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Introduction

•Understanding the space of probability measures
on Polish space X under a Wasserstein metricWp

is an important problem in mathematical analysis.
•The Wasserstein metric has received lot of interest,
particularly in Computer Vision, for its principled
way of comparing distributions.
•Despite widespread use, the metric suffers from
high computational cost, and robustness and non-
differentiability issues.

Research Goals
•Can we propose a neural network that correctly
computes the Wasserstein distance between 2
measures for out-of-training distributions?
•What properties of measures does such a net-
work learn?
•What properties of Wasserstein space can be
preserved in our encoded space?

Definitions and Theory

•Wp(µ, ν) := infX∼µ
Y∼ν

E(|X − Y |p)1/p, p ≥ 1
•Alternate notation: Wp(X, Y ) if X ∼ µ, Y ∼ ν.
•P(X ) under Wp complete and separable metric
space.
• If X, Y degenerate at x, y, Wp(X, Y ) = |x− y|.
• (Scaling) Wp(aX, aY ) = |a|Wp(X, Y ),∀ a ∈ R.
• (Translation invariance) Wp(X + x, Y + x) =
Wp(X, Y ), ∀x ∈ X
•P(X ) flat space underW1 but (sectional) curvature
is non-negative under W2.
• (Topology generated byWp) (i) If X ⊂ Rn is com-
pact and p ∈ [1,∞), in the space P(X ), we have
µk → µ iff Wp(µk, µ)→ 0.
(ii) If X = Rn, then Wp(µk, µ) → 0 iff µk → µ
and ∫ |x|pdµk → ∫ |x|pdµ

Model

•Draw samples of size N from various distributions.
•Use DeepSets architecture to encode this set to get
an permutation invariant encoding of the samples.
•Train encoder Hθ such that,

||Hθ(X)−Hθ(Y )|| = SDλ
p(X, Y )

SDλ
p= Sinkhorn Distance, an entropy regularized

Wasserstein distance.
•Hθ regarded as a Siamese Network, allowing us to
compare samples from distributions.
•Our Wasserstein Loss function reads,

Lwass = 1(
m
2
)∑(||Hθ(SX)−Hθ(SY )||−SDλ

p(µ, ν))2

Figure (1) (A) Our encoder. (B) Low-dimensional embedding
of encoded distributions.

Regularizers for preserving
properties of Wasserstein space

L := LWass+ 1(
m
2
)∑((||Hθ(X+x)−Hθ(Y +x)||−

||Hθ(X)−Hθ(Y )||)2 + (||Hθ(aX)−Hθ(aY )||−
|a|||Hθ(X)−Hθ(Y )||))2

•Regularizers to enforce Translation & Scaling laws.
•Translation law =⇒ Hθ(X), Hθ(X + x), Hθ(Y ),
Hθ(Y + x) form vertices of a parallelogram.
•SDλ

p discretizes the space and changes the metric,
thus lose some properties of Wasserstein metric.

Datasets Used

•Samples of size 500 drawn independently 50 times
from uniform, Normal, Beta, Gamma, Exponen-
tial, Laplace, Log Normal and mixtures of Gaus-
sian distributions with varying parameters.
•Samples of size 300 drawn independently 100 times
from 2D Gaussians with various µ,Σ.

Experiments with W1 metric

Figure (2) (A–C) Pearson’s r between embedded and Sinkhorn
distances. (D) Correlation after translations. (E) Samples from
a multivariate Gaussian translated around a circular path.

• (Generalizing to out-of-sample-densities) Create
new densities from training densities by changing
parameters (Fig 2 B,C). Our model generalize to
these densities and also calculate distances between
2 Dirac and between 2 Binomial distributions.
• (Translation) (a) Given samples X, Y , translate
them by a random vector a, (b) Samples from a
2D Gaussian rotated around a circle (Fig 2 D,E).

Figure (3) Person’s r comparing axes to means (A) and stan-
dard deviations (B). (C) Convergence of samples from Gaus-
sians with various standard deviations to the Dirac. (D)
Barycenters of distributions (left) and midpoints of lines con-
necting the encoded samples (right).

More Results with W1 metric

• (Statistical properties of measures) For encoded
1D-distributions, found strong correlation between
means (and variances) and x-coordinate (and y-
coordinate) of encoded point(Fig 3A,B).
• (Respecting topology of the space) Choosing sam-
ples drawn from N(0, 1/n) see that our encoded
points converge to the point encoded by the Dirac
measure (Fig 3C).
• (Wasserstein barycenters) Given two densities
µ1, µ2, and µ̂ their Wasserstein barycenter, show
that Hθ(µ̂) can be approximated by the midpoint
of the line joining Hθ(µ1) and Hθ(µ2). (Fig 3D).
Distributions used in this experiment are
1 N(0, .1) and N(1, .1).
2 Dirac at 0 and 1.
3 Uniform distribution in [0, .1] and in [.8, .1].
•More experiments found in our paper.

Discussion

•Developed permutation invariant Siamese Network
to learn distances between probability measures.
•Showed our model can learn first and second mo-
ments.
•Experiments with translations and scaling showed
our model respects various properties of Wasser-
stein space.
•Our model respects the topology by showing the
convergence of samples from N(0, 1/n) to Dirac
measure at 0.
•Showed Wasserstein geodesics can be approxi-
mated by straight lines.
•Results withW2 metric were weaker than withW1
metric. We conjecture the reason behind this are :

1 P(X ) underW1 is flat but not underW2. Sinkhorn distance
changes theW2 metric differently than it changes the space
under W1

2 Our target is a flat Euclidean space thus losing more struc-
tural information when mapping from the 2-Wasserstein
space.

• In future work, we want to learn continuity prop-
erties of these neural networks and investigate if
they can learn higher moments.


