Permutation invariant networks to learn Wasserstein metrics

Introduction

e Understanding the space of probability measures
on Polish space X under a Wasserstein metric W,
is an important problem in mathematical analysis.

e The Wasserstein metric has received lot of interest,
particularly in Computer Vision, for its principled
way of comparing distributions.

e Despite widespread use, the metric suffers from
high computational cost, and robustness and non-
differentiability issues.

Research Goals

e Can we propose a neural network that correctly
computes the Wasserstein distance between 2
measures for out-of-training distributions?

e What properties of measures does such a net-
work learn?

e What properties of Wasserstein space can be
preserved in our encoded space?

Definitions and Theory

oWy, v) =infx E(]X — Y\p)l/p, p=>1
Y~v

o Alternate notation: W,(X,Y)if X ~ pu, Y ~v.

oP(X) under W, complete and separable metric
space.

o If XY degenerate at z,y, W,(X,Y) = | — y|.

o (Scaling) Wy(aX,aY) = |a|W,(X,Y),V a € R.

o (Translation invariance) W,(X + z,Y + z) =
WyX,Y), Ve e X

o P(X) flat space under W but (sectional) curvature
is non-negative under Wj.

o (Topology generated by W,,) (i) If X C R" is com-
pact and p € [1,00), in the space P(X'), we have
pu = 1 Wi (p, ) — 0.

(ii) If X = R", then Wj(ug, pt) — 0 iff pp —
and [ |x[Pdur — [ |z|Pdu
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Model

e Draw samples of size /N from various distributions.

e Use Deepdets architecture to encode this set to get
an permutation invariant encoding of the samples.

e Train encoder Hy such that,
|Hy(X) — Ho(Y)|| = SDp(X,Y)

S D?: Sinkhorn Distance, an entropy regularized
Wasserstein distance.

e Hy regarded as a Siamese Network, allowing us to ¢

compare samples from distributions.
e Our Wasserstein Loss function reads,
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Figure (1) (A) Our encoder. (B) Low-dimensional embedding
of encoded distributions.

Regularizers for preserving
properties of Wasserstein space

£ = Liyons- (i) (| Hol X + )~ HylY + )]~

[Ho(X) — Ho(Y)||)" + (|| Hp(aX) — Hy(aY)||-
all|Ho(X) — Hy(Y)]]))"

e Regularizers to enforce Translation & Scaling laws.
o Translation law = Hy(X), Hy(X + z), Hp(Y),
Hy(Y + z) form vertices of a parallelogram.

5 D? discretizes the space and changes the metric,
thus lose some properties of Wasserstein metric.

Datasets Used

e Samples of size 500 drawn independently 50 times
from uniform, Normal, Beta, Gamma, Exponen-
tial, Laplace, Log Normal and mixtures of Gaus-
sian distributions with varying parameters.

e Samples of size 300 drawn independently 100 times
from 20D Gaussians with various p, 2.

Experiments with W; metric
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Figure (2) (A-C) Pearson's r between embedded and Sinkhorn
distances. (D) Correlation after translations. (E) Samples from
a multivariate Gaussian translated around a circular path.

o (Generalizing to out-of-sample-densities) Create
new densities from training densities by changing
parameters (Fig 2 B,C). Our model generalize to
these densities and also calculate distances between
2 Dirac and between 2 Binomial distributions.

o (Translation) (a) Given samples X,Y, translate
them by a random vector a, (b) Samples from a
2D Gaussian rotated around a circle (Fig 2 D.E).
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Figure (3) Person's r comparing axes to means (A) and stan-

dard deviations (B). (C) Convergence of samples from Gaus-
sians with various standard deviations to the Dirac. (D)
Barycenters of distributions (left) and midpoints of lines con-
necting the encoded samples (right).

More Results with W, metric

o (Statistical properties of measures) For encoded
1 D-distributions, found strong correlation between
means (and variances) and x-coordinate (and y-
coordinate) of encoded point(Fig 3A,B).

o (Respecting topology of the space) Choosing sam-
ples drawn from N(0,1/n) see that our encoded
points converge to the point encoded by the Dirac

measure (Fig 3C).

o (Wasserstein barycenters) Given two densities
L1, o, and 1 their Wasserstein barycenter, show
that Hy(fi) can be approximated by the midpoint
of the line joining Hy(u1) and Hy(uo). (Fig 3D).
Distributions used in this experiment are
O N(0,.1) and N(1,.1).
® Dirac at 0 and 1.
® Uniform distribution in [0, .1] and in [.8, .1].

e More experiments found in our paper.

Discussion

e Developed permutation invariant Siamese Network
to learn distances between probability measures.
e Showed our model can learn first and second mo-

ments.

e Eixperiments with translations and scaling showed
our model respects various properties of Wasser-
stein space.

e Our model respects the topology by showing the
convergence of samples from N(0,1/n) to Dirac
measure at 0.

e Showed Wasserstein geodesics can be approxi-

mated by straight lines.

e Results with W5 metric were weaker than with W,
metric. We conjecture the reason behind this are :

©®P(X) under W is flat but not under Ws. Sinkhorn distance
changes the W5 metric differently than it changes the space
under W;

® Our target is a flat Euclidean space thus losing more struc-
tural information when mapping from the 2-Wasserstein
space.

e In future work, we want to learn continuity prop-
erties of these neural networks and investigate it
they can learn higher moments.



