhance
rendering quality, while RegNeRF [42] developed a depth smooth-
ness loss for geometric regularization to facilitate training stability.
Sparseneus [33] focused on learning geometry encoding priors from
image features for adaptable neural surface learning from sparse
input views, though the detail in reconstruction results was still
lacking. In our work, we have developed a straightforward yet effi-
cient reconstruction pipeline that leverages the state-of-the-art 3D
Gaussian Splatting algorithm [25] to augment the generated multi-
view images, which enables us to stably and effectively reconstruct
high-quality meshes.

3 PRELIMINARIES
Video Diffusion Models. Diffusion models [18, 53] are generative
models that can learn the target data distribution from a Gaussian
distribution through a gradual denoising process. Video diffusion
models [3, 20] are usually built upon pre-trained image diffusion
models [40, 49], and enable the denoising process over multiple
frames simultaneously. For simplicity, we adopt Stable Video Diffu-
sion [2] as the basic video diffusion model, which achieves state-of-
the-art performance in image-to-video generation. Formally, given a
single frame 𝑥0, video diffusion model can generate a high-fidelity
video consisting of 𝑁 sequential frames x = {𝑥0, 𝑥1, ..., 𝑥 (𝑁−1) }
through an iterative denoising process. Specifically, at each de-
noising step 𝑡 , video diffusion model predicts the amount of noise
added in the sequence through a conditional 3D-UNet Φ, and then
denoises the sequence by subtracting the predicted noise:

x𝑡−1 = Φ(x𝑡 ; 𝑡, 𝑐), (1)

where 𝑐 is the condition embedding of the input frame. In practice,
Stable Video Diffusion is built within a latent diffusion framework
[49] to reduce computational complexity, i.e., operating diffusion
process in an encoded latent space. In this way, the input video
sequence is first encoded into a latent code by a pre-trained VAE
encoder and the denoised latent code is decoded back to pixel space
using a VAE decoder after the denoising steps. Note that Stable
Video Diffusion is pre-trained on large-scale high-quality video
datasets and demonstrates impressive image-to-video generation
capacity. In this work, we propose to inherit the underlying tem-
poral consistency knowledge in video diffusion model to boost the
multi-view consistency for image-to-3D generation.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [25]
emerges as a recent groundbreaking technique for novel view syn-
thesis. Unlike 3D implicit representation methods (e.g., Neural Ra-
diance Fields (NeRF) [37]) that rely on computationally intensive
volume rendering for image generation, 3DGS achieves real-time
rendering speeds through a splatting approach [64]. Specifically,
3DGS represents a 3D scene as a set of scaled 3D Gaussian prim-
itives, and each scaled 3D Gaussian 𝐺𝑘 is parameterized by an
opacity (scale) 𝛼𝑘 ∈ [0, 1], view-dependent color 𝑐𝑘 ∈ R3, cen-
ter position 𝜇𝑘 ∈ R3×1, covariance matrix

∑
𝑘 ∈ R3×3. The 3D

Gaussians can be queried as follows:

𝐺𝑘 (𝒙) = 𝑒−
1
2 (𝒙−𝜇𝑘 )

𝑇
∑−1

𝑘
(𝒙−𝜇𝑘 ) . (2)

3DGS computes the color of each pixel via alpha blending according
to the primitive’s depth order 1, ..., 𝐾 :

𝐶 (𝒙) =
𝐾∑︁
𝑘=1

𝑐𝑘𝜎𝑘

𝑘−1∏
𝑗=1

(1 − 𝜎 𝑗 ), 𝜎𝑘 = 𝛼𝑘𝐺𝑘 (𝒙) . (3)

Since the rendering process in 3DGS is fast and differentiable, the
parameters of 3D Gaussian can be efficiently optimized through a
multi-view loss (see [25] formore details). In this paper, we integrate
3DGS into our 3D reconstruction pipeline to extract high-fidelity
meshes, tailored for synthesized high-resolution multi-view images.

4 OUR APPROACH
In this work, we devise a new High-resolution image-to-3D gen-
eration architecture, namely Hi3D, to novelly integrate video dif-
fusion models into 3D-aware 360◦ sequential image generation
(i.e., orbital video generation). Our launching point is to exploit the
intrinsic temporal consistent knowledge in video diffusion models
to enhance cross-view consistency in 3D generation. We begin this
section by elaborating the problem formulation of image-to-3D gen-
eration (Sec. 4.1). We then elaborate the details of two-stage video
diffusion based paradigm in our Hi3D framework. Specifically, in
the first stage, we remould the pre-trained image-to-video diffusion
model with additional condition of camera pose and then fine-tune
it on 3D data to enable orbital video generation (Sec. 4.2). In the
second stage, we further scale up the multi-view image resolution
through a 3D-aware video-to-video refiner (Sec. 4.3). Finally, a novel
3D reconstruction pipeline is introduced to extract high-quality 3D
mesh from these high-resolution multi-view images (Sec. 4.4). The
whole architecture of Hi3D is illustrated in Figure 2.

4.1 Problem Formulation
Given a single RGB image I ∈ R3×𝐻×𝑊 (source view) of an object
𝑋 , our target is to generate its corresponding 3D content (i.e., tex-
tured triangle mesh). Similar to previous image-to-3D generation
methods, we also decompose this challenging task into two steps:
1) generate a sequence of multi-view images around the object 𝑋
and 2) reconstruct the 3D content from these generated multi-view
images. Technically, we first synthesize a sequence of multi-view
images F ∈ R𝑁×3×𝐻×𝑊 of the object from 𝑁 different camera
poses 𝝅 ∈ R𝑁×3×4 corresponding to the input condition image I
in a two-stage manner. Herein, we generate 𝑁 = 16 multi-view
images with a high resolution of 𝐻 ×𝑊 = 1, 024× 1, 024 around the
object in this work. It is worth noting that previous state-of-the-art
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Figure 2: An overview of our proposed Hi3D. Our Hi3D fully exploits the capabilities of large-scale pre-trained video diffusion
models to effectively trigger high-resolution image-to-3D generation. Specifically, in the first stage of basic multi-view genera-
tion, Hi3D remoulds video diffusion model with additional camera pose condition, aiming to transform single-view image
into low-resolution 3D-aware sequential images. Next, in the second stage of 3D-aware multi-view refinement, we feed this
low-resolution orbit video into 3D-aware video-to-video refiner with additional depth condition, leading to high-resolution
orbit video with highly detailed texture. Finally, we augment the resultant multi-view images with more novel views through
3D Gaussian Splatting and employ SDF-based reconstruction to extract high-quality 3D meshes.

image-to-3D models [21, 30, 32] can only generate low-resolution
(i.e., 256 × 256) multi-view images. In contrast, to the best of our
knowledge, our work is the first to enable high-resolution (i.e.,
1, 024 × 1, 024) image-to-3D generation, which can preserve richer
geometry and texture details of the input image. Next, we extract
3D mesh from these synthesized high-resolution multi-view im-
ages through our carefully designed 3D reconstruction pipeline.
Since the number of generated views is somewhat limited, it is
difficult to extract a high-quality mesh from these sparse views. To
alleviate this issue, we leverage the novel view synthesis method
(3D Gaussian Splatting [25]) to reconstruct an implicit 3D model
from multi-view images F. Then we render additional interpolation
views F∗ ∈ R𝑀×3×𝐻×𝑊 between the multi-view images and add
these rendered views into F, thereby obtaining dense view images
K ∈ R(𝑁+𝑀 )×3×𝐻×𝑊 = F + F∗ of the object 𝑋 . Finally, we adopt
an SDF-based reconstruction method [59] to extract a high-quality
mesh from these dense views K.

4.2 Stage-1: Basic Multi-view Generation
Previous image-to-3D generation methods [21, 30, 32, 51] usually
rely on pre-trained image diffusion models to accomplish multi-
view generation. These methods generally extend the 2D UNet in
image diffusion models to 3D UNet by injecting multi-view cross-
attention layers. These added attention layers are trained from
scratch on 3D datasets to learn multi-view consistency. However,
the image resolution in these methods is restricted to 256 × 256
to ensure training stability. Maintaining the original resolution
(512×512) in pre-trained image diffusion models will lead to slower
convergence and higher variance, as pointed in Zero123 [29]. Con-
sequently, due to such low-resolution limitation, these methods fail

to fully capture the primary rich 3D geometry and texture details in
the input 2D image. In addition, we observe that these approaches
still suffer from multi-view inconsistency issue, especially for com-
plex object geometry. This may be attributed to the fact that the
underlying pre-trained 2D diffusion model is exclusively trained
on individual 2D images and lacks 3D modeling of multi-view cor-
relation. To alleviate the above issues, we redefine single image to
multi-view images as 3D-aware sequence image generation (i.e.,
orbital video generation) and utilize pre-trained video diffusion
models to fulfill this goal. In particular, we repurpose Stable Video
Diffusion (SVD) [2] to generate multi-view images from the input
image. SVD is appealing because it was trained on a large variety
of videos, which allows the network to encounter multiple views
of an object during training. This potentially alleviates the 3D data
scarcity problem. Moreover, SVD has already explicitly modeled the
multi-frame relation via temporal attention layers. We can inherit
the intrinsic multi-frame consistent knowledge in these temporal
layers to pursue multi-view consistency in 3D generation.

Training Data. We first construct a high-resolution multi-view
image dataset from the LVIS subset of the Objaverse [8]. For each
3D asset, we render 16 views with 1, 024 × 1, 024 resolution at
random elevation 𝑒 ∈ [−10◦, 40◦]. It is important to note that
while the elevation is randomly selected, it remains the same across
all views within a single video. For each video, the cameras are
positioned equidistantly from the object with distance 𝑟 = 1.5
and spaced evenly from 0◦ to 360◦ in azimuth angle. In total, our
training dataset comprises approximately 300, 000 videos, denoted
as J = {(J𝑖 , I𝑖 , 𝑒𝑖 )}, where the input condition image I𝑖 = [J𝑖 ]1 is
the first frame in sequential images J𝑖 .

Video Diffusion Fine-tuning. In the first stage, our goal is
to repurpose the pre-trained image-to-video diffusion model to
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generate multi-view consistent sequential images. The aforemen-
tioned multi-view image dataset J = {(J𝑖 , I𝑖 , 𝑒𝑖 )} is thus leveraged
to fine-tune the 3D-aware video diffusion model with additional
camera pose condition. Specifically, given the input single-view
image Ii, we first project it into latent space by the VAE encoder of
video diffusion model, and channel-wisely concatenate it with the
noisy latent sequence, which encourages synthesized multi-view
images to preserve the identity and intricate details of the input
image. In addition, we incorporate the input condition image’s CLIP
embeddings [46] into the diffusion UNet through cross-attention
mechanism. Within each transformer block, the CLIP embedding
matrix acts as the key and value for the cross-attention layers, cou-
pled with the layer’s features serving as the query. In this way, the
high-level semantic information of the input image is propagated
into the video diffusionmodel. Since the multi-view image sequence
is rendered at random elevations, we send the elevation parameter
into the video diffusion model as additional condition. Most specifi-
cally, the camera elevation angle 𝑒 is first embedded into sinusoidal
positional embeddings and then fed into the UNet along with the
diffusion noise timestep 𝑡 . As all multi-view sequences follow the
same azimuth trajectory, we do not send the azimuth parameter
into the diffusion model. Herein, we omit the original “fps id” and
“motion bucket id” conditions in video diffusion model as these
conditions are irrelevant to multi-view image generation.

In general, the denoising neural network (3D UNet) in our re-
molded video diffusion model can be represented as 𝜖1

𝜃
(z𝑡 ; I, 𝑡, 𝑒).

Given the multi-view image sequence J, the pre-trained VAE en-
coder E(·) first extracts the latent code of each image to constitute
a latent code sequence z. Next, Gaussian noise 𝜖 ∼ 𝑁 (0, 𝐼 ) is added
to z through a typical forward diffusion procedure at each time step
𝑡 to get the noise latent code z𝑡 . The 3D UNet 𝜖1

𝜃
(z𝑡 ; I, 𝑡, 𝑒) with

parameter 𝜃 is trained to estimate the added noise 𝜖 based on the
noisy latent code z𝑡 , input image condition I and elevation angle 𝑒
through the standard mean square error (MSE) loss:

L𝑆𝑡𝑎𝑔𝑒−1 = EI,J,𝑒,𝑡,𝜖
[
| |𝑤 (𝑡) (𝜖1

𝜃
(z𝑡 ; I, 𝑒, 𝑡) − 𝜖) | |22

]
, (4)

where𝑤 (𝑡) is a corresponding weighing factor.
Instead of directly training denoising neural network in high res-

olution (i.e., 1, 024 × 1, 024), we decompose this non-trivial problem
into more stable sub-problems in a coarse-to-fine manner. In the
first stage, we train the denoising neural network by using Eq. (4)
with 512 × 512 resolution for low-resolution multi-view image gen-
eration. The second stage further transforms 512 × 512 multi-view
images into high-resolution (1, 024 × 1, 024) multi-view images.

4.3 Stage-2: 3D-aware Multi-view Refinement
The output 512 × 512 multi-view images of Stage-1 exhibit promis-
ing multi-view consistency, while still failing to fully capture the
geometry and texture details of inputs. To address this issue, we
include an additional stage to further scale up the low-resolution
outputs of the first stage through a new 3D-aware video-to-video
refiner, leading to higher-resolution (i.e., 1, 024 × 1, 024) multi-view
images with finer 3D details and consistency.

In this stage, we also remould the pre-trained video diffusion
model as 3D-aware video-to-video refiner. Formally, such denois-
ing neural network can be formulated as 𝜖2

𝜙
(z𝑡 ; I, Ĵ,D, 𝑡, 𝑒), where Ĵ

denotes the generated multi-view images corresponding the input
image I in Stage-1, D is the estimated depth sequence of the gen-
erated multi-view images Ĵ. To be clear, the input conditions I and
𝑒 are injected into pre-trained video diffusion model by the same
way as in Stage-1. Besides, we adopt the VAE encoder to extract
the latent code sequence of the pre-generated multi-view images
Ĵ and channel-wisely concatenate them with the noise latent z𝑡
as conditions. Moreover, to fully exploit the underlying geometry
information of the generated multi-view images, we leverage an
off-the-shelf depth estimation model to estimate the depth of each
image in Ĵ as 3D cues, yielding a depth map sequence D. We then
directly resize the depth maps into the same resolution of the latent
code z𝑡 , and channel-wisely concatenate them with z𝑡 . Finally, the
remoulded denoising neural network is trained through standard
MSE loss in diffusion models:

L𝑆𝑡𝑎𝑔𝑒−2 = EI,J,Ĵ,D,𝑒,𝑡,𝜖
[
| |𝑤 (𝑡) (𝜖2

𝜙
(z𝑡 ; I, Ĵ,D, 𝑒, 𝑡) − 𝜖) | |22

]
, (5)

where𝑤 (𝑡) is a weighing factor. Note that the resolution of training
images in Eq. (5) is scaled up to 1, 024 × 1, 024.

During training, we adopt some image degradation methods [61]
to synthesize Ĵ for data augmentation, instead of solely using the
generated coarse multi-view images from Stage-1. In particular, we
utilize a high-order degradation model to synthesize training data,
including a series of blur, resize, noise, and compression processes.
To replicate overshoot artifacts (e.g., ringing or ghosting around
sharp transitions in images), we utilize 𝑠𝑖𝑛𝑐 filter. Additionally,
randommasking techniques are used to simulate the effect of shape
deformation. This way not only accelerates the training process,
but also enhances the robustness of our video-to-video refiner.

4.4 3D Mesh Extraction
Through the above two-stage video diffusion based paradigm, we
can obtain a high-resolution image sequence F ∈ R𝑁×3×𝐻×𝑊 (𝑁 =

16, 𝐻 =𝑊 = 1, 024) conditioned on the input image I. In this section,
we aim to extract high-quality meshes from these generated high-
resolution multi-view images. Previous image-to-3D methods [21,
30, 32] usually reconstruct the target 3D mesh from the output
image sequence by optimizing the neural implicit Signed Distance
Field (SDF) [17, 59]. Nevertheless, these SDF-based reconstruction
methods are originally tailored for dense image sequences captured
in the real world, which commonly fail to reconstruct high-quality
mesh based on only sparse views.

To alleviate this issue, we design a unique 3D reconstruction
pipeline for high-resolution sparse views. Instead of directly adopt-
ing SDF-based reconstruction methods to extract 3D mesh, we first
use the 3D Gaussian Splatting (3DGS) algorithm [25] to learn an im-
plicit 3D model from the generated high-resolution image sequence.
3DGS has demonstrated remarkable novel view synthesis capabili-
ties and impressive rendering speed. Herein we attempt to utilize
3DGS’s implicit reconstruction ability to augment the output sparse
multi-view images of Stage-2 with more novel views. Specifically,
we render𝑀 interpolation views F∗ between the adjacent images in
F from the reconstructed 3DGS. Finally, we optimize an SDF-based
reconstruction method [59] based on the augmented dense views
F + F∗ to extract the high-quality 3D mesh of the object 𝑋 .
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Figure 3: Qualitative comparisons with Stable-Zero123 [54], SyncDreamer [30] and EpiDiff [21] on novel view synthesis task.
Our Hi3D generates high-resolution multi-view images with remarkable consistent details.

Table 1: Quantitative comparison with state-of-the-art meth-
ods in novel view synthesis on GSO dataset.

Method PSNR↑ SSIM↑ LPIPS↓
Realfusion [36] 15.26 0.722 0.283
Zero123 [29] 18.93 0.779 0.166

Zero123-XL [7] 19.47 0.783 0.159
Stable-Zero123 [54] 19.79 0.788 0.153
SyncDreamer [30] 20.05 0.798 0.146

EpiDiff [21] 20.49 0.855 0.128
Hi3D (Ours) 24.26 0.864 0.119

5 EXPERIMENTS
5.1 Experimental Settings
Datasets and Evaluation.We empirically validate the merit of our
Hi3D model by conducting experiments on two primary tasks, i.e.,
novel view synthesis and single view reconstruction. Following [21,
30, 32], we perform quantitative evaluation on Google Scanned
Object (GSO) dataset [10]. For novel view synthesis task, we employ
three commonly adopted metrics: PSNR, SSIM [62], and LPIPS [67].
For the single view reconstruction task, we use Chamfer Distances
and Volume IoU to measure the quality of the reconstructed 3D
models. In addition, to assess the generalization ability of our Hi3D,

we perform qualitative evaluation over single images with various
styles derived from the internet.

Implementation Details. During the first stage of basic multi-
view generation, we downscale the video dataset as 512 × 512
videos. For the second stage of multi-view refinement, we not only
feed the outputs of the first stage, but also adopt synthetic data
generation strategy (similar to traditional image/video restoration
methods [61]) for data augmentation. This strategy aims to acceler-
ate the training process and enhance the model’s robustness. The
overall experiments are conducted on eight 80G A100 GPUs. Specifi-
cally, the first stage undergoes 80, 000 training steps (approximately
3 days), with a learning rate of 1 × 10−5 and a total batch size of 16.
The second stage contains 20, 000 training steps (around 3 days),
with a learning rate of 5 × 10−5 and a reduced batch size of 8.

Compared Methods.We compare our Hi3D with the follow-
ing state-of-the-art methods: RealFusion [36] and Magic123 [45]
exploit 2D diffusion model (Stable Diffusion [49]) and SDS loss [44]
for reconstructing from single-view image. Zero123 [29] learns
to generate novel view images of the same object from different
viewpoints, and can be integrated with SDS loss for 3D recon-
struction. Zero123-XL [7] and Stable-Zero123 [54] further upgrade
Zero123 by enhancing the training data quality. One-2-3-45 [28]
directly learns explicit 3D representation via 3D Signed Distance
Functions (SDFs) [33] from multi-view images (i.e., the outputs
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Figure 4: Qualitative comparison of 3D meshes generated by various methods on single view reconstruction task.

of Zero123). Point-E [41] and Shap-E [22] are pre-trained over an
extensive internal OpenAI 3D dataset, thereby being capable of
directly transforming single-view images into 3D point clouds or
shapes encoded in MLPs. SyncDreamer [30] introduces a 3D global
feature volume to maintain multi-view consistency. Wonder3D [32]
and EpiDiff [21] leverage 3D attention mechanisms to enable inter-
action among multi-view images via cross-attention layers. Note
that in novel view synthesis task, we only include partial baselines
(i.e., Zero123 series, SyncDreamer, EpiDiff) that can produce exactly
the same viewpoints as our Hi3D for fair comparison.

5.2 Novel View Synthesis
Table 1 summarizes performance comparison on novel view synthe-
sis task, and Figure 3 showcases qualitative results in two different
views. Overall, our Hi3D consistently exhibits better performances
than existing 2D diffusion based approaches. Specifically, Hi3D
achieves the PSNR of 24.26%, which outperforms the best competi-
tor EpiDiff by 3.77%. The highest image quality score of our Hi3D
generally highlights the key advantage of video diffusion based
paradigm that exploits 3D prior knowledge to boost novel view
synthesis. In particular, due to the independent image translation,
Zero123 series (e.g., Stable-Zero123) fails to achieve multi-view con-
sistency results (e.g., one/two rings on the head of the alarm clock
in different views in Figure 3 (a)). SyncDreamer and EpiDiff further
strengthenmulti-view consistency by exploiting 3D intermediate in-
formation or using multi-view attention mechanisms. Nevertheless,
their novel-view results still suffer from blurry and unrealistic is-
sues with degraded image quality (e.g., the blurry numbers of alarm
clock in Figure 3 (a)) due to the restricted low image resolution
(256×256). Instead, by mining 3D priors and scaling up multi-view
image resolution via video diffusion model, our Hi3D manages

Table 2: Quantitative comparison with state-of-the-art meth-
ods in single view reconstruction on GSO dataset.

Method Chamfer Dist.↓ Volume IoU↑
Realfusion [36] 0.0819 0.2741
Magic123 [45] 0.0516 0.4528
One-2-3-45 [28] 0.0629 0.4086
Point-E [41] 0.0426 0.2875
Shap-E [22] 0.0436 0.3584

Stable-Zero123 [54] 0.0321 0.5207
SyncDreamer [30] 0.0261 0.5421

EpiDiff [21] 0.0343 0.4927
Wonder3D [32] 0.0199 0.6244
Hi3D (Ours) 0.0172 0.6631

to produce multi-view consistent and high-resolution 1,024×1,024
images, leading to highest image quality (e.g., the clearly visible
numbers in alarm clock in Figure 3 (a)).

5.3 Single View Reconstruction
Next, we evaluate the single view reconstruction performance of our
Hi3D in Table 2. In addition, Figure 4 shows qualitative comparison
between Hi3D and existing methods. In general, our Hi3D outper-
forms state-of-the-art methods over both two metrics. Specifically,
One-2-3-45 directly leverages multi-view outputs of Zero123 with
sub-optimal 3D consistency for reconstruction, which commonly
results in over-smooth meshes with fewer details. Stable-Zero123
further improves 3D consistency with higher-quality training data,
while still suffering from missing or over-smooth meshes. Differ-
ent from independent image translation in Zero123, SyncDreamer,
EpiDiff, and Wonder3D exploit simultaneous multi-view image
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Table 3: Ablation study on 3D-aware multi-view refinement.

Setting PSNR↑ SSIM↑ LPIPS↓
Hi3D 24.26 0.864 0.119

w/o refinement 22.09 0.842 0.136
w/o depth 23.12 0.848 0.128

Table 4: Ablation study on 3D reconstruction pipeline.

Setting Chamfer Dist.↓ Volume IoU↑
𝑀 = 0 0.0186 0.6375
𝑀 = 16 0.0172 0.6631
𝑀 = 32 0.0174 0.6598
𝑀 = 48 0.0175 0.6607

translation through 2D diffusion model, thereby leading to better
3D consistency. However, they struggle to reconstruct complex 3D
meshes with rich details due to the limitation of low-resolution
multi-view images. In contrast, our Hi3D fully unleashes the power
of inherent 3D prior knowledge in pre-trained video diffusionmodel
and scales up the multi-view images into higher resolution. Such
design enables higher-quality 3D mesh reconstruction with richer
fine-grained details (e.g., the feet of bird and penguin in Figure 4).

5.4 Ablation Studies
Effect of 3D-aware Multi-view Refinement Stage. Here we
examine the effectiveness of the second stage (i.e., 3D-aware multi-
view refinement) on novel view synthesis. Table 3 details the per-
formances of ablated runs of our Hi3D. Specifically, the second row
removes the whole second stage, and the performances drop by
a large margin. This validates the merit of scaling up multi-view
image resolution via 3D-aware video-to-video refiner. In addition,
when only removing depth condition in second stage (row 3), a clear
performance drop is attained, which demonstrates the effectiveness
of depth condition that enhances 3D geometry consistency among
multi-view images.

Effect of Interpolation view number𝑀 in 3D Reconstruc-
tion. Table 4 shows the single view reconstruction performances of
using different numbers of interpolation views𝑀 . In the extreme
case of 𝑀 = 0, no interpolation view is employed, and the 3D
reconstruction pipeline degenerates to typical SDF-based recon-
struction. By increasing𝑀 as 16, the reconstruction performances
are clearly improved, which basically shows the advantage of inter-
polation views via 3DGS. However, when further enlarging𝑀 , the
performances slightly decrease. We speculate that this may be the
result of unnecessary information across views repeat and error
accumulating. In practice,𝑀 is generally set to 16.

5.5 More Discussions
Text-to-image-to-3D. By integrating advanced text-to-image mod-
els (e.g., Stable Diffusion [49], Imagen [50]) into our Hi3D, we are
capable of generating 3D models directly from textual descriptions,
as illustrated in Figure 5. Our approach manages to produce higher-
fidelity 3D models with highly-detailed texture, which again high-
lights the merit of high-resolution multi-view image generation
with 3D consistency.

Input text Text to image Generated multi-view images Mesh

A colorful bird 
perched on a grey 
stone in a proud 

stance

A toy rocket 
launching with 
smoke clouds 

billowing beneath

Figure 5: Examples of using Hi3D for text-to-3D generation.

Input image

Seed A

Seed B

Seed C

Figure 6: Diverse and creative results of our Hi3D with dif-
ferent seeds.

Diversity and Creativity in 3D Model Generation. Here we
examine the diversity and creativity of our Hi3D by using different
random seeds. As shown in Figure 6, our Hi3D is able to gener-
ate diverse and plausible instances, each with distinct geometric
structures or textures. This capability not only enhances the flexi-
bility of 3D model creation but also significantly contributes to the
exploration of creative possibilities in 3D design and visualization.

6 CONCLUSION
This paper explores inherent 3D prior knowledge in pre-trained
video diffusion model for boosting image-to-3D generation. Par-
ticularly, we study the problem from a novel viewpoint of formu-
lating single image to multi-view images as 3D-aware sequential
image generation (i.e., orbital video generation). To materialize our
idea, we have introduced Hi3D, which executes two-stage video
diffusion based paradigm to trigger high-resolution image-to-3D
generation. Technically, in the first stage of basic multi-view gen-
eration, a video diffusion model is remoulded with additional 3D
condition of camera pose, targeting for transforming single image
into low-resolution orbital video. In the second stage of 3D-aware
multi-view refinement, a video-to-video refiner with depth condi-
tion is designed to scale up the low-resolution orbital video into
high-resolution sequential images with rich texture details. The
resulting high-resolution outputs are further augmented with in-
terpolation views through 3D Gaussian Splatting, and SDF-based
reconstruction is finally employed to achieve 3D meshes. Exper-
iments conducted on both novel view synthesis and single view
reconstruction tasks validate the superiority of our proposal over
state-of-the-art approaches.
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