
Published as a conference paper at ICLR 2025

FAIR CLUSTERING IN THE SLIDING WINDOW MODEL

Vincent Cohen-Addad
Google
cohenaddad@google.com

Shaofeng H.-C. Jiang
School of Computer Science, Peking University
shaofeng.jiang@pku.edu.cn

Qiaoyuan Yang
School of Computer Science, Peking University
qiaoyuanyang@stu.pku.edu.cn

Yubo Zhang
School of Computer Science, Peking University
zhangyubo18@stu.pku.edu.cn

Samson Zhou
Texas A&M University
samsonzhou@gmail.com

ABSTRACT

We study streaming algorithms for proportionally fair clustering, a notion originally
suggested by Chierichetti et al. (2017), in the sliding window model. We show
that although there exist efficient streaming algorithms in the insertion-only model,
surprisingly no algorithm can achieve finite ratio without violating the fairness
constraint in sliding window. Hence, the problem of fair clustering is a rare
separation between the insertion-only streaming model and the sliding window
model. On the other hand, we show that if the fairness constraint is relaxed by a
multiplicative (1 + ε) factor, there exists a (1 + ε)-approximate sliding window
algorithm that uses poly(kε−1 log n) space. This achieves essentially the best
parameters (up to degree in the polynomial) provided the aforementioned lower
bound. We also implement a number of empirical evaluations on real datasets to
complement our theoretical results.

1 INTRODUCTION

Clustering is a fundamental technique used to identify meaningful patterns and structures within
data. Typically, the objective of clustering involves grouping similar data points together into distinct
clusters. Due to extensive research conducted over the years, clustering has become a well-established
and deeply understood field. In the standard notion of clustering, the input is a set P of n points in a
space equipped with metric dist, a cluster parameter k > 0, and an exponent z > 0 that is a positive
integer and the objective is to minimize the quantity minC,Γ:|C|=k

∑
p∈P minc∈C dist(p, c)z . The

problem is called (k, z)-clustering when the metric space is Rd and dist is the Euclidean distance and
in particular, the problem is called k-median for z = 1 and k-means for z = 2. Note that the center
set C implicitly partitions P by grouping together the points p ∈ P closest to each center c ∈ C.

Fair clustering. When applied to user data, traditional clustering methods may produce biased
outputs, leading to discriminatory outcomes that can perpetuate social inequalities in the downstream
applications (Dwork et al., 2012; Chhabra et al., 2021). For example, clustering algorithms used
in hiring or lending tasks may inadvertently discriminate against certain groups based on factors
such as race, gender, or socioeconomic status. This is particularly problematic in domains where
clustering is used to make decisions with significant consequences, such as healthcare, education,
and finance. Hence, there has been a large line of active work focusing on various notions of fairness
for clustering; we defer an overview of this work to Section 1.2.

In (α, β)-fair clustering, each item p ∈ P is associated with a subpopulation (often also called
a group) j ∈ [ℓ] across ℓ possible subpopulations and additional constraints 0 ≤ αj ≤ βj ≤ 1
for each i ∈ [ℓ]. Then the goal is to minimize the clustering objective over all possible clusters
where each cluster has at least αj fraction and no more than βj fraction of items in group L. Thus,

1

Published as a conference paper at ICLR 2025

these assignment constraints are designed to capture fairness by ensuring that no subpopulation is
under-represented or over-represented in each cluster.

The sliding window model. The sliding window model (Datar et al., 2002), which focuses on
analyzing recent data points rather than the entire dataset, offers a unique perspective on this
challenge. In many real-world applications, recent data is more relevant and informative than
historical data (Babcock et al., 2002; Manku & Motwani, 2012; Papapetrou et al., 2015; Wei et al.,
2016). For example, in social media analysis, understanding current trends and discussions requires
focusing on the most recent posts. In these scenarios, the sliding window model can provide a more
dynamic and responsive approach to clustering.

The sliding window model is particularly relevant for applications in which computation must be
restricted to data received after a certain time. Laws regarding data privacy, including the sweeping
General Data Protection Regulation (GDPR), explicitly require that companies must not retain certain
user information beyond a specified time. Consequently, Facebook retains user search data for 6
months (Facebook), the Apple retains user information for 3 months (Apple), and Google stores
browser information for up to 9 months (Google). The sliding window model captures these retention
policies with the appropriate setting of the window parameter W and thus has been considered across
a wide range of applications (Lee & Ting, 2006a;b; Braverman & Ostrovsky, 2007; Chen et al., 2016;
Datar & Motwani, 2016; Epasto et al., 2017; Braverman et al., 2018; 2021; Woodruff & Zhou, 2021;
Jayaram et al., 2022; Blocki et al., 2023).

However, the sliding window model also introduces new challenges for fairness. As data streams
in continuously, the composition of the window can change rapidly, potentially leading to biased or
discriminatory outcomes. Therefore, it is essential to develop clustering algorithms that are not only
accurate but also fair in the context of the sliding window model. Formally, points arrive sequentially
in the sliding window model and the dataset P is implicitly defined as the last n points of the stream.
The goal is to perform fair clustering using space sublinear in the size n of the dataset.

1.1 OUR RESULTS

In this work, we study fair clustering in the sliding window model. In particular, our goal is to achieve
(1 + ε)-multiplicative approximation to the optimal fair clustering for the dataset implicitly defined
by the data stream in the sliding window model, while using the minimal amount of space (and then
minimizing the update time as a secondary priority). Surprisingly, there is no existing work on fair
clustering in the sliding window model.

On the other hand, recent work has achieved (1 + ε)-approximation for the standard formula-
tion of (k, z)-clustering in the sliding window model using k

min(ε4,ε2+z) polylog n∆
ε words of

space (Woodruff et al., 2023), which was shown to be space-optimal up to factors polylogarith-
mic in the input size n and the aspect ratio ∆ (Cohen-Addad et al., 2022; 2023; Huang et al.,
2024). In particular, we can assume without loss of generality that each coordinate of each point
can be represented in log∆ bits of space, so that after normalization, all points lie within the grid
[∆]d = {1, 2, . . . ,∆}d. Similarly, results by Braverman et al. (2022) can be adapted using the
well-known merge-and-reduce framework to achieve a (1 + ε)-approximation streaming algorithm
for fair clustering using k

min(ε4,ε2+z) polylog n∆
ε words of space, which is also space-optimal up to

polylogarithmic factors (Cohen-Addad et al., 2022; Huang et al., 2024). Therefore, we ask:

Can we achieve similar space-optimal results for fair clustering in the sliding
window model?

Surprisingly, our first result is a strong impossibility result:

Theorem 1.1. Any algorithm for fair (k, z)-clustering in the sliding window model that either
achieves any multiplicative approximation or additive ∆

2 − 1 error, with probability at least 2
3 , must

use Ω(n) space.

The proof of Theorem 1.1 utilizes tools from communication complexity and is fairly standard.
Specifically, we show that fair clustering in the sliding window model can solve a version of
Augmented Index, where one player has a binary string x ∈ {0, 1}2n of length 2n and weight n,
while the second player has an index i and must guess the value of xi, given the values of x1, . . . , xi−1,

2

Published as a conference paper at ICLR 2025

as well as a message passed from the first player. The main intuition is that the two players can copy
x1, . . . , xi−1 to the end of the stream, as well as a guess xi = 0, so that the sliding window contains
precisely the elements xi+1, . . . , x2n, x1, x2, . . . , xi−1, 0, as well as n additional points at the origin
and n additional points at the point 1 on the real line, which the players subsequently insert. Now
if the guess xi = 0 is correct, this window will contain precisely 2n points that zero and 2n points
that are one. Otherwise, it will contain 2n − 1 points that are one and 2n + 1 points that are zero.
Hence by setting the fairness constraint to require half of the points at each center to be from the
last 2n points, and half of the points from the first 2n points, the fair clustering objective is zero if
and only if the guess xi = 0 is correct. Otherwise, the objective is nonzero, which allows any finite
multiplicative approximation to fair clustering to distinguish between these two cases. The lower
bound then follows from known communication lower bounds of the Augmented Index problem. We
defer the formal proof to Appendix A. We now discuss the main implications of Theorem 1.1.

Whereas our goal was to achieve a (1 + ε)-approximation for fair clustering in poly
(
k, 1

ε , log(n∆)
)

space, Theorem 1.1 states that any multiplicative approximation requires linear space, even an
arbitrarily large multiplicative approximation, e.g., polynomial or exponential in n.

Due to the aforementioned results, Theorem 1.1 shows several separations. Firstly, it shows a
separation between fair clustering and the standard clustering formulation in the sliding window
model, due to the sliding window algorithm for (k, z)-clustering that achieves (1 + ε)-approximation
using k

min(ε4,ε2+z) polylog n
ε words of space (Woodruff et al., 2023). Secondly, it shows a separation

between the insertion-only streaming model and the sliding window model for fair clustering,
due to the streaming algorithm for (k, z)-clustering that achieves (1 + ε)-approximation using

k
min(ε4,ε2+z) polylog n

ε words of space (Braverman et al., 2022). Theorem 1.1 therefore has an
important informal message:

Fairness and recency are not compatible in sublinear space!

The natural follow-up question is, what actually can be achieved toward some notion of fair clustering
in the sliding window model? To that end, we show that there exist sublinear-space algorithms for
fair clustering in the sliding window model if we permit a small slackness on the fairness constraints:

Theorem 1.2. There is a sliding-window streaming algorithm that returns a center set C after
every insertion operation, such that with high probability, there exists a ((1 − ε)α, (1 + ε)β)-fair
k-clustering whose cost with center set C is at most 1 + ε times the optimal (α, β)-fair clustering on
the sliding window. This algorithm uses space L · poly(ε−1kd log∆) where L ≤ 2ℓ is the number of
distinct combinations of groups that any point may belong to.

We remark that the guarantees of our algorithm are slightly stronger than those stated in Theorem 1.2.
In particular, not only does our algorithm produce a (1 + ε)-approximation to the optimal fair
clustering, but it also produces a (1 + ε)-coreset, i.e., a dataset that can be used to obtain a (1 + ε)-
approximation to the cost of any query consisting of k centers under the fairness constraints. To that
end, we further remark that the space used by Theorem 1.2 matches the best known bounds for offline
coreset constructions up to polylogarithmic factors (Braverman et al., 2022).

Experimental evaluations. Although the (1+ε) ratio which our Theorem 1.2 achieves is powerful, it
is mostly theoretical since the running time must be exponential because of APX-hardness. However,
our algorithm actually maintains a coreset of the sliding window whose construction is very efficient.
Hence, we plug in a practically efficient downstream approximation algorithm by Backurs et al. (2019)
to achieve better empirical performance. We validate the performance of our algorithm, compared
with three baselines, on five real datasets. Our algorithm offers overall best tradeoff regarding ,
time/space and accuracy compared with all baselines.

1.2 RELATED WORK

In this section, we describe a number of related works, both in the context of fair clustering and
sliding window algorithms for clustering.

Fairness. Fairness in algorithmic design has recently received significant attention (Kleinberg et al.,
2017; Huang et al., 2019; Chen et al., 2024; Song et al., 2024). Chierichetti et al. (2017) initiated the
study of fairness in clustering, specifically in the context of disparate impact, which demands that

3

Published as a conference paper at ICLR 2025

any “protected” subpopulation must receive similar representation in the decision-making process,
in particular by the output of an algorithm. Although Chierichetti et al. (2017) initially considered
two classes of populations, subsequent works generalized to multiple subpopulations by Rösner &
Schmidt (2018), as well as different clustering objectives (Ahmadian et al., 2019; Bandyapadhyay
et al., 2019; Bercea et al., 2019; Bera et al., 2019b; Kleindessner et al., 2019b; Ahmadian et al.,
2020b;a; Esmaeili et al., 2020; 2021; Böhm et al., 2021; Schwartz & Zats, 2022; Ahmadian &
Negahbani, 2023). A similar notion studied clustering where each cluster required a certain number
of representatives from each subpopulation, rather than a certain fraction (Anegg et al., 2022; Jia
et al., 2022).

Other proposed notions of fairness include (1) social fairness, where the clustering cost is considered
across subpopulations and then minimized (Jones et al., 2020; Ghadiri et al., 2021; Makarychev &
Vakilian, 2021), (2) individual fairness, where each point should have a center within a reasonably
close distance that is a function of the overall dataset (Jung et al., 2020; Mahabadi & Vakilian, 2020;
Negahbani & Chakrabarty, 2021; Vakilian & Yalçiner, 2022), (3) representative fairness, where the
number of centers of each class is constrained (Kleindessner et al., 2019a; Angelidakis et al., 2022),
and (4) a number of other notions (Micha & Shah, 2020; Abbasi et al., 2021; Hotegni et al., 2023;
Gupta et al., 2023). However, as we focus on disparate impact in this work, these notions of fairness
are somewhat orthogonal to the main subject of our study.

Clustering in data streams and the sliding window model. While a general framework for sliding
window algorithms are histogram-based approaches (Datar et al., 2002; Braverman & Ostrovsky,
2007), the clustering objective is not smooth and thus not suitable for these frameworks. Hence, there
has been an active line of work studying (k, z)-clustering in the sliding window model. Babcock et al.
(2003) first introduced an algorithm for k-median clustering in the sliding window model that used
O
(

k
ε4m

2ε log2 m
)

words of space and gave a 2O(1/ε)-multiplicative approximation algorithm, where
m is the size of the window and ε ∈

(
0, 1

2

)
is an input parameter. Braverman et al. (2015) subsequently

gave a bicriteria algorithm for the k-median problem in the sliding window model that achieved an
O (1)-multiplicative approximation using k2 polylog(m) space, but at the cost of 2k centers. Braver-
man et al. (2016) achieved the first poly(k logm) space algorithm for k-median and k-means on
sliding windows, achieving an O (1)-approximation using O

(
k3 log6 m

)
space. Afterwards, Borassi

et al. (2020) achieved a linear dependency in k, giving an O (1)-approximation for k-clustering using
k polylog(m,∆) space. Epasto et al. (2022) introduced the first (1+ ε)-approximation algorithm for
(k, z)-clustering using (kd+dC)

ε3 polylog
(
m,∆, 1

ε

)
words of space, for some constant C ≥ 7, which

was subsequently optimized by Woodruff et al. (2023) to k
min(ε4,ε2+z) polylog m∆

ε words of space.

It should noted that all of these results consider the standard formulation of (k, z)-clustering in
the sliding window model. That is, no previous works considered fair clustering in the sliding
window model. The most relevant works are offline (1 + ε)-coreset constructions by Braverman
et al. (2022) for fair clustering that sample k

min(ε4,ε2+z) polylog n∆
ε points, and can be adapted to

the insertion-only streaming model at the cost of multiplicative factors polylogarithmic in n, using a
standard merge-and-reduce technique. As this coreset size matches the bound for (k, z)-clustering in
the sliding window model, one might hope to achieve similar bounds for fair clustering in the sliding
window model. Unfortunately, our results show that is not the case.

2 PRELIMINARIES

Notations. We assume the input comes from [∆]d for some integer ∆ ≥ 1, and let C ⊆ Rd be the
candidate center set. In our analysis, many statements also hold for general Rd, but we may still state
them for [∆]d for consistency of presentation. Throughout, when we talk about a point set in Rd, we
assume each point is associated with a unique time step. Importantly, we use this time step to identify
a point, which means two identical points in Rd with different time steps are considered different
points (and set operations, such as intersection, are performed with respect to the time step). For a
general function f : U → V , define f(Y) :=

∑
y∈Y f(y) (for Y ⊆ U in the domain U).

Definition 2.1 ((α, β)-fair clustering). Given P ⊂ Rd, ℓ groups P1, . . . , Pℓ ⊆ P and α, β ∈ [0, 1]ℓ, a
k-clustering (C1, . . . , Ck), i.e., a k-partition of P , is called (α, β)-fair if |Pj∩Ci|

|Ci| ∈ [αj , βj] for every

4

Published as a conference paper at ICLR 2025

i ∈ [k], j ∈ [ℓ]. (α, β)-fair (k, z)-CLUSTERING asks to find an (α, β)-fair clustering (C1, . . . , Ck)
and center set C ⊂ Rd of k points, such that

∑
i∈[k]

∑
x∈Ci

(dist(x, ci))
z is minimized.

Notice that there are at most 2ℓ possible combinations of groups that a point p ∈ P may belong to.
In practice, this 2ℓ upper bound is rarely achieved. Hence, it is often useful to consider the actual
number of distinct combinations of groups that a point p ∈ P may belong to, denoted as L throughout.
Namely, L := |{W ⊆ [ℓ] : ∃p ∈ P, such that ∀j ∈W,p ∈ Pj}|.

Streaming model. The window size m and the fairness constraints α, β ∈ Rℓ are given in advance.
The input point set P ⊆ [∆]d and the groups P1, . . . , Pℓ ⊆ P of (α, β)-fair clustering is presented
as a stream of insertion operations, each consists of a point p ∈ P and the group IDs that p belongs
to. The algorithm must return a center set C ⊂ Rd after each insertion, which is supposed to be an
approximate solution to the dataset defined by the last m operations.

A weighted point set S ⊆ [∆]d is a point set S equipped with a weight function wS : [∆]d → R+

such that supp(wS) = S. Notice that for a weighted point set S and a (weighted or unweighted)
point set T , set operation S ∩ T is performed only on the point set, and the weight should be defined
separately. When the context is clear, we drop the subscript S in the weight function wS .

We use a generic notion of assignment-preserving coresets as introduced in Braverman et al. (2022),
which we rephrase as follows. We notice that an assignment-preserving coreset is not immediately a
coreset that preserves the fair clustering objective, but it is possible to obtain one by taking a union of
several assignment-preserving coresets on a partition of the input dataset (and the detailed argument
can be found in Section 4, proof of Theorem 1.2).
Definition 2.2 (Assignment constraints). Consider some weighted point set P ⊆ [∆]d and a center
set C ⊆ C. An assignment constraint with respect to P and C is a function Γ : C → R+ such
that

∑
p∈P wP (p) =

∑
c∈C Γ(c). An assignment function with respect to P and C is a function

σ : P × C → R+ such that ∀p ∈ P,
∑

c∈C σ(p, c) = wP (p). We call σ is consistent with Γ, i.e.
σ ∼ Γ, if ∀c ∈ C,

∑
p∈P σ(p, c) = Γ(c).

Definition 2.3 ((k, z)-clustering with assignment constraints). Given a weighted point set P ⊆ [∆]d,
a center set C ⊆ C and an assignment constraint Γ, for every assignment function σ with respect to
P,C and consistent with Γ, the cost of σ is defined as costσ(P,C,Γ) =

∑
p∈P

∑
c∈C σ(p, c)d(p, c)z .

The cost function of (k, z)-CLUSTERING with assignment constraint is

cost(P,C,Γ) = min
σ:P×C→R+,σ∼Γ

costσ(P,C,Γ).

As in Braverman et al. (2022); Huang et al. (2023), our coreset is defined with respect to assignment
constraints, and we aim for coresets that can preserve all assignment constraints simultaneously.
Definition 2.4 (Assignment-preserving coreset). Given a weighted point set P ⊆ [∆]d and 0 < ε < 1,
an assignment-preserving ε-coreset for (k, z)-CLUSTERING of P is a weighted point set S ⊆ P
such that wS(S) = wP (P), and that for every center set C ⊆ C and assignment constraint Γ,
cost(S,C,Γ) ∈ (1± ε) cost(P,C,Γ).

3 ONLINE ASSIGNMENT-PRESERVING CORESETS

As we mention, our framework is based on that of Woodruff et al. (2023), which reduces the
sliding window algorithm to constructing an online coreset. In their definition, given a point set
P = {p1, p2, . . . , pn}, listed in the increasing order of time steps, an online ε-coreset S for (k, z)-
CLUSTERING is a weighted subset such that every prefix S ∪ {p1, p2, . . . , pi} is an ε-coreset for
(k, z)-CLUSTERING of prefix {p1, p2, . . . , pi}.
However, this definition of online coreset does not easily generalize to our setting, and it is even
trickier due to our lower bound in Theorem 1.1. Hence, we need to use a slightly relaxed notion,
defined in Definition 3.1. Roughly, the prefix property of our online assignment-preserving coresets
can tolerate a 1± ε relative error in the weights. This relaxed guarantee leads to an efficient coreset
bound, stated in Lemma 3.2, which is the main claim of this section.
Definition 3.1 (Online assignment-preserving coreset). Given a weighted point set P =
{p1, p2, . . . , pn} listed in the increasing order of time steps and 0 < ε < 1, a weighted point

5

Published as a conference paper at ICLR 2025

Algorithm 1 Online assignment-preserving coreset construction

procedure ONLINECORESET(P, ε, δ)
Compute an (α, β)-approximate solution Q = {q1, q2, . . . , qℓ} ⊆ P for (k, z)-clustering of P

▷using e.g., Meyerson sketch, where α = O(2z), β = O(2z poly(log∆))
S ← ∅, ε′ ← ε

2zα , δ′ ← δ
ℓ(⌈lg(∆

√
d)+1⌉)

for i = 1, 2, . . . , ℓ do
Qi ← {p ∈ P : NNQ(p) = qi} ▷NNQ(p) is defined as the nearest neighbor of p in set Q
for j = 0, 1, 2 . . . , ⌈lg(∆

√
d)⌉ do

Pi,j ← Pi ∩ ring(qi, 2
j−1, 2j)

Si,j ← RINGCORESET(Pi,j , ε
′, δ′)

return
⋃

1≤i≤ℓ,0≤j≤⌈lg(∆
√
d)⌉ Si,j

Algorithm 2 Coreset for a single ring

procedure RINGCORESET(P, ε, δ)
List P in the increasing order of time steps as p1, p2, . . . , pn.
δ′ ← δ

(k/ε)O(kd) , T ← poly(2zdkε−1 log(w(P)∆ε−1δ−1)), S ← ∅, sum0 ← 0

for i = 1, 2, . . . , n do
sumi ← sumi−1 + wP (pi)
probi ← min (T · wP (pi)/sumi, 1)
add pi to S with probability probi and weight wS(pi)← prob−1

i wP (pi)

return S

set S is an online assignment-preserving ε-coreset of P for (k, z)-CLUSTERING, if S ⊆ P and for
every t ∈ [n], there exists some weighted point set S′

t such that the following holds:

• Let Pt := {p1, . . . , pt} and wPt
: p 7→ wP (p). Then S′

t is an assignment-preserving ε-coreset for
the weighted set Pt.

• Let St := S ∩ Pt and wSt
: p 7→ wS(p). Then St = S′

t and for every p ∈ St, wSt
(p) ∈

(1± ϵ)wS′
t
(p).

Lemma 3.2. There exists an algorithm that takes as input weighted set P ⊆ [∆]d (with unique
time steps) of n points, 0 < ε < 1, z ≥ 1 and integer k ≥ 1, computes weighted set S with |S| =
poly(2zε−1kd log(w(P)∆ε−1), such that S is online assignment-preserving ε-coreset for (k, z)-
CLUSTERING with probability 0.9. The algorithm uses poly(2zε−1kd log(w(P)∆ε−1)) space.

Algorithm for Lemma 3.2. The algorithm for our online assignment-preserving coreset is listed
in Algorithm 1. This construction is based on a similar sampling-based framework as in Woodruff
et al. (2023), which is also widely used in the coreset literature in general (Chen, 2009; Cohen-Addad
et al., 2021; Cohen-Addad & Li, 2019; Braverman et al., 2022). In this framework, one starts
with computing a bi-criteria approximation Ĉ for (unconstrained) (k, z)-CLUSTERING, denoted as
Ĉ := {ĉ1, . . . , ĉt}. We say Ĉ is an (α, β) bi-criteria approximate solution for (unconstrained) (k, z)-
CLUSTERING if cost(P, Ĉ) =

∑
p∈P dist(x, Ĉ)z ≤ α·OPT and |Ĉ| ≤ βk. For our purpose, we use

the Meyerson sketch proposed by Borassi et al. (2020) that outputs an (O (2z) ,O
(
2z log η−1 log∆

)
)

approximation center set Ĉ ⊆ P with probability at least 1 − η. Next, take the natural clustering
defined by Ĉ (according to nearest-neighbor rule), and decompose each cluster into rings centered
at ĉi. The coreset is constructed by simply drawing poly(ϵ−1kd) uniform samples from each ring,
re-weight, and take the union.

However, it is nontrivial to draw exactly uniform samples while still maintaining the online property,
especially in the streaming setting. Hence, in Woodruff et al. (2023) they turn to sample the i-th
element in a ring with probability ∝ 1/i (and it gets more complicated when running on a weighted
dataset, which we need). Our algorithm also has this part as a key subroutine, which we call
RINGCORESET. The RINGCORESET algorithm is presented in Algorithm 2, and its guarantee is
summarized in the following Lemma 3.3.

6

Published as a conference paper at ICLR 2025

Lemma 3.3. Consider q ∈ [∆]d, r > 0, ε, δ ∈ (0, 1), k, z ≥ 1, and weighted set P =
(p1, p2, . . . , pn) ⊆ [∆]d ∩ ring(q, r/2, r) listed in the increasing order of time steps. Let
N := w(P) and S be the output of RINGCORESET(P, ε, δ) (in Algorithm 2). We have E[|S|] =
poly(2zkε−1 log(N∆ε−1δ−1)), and with probability at least 1− δ, there exists a weighted set S′

such that

• S′ = S,
• For every p ∈ S, wS′(p) ∈ (1± ε)wS(p),
• For every center set C ⊆ Rd, |C| ≤ k and every assignment constraint Γ with respect to P,C, we

have |cost(S′, C,Γ)− cost (P,C,Γ)| ≤ ε
4 (cost(P,C,Γ) + cost(S′, C,Γ) +Nrz).

The proof of Lemma 3.3 is postponed to Appendix C, and we first finish the proof of Lemma 3.2
assuming Lemma 3.3 holds. In the following discussion, for every P ⊆ [∆]d, C ⊆ Rd, |C| = k and
assignment constraint Γ with respect to P,C, we say σ∗ is the the optimal assignment function of
cost(P,C,Γ) if σ∗ = argminσ:P×C→R≥0,σ∼Γ

∑
p∈P

∑
c∈C σ(p, c) dist(p, c)z .

Proof of Lemma 3.2. By the definition of Algorithms 1 and 2, we have ONLINECORESET(P) ∩
{p1, p2, . . . , pi} = ONLINECORESET({p1, p2, . . . , pi}) when the randomness is fixed. Hence it is
sufficient to show that for every P , there exists some assignment-preserving coreset S′ of P such
that S′ = S and for every p ∈ S′, wS′(p) ∈ (1± ε)wS(p).

Let α, ℓ, ε′, Si,j , Pi,j follows their definition in Algorithm 1. By applying the union bound on the
result of Lemma 3.3, with probability at least 1 − δ, for every 1 ≤ i ≤ ℓ, 0 ≤ j ≤ ⌈log(∆

√
d)⌉,

there exists a weighted point set S′
i,j satisfying S′

i,j = Si,j , ∀p ∈ S′
i,j , wS′

i,j
(p) ∈ (1± ε)wSi,j (p),

such that for every center set C and assignment constraint Γ with respect to Pi,j , C, we have∣∣ cost(S′
i,j , C,Γ)− cost(Pi,j , C,Γ)

∣∣
≤ ε′

4
w(Pi,j)r

z
j +

ε′

4
(cost(S′

i,j , C,Γ) + cost(Pi,j , C,Γ))

≤ ε

4α

∑
p∈Pi,j

wP (p) dist(p, qi)
z +

ε

4
(cost(S′

i,j , C,Γ) + cost(Pi,j , C,Γ))

Let weighted set S′ be the union of all S′
i,j . Let σ∗ be the optimal assignment for cost(P,C,Γ). We fix

the assignment constraint for every Pi,j with Γi,j(c) :=
∑

p∈Pi,j
σ∗(p, c). Define NR := ⌈lg(∆

√
d)⌉

as the number of rings. We have cost(P,C,Γ) = costσ
∗
(P,C,Γ) =

∑ℓ
i=1

∑NR

j=1 cost(Pi,j , C,Γi,j)

and cost(S′, C,Γ) ≤
∑ℓ

i=1

∑NR

j=1 cost(S
′
i,j , C,Γi,j). Summing up together, we have

cost(S′, C,Γ)− cost(P,C,Γ)

≤
ℓ∑

i=1

NR∑
j=1

cost(S′
i,j , C,Γi,j)− cost(Pi,j , C,Γi,j)

≤ ε

4α

ℓ∑
i=1

∑
p∈Pi

wP (p) dist(p, qi)
z +

ε

4
(cost(S′, C,Γ) + cost(P,C,Γ))

≤ ε

4α
costQ +

ε

4
cost(P,C,Γ) +

ε

4
cost(S′, C,Γ)

≤ ε · cost(P,C,Γ),
where costQ denotes the cost of solution Q. By symmetric argument we have cost(P,C,Γ) −
cost(S′, C,Γ) ≤ ε · cost(P,C,Γ). The expectation size of the coreset can be bounded by

E[|S|] =
ℓ∑

i=1

NR∑
j=0

|Si,j | ≤ βk · lg(∆
√
d) · poly(2zdkε−1 log(w(P)∆ε−1δ−1))

= poly(2zdkε−1 log(w(P)∆ε−1δ−1)).

In summary, when we run ONLINECORESET(P, ε, 0.01), it returns an online assignment-preserving
ε-coreset S such that |S| = poly(2zdkε−1 log(w(P)∆ε−1δ−1)) with probability 0.9.

7

Published as a conference paper at ICLR 2025

Table 1: Specifications of datasets

dataset size d attribute window size coreset size (benchmark) coreset size (ours)

Adult 50k 6 gender 500 231 150
Bank 45k 10 marital 500 234 150
Diabetes 100k 8 gender 1000 485 300
Athlete 200k 3 gender 2000 1058 750
Census 2500k 13 gender 5000 1988 1500

4 STREAMING ALGORITHMS

Our sliding window algorithm uses a framework introduced by Braverman et al. (2020); Woodruff
et al. (2023). This framework reduces clustering on sliding windows to an online coreset problem,
via a standard merge-and-reduce method, and the detailed algorithm is listed in Algorithm 3. This
algorithm maintains a coreset for the sliding window, and its guarantee is summarized in Theorem 4.1.
The key idea is that every window can be viewed as a suffix of the input stream at some time step t,
and if we build online coreset for all elements in the entire 1, . . . , t time steps in the reverse order
of time steps, then the prefix of the online coreset (which is the key query that the coreset provides)
precisely gives a coreset for the sliding window.

Algorithm 3 Sliding window coreset algorithm based on online assignment-preserving coreset

procedure MERGEANDREDUCE(P)
t← 0, ℓ← ⌈lgm⌉
initialize ℓ+ 1 point sets B0, B1, . . . Bℓ ← ∅
while input stream is not empty do

t← t+ 1
p← the next element in input stream, time(pi)← −i

▷online coresets is defined on the reverse stream
let j be the smallest index with Bj = ∅, set j ← m if such index does not exist

Bj ← ONLINECORESET
(
{p} ∪B0 ∪ . . . ∪Bj−1,

ε
2 logm , δ

4m2

)
clear the block Bi, i.e., Bi ← ∅, for all i ∈ {0, 1, . . . , j − 1}
the coreset of the current window (i.e. the t−m+ 1, t−m+ 2, . . . t-th element in input

stream) is {p ∈ B0 ∪B1 ∪ . . . ∪Bℓ : time(p) ∈ [−t,−t+m)}

Theorem 4.1. There exists an algorithm that takes as input P ⊆ [∆]d presented as a point stream,
0 < ε < 1, z ≥ 1, integer k ≥ 1 and window size m ≥ 1, computes a weighted subset S of
the sliding window after each point insertion, such that there exists an ε-coreset S′ of the sliding
window for (k, z)-CLUSTERING with assignment constraints, that has S′ = S and ∀p ∈ S, wS(p) ∈
(1± ε)wS′(p). The algorithm uses space poly(ε−1kd log(m∆)), and succeeds with high probability.

Proof. Consider Algorithm 3. Observe that for each i ∈ {0, 1, . . . , ℓ}, Bi is an assignment-preserving
online ((1 + ε

2 logm)i − 1)-coreset for a sequence of 2i consecutive points and the sequences of all
Bi (i ∈ {0, 1, . . . , ℓ}) are disjoint. Every time we set Bi ← ONLINECORESET({p} ∪ B0 ∪ . . . ∪
Bj−1,

ε
2 logm , δ

2m), B0, B1, . . . , Bi−1 must be non-empty. By induction, |{p}∪B0 ∪ . . .∪Bj−1| =
1 +

∑i−1
j=0 2

j = 2i and the distortion of Bi is at most (1 + ε
2 logm)i.

Suppose the input stream is {pi}i≥1. For every time t, after we have inserted the newly arrived point
pt, B0∪B1∪. . .∪Bℓ is an assignment-preserving online ε-coreset of {pt, pt−1, . . . , pt−2ℓ+1} (sorted
by time steps). By the definition of online coreset, {p ∈ B0∪B1∪. . .∪Bℓ : time(p) ∈ [−t,−t+m)}
is an assignment-preserving ε-coreset of {pt, pt−1, . . . , pt−m+1}, which is the current window. Since
at most 2ℓ times of merge-and-reduce is involved in B0 ∪ . . . ∪Bj−1, the failure probability for each
time t is at most δ. This finishes the proof of Theorem 4.1.

Proof of Theorem 1.2. Our algorithm employs the following standard steps to obtain fair clustering
from assignment-preserving coresets. Huang et al. (2019); Braverman et al. (2022) shows that, if
dataset P is partitioned with respect to the combinations of groups that each point belongs to, and

8

Published as a conference paper at ICLR 2025

Fig. 1: Fair k-MEDIAN cost curves for all datasets.

suppose one takes the union of the assignment-preserving ε-coresets on each part, denoted as S, then
the value of the optimal (α, β)-fair clustering on S is a (1 + ε)-approximation to that of P .

Our algorithm. Our algorithm follows similar steps. We apply Theorem 4.1 on the partition of
P , then take the union to obtain some set S′. This S′ has size at most L times that of the coreset

9

Published as a conference paper at ICLR 2025

Fig. 2: Total running time for our algorithm and Borassi baseline over all sliding windows.

size in Theorem 4.1, and this dominates the space complexity. Finally, in the last step we find a
((1− ε)α, (1 + ε)β)-fair clustering on S′ (which has a relaxed fairness constraint).

To see why this clustering has value at most (1 + ε) times the optimal (α, β)-fair clustering on P ,
consider the optimal (α, β)-fair solution on S (the set defined in the first paragraph), then this solution
is (1 + ε)-approximate to that on P . Now, by the guarantee of Theorem 4.1, this same solution
(with the same objective value) is a feasible ((1− ε)α, (1− ε)β)-fair clustering with respect to S′.
Notice that what our algorithm finds is no worse than this solution on S′, and hence we conclude the
clustering has cost at most (1 + ε) times the optimal solution. This finishes the proof.

5 EXPERIMENTS

We implement our coresets and evaluate their performance for solving fair k-MEDIAN in sliding
window. The evaluation requires a down-stream approximation algorithm for fair k-MEDIAN which
is run on the coreset. We choose to use Fairtree (Backurs et al., 2019) in our experiments, which
achieves competitive performance in practice.

Baselines. We employ three baselines. Two of the baselines are based on coresets, called “Benchmark”
and “Uniform”, which construct the coreset in an alternatively way than ours but still apply Fairtree as
the down-stream approximation algorithm. Specifically, in “Benchmark”, we construct a considerably
large coreset from the sliding window (see Table 1 for the coreset sizes), and it serves as a benchmark
for the accuracy; and in “Uniform”, we use uniform sampling to build a coreset of the same size as
ours, as a natural heuristic. The last baseline is a previous sliding-window algorithm designed for
clustering without fairness constraints (Borassi et al., 2020), and we call it “Borassi”.

Datasets. We evaluate the algorithms on 5 real datasets: Adult (Becker & Kohavi, 1996),
Bank (Moro S & P, 2014), Diabetes (Kahn), Athlete (Barshan & Altun, 2010), and Census (Meek
et al., 2001), which have also been used in various previous studies on (fair) clustering (Bera et al.,
2019a; Chierichetti et al., 2017; Schmidt et al., 2018; Huang et al., 2019). For each dataset, we
extract numerical features to construct a vector in Rd for each record, and we select a binary sensitive
attribute. We set the window size ≈ n

100 . We list the detailed parameters of the datasets in Table 1.

Experiment setup. We choose k = 10 in all experiments. When implementing our coreset, we
directly specify a target coreset size instead of using the worst-case bound as we established in
previous sections. Due to variations in dataset sizes and corresponding window sizes, we assigned
different coreset sizes for each dataset.

We set this target size 150 for both Adult and Bank, 300 for Diabetes, 750 for Athlete, and 1500 for
Census. All the experiments are run on a MacBook Air 15.3 with an Apple M3 chip (8 cores, 2.22
GHz), 16GB RAM, and macOS 14.4.1 (23E224).

Experiment results. We run all algorithms on the five datasets, and we depict the cost curves in
Figure 1 over the time steps. These curves show that our algorithm obtains a comparable cost to
Benchmark and Uniform, while using lower space than Benchmark and achieving lower variance
than Uniform (which is as expected, since the variance of uniform sampling can be unbounded
even without fairness constraints). Finally, compared with Borassi, our algorithm performs better in
accuracy, and as can be seen from Figure 2, we also achieve a better running time on larger datasets.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

Research of Shaofeng Jiang was supported in part by a national key R&D program of China No.
2021YFA1000900 and a startup fund from Peking University. Samson Zhou is supported in part by
NSF CCF-2335411. The work was conducted in part while Samson Zhou was visiting the Simons
Institute for the Theory of Computing as part of the Sublinear Algorithms program. We thank the
anonymous reviewers for insightful comments.

REFERENCES

Mohsen Abbasi, Aditya Bhaskara, and Suresh Venkatasubramanian. Fair clustering via equitable
group representations. In FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and
Transparency, pp. 504–514, 2021. 4

Sara Ahmadian and Maryam Negahbani. Improved approximation for fair correlation clustering. In
International Conference on Artificial Intelligence and Statistics, pp. 9499–9516, 2023. 4

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Clustering without
over-representation. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD, pp. 267–275, 2019. 4

Sara Ahmadian, Alessandro Epasto, Marina Knittel, Ravi Kumar, Mohammad Mahdian, Benjamin
Moseley, Philip Pham, Sergei Vassilvitskii, and Yuyan Wang. Fair hierarchical clustering. In
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS, 2020a. 4

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation
clustering. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS,
pp. 4195–4205, 2020b. 4

Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen. A technique for obtaining
true approximations for k-center with covering constraints. Math. Program., 192(1):3–27, 2022. 4

Haris Angelidakis, Adam Kurpisz, Leon Sering, and Rico Zenklusen. Fair and fast k-center clustering
for data summarization. In International Conference on Machine Learning, ICML, pp. 669–702,
2022. 4

Apple. https://images.apple.com/privacy/docs/Differential Privacy Overview.pdf. 2

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 1–16, 2002. 2

Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 234–243, 2003. 4

Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner. Scalable
fair clustering. In International Conference on Machine Learning, pp. 405–413. PMLR, 2019. 3,
10

Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Kasturi R. Varadarajan. A constant
approximation for colorful k-center. In 27th Annual European Symposium on Algorithms, ESA, pp.
12:1–12:14, 2019. 4

Billur Barshan and Kerem Altun. Daily and Sports Activities. UCI Machine Learning Repository,
2010. DOI: https://doi.org/10.24432/C5C59F. 10

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20. 10

Suman K Bera, Deeparnab Chakrabarty, and Maryam Negahbani. Fair algorithms for clustering. corr,
abs/1901.02393. arXiv preprint arXiv:1901.02393, 2019a. 10

11

Published as a conference paper at ICLR 2025

Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms
for clustering. In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS, pp. 4955–4966, 2019b. 4

Ioana Oriana Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,
volume 145 of LIPIcs, pp. 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
4

Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, and Samson Zhou. Differentially private l2-
heavy hitters in the sliding window model. In The Eleventh International Conference on Learning
Representations, ICLR, 2023. 2

Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Menghini, and Chris Schwiegelshohn.
Algorithms for fair k-clustering with multiple protected attributes. Oper. Res. Lett., 49(5):787–789,
2021. 4

Michele Borassi, Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
dam. Sliding window algorithms for k-clustering problems. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS,
2020. 4, 6, 10

Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), Proceedings, pp. 283–293, 2007.
2, 4

Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on sliding
windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS, pp. 350–364, 2015. 4

Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering problems
on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 1374–1390, 2016. 4

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. Nearly
optimal distinct elements and heavy hitters on sliding windows. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp. 7:1–7:22,
2018. 2

Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P.
Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding window models.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 517–528, 2020.
8

Vladimir Braverman, Viska Wei, and Samson Zhou. Symmetric norm estimation and regression on
sliding windows. In Computing and Combinatorics - 27th International Conference, COCOON,
Proceedings, pp. 528–539, 2021. 2

Vladimir Braverman, Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Robert Krauthgamer, Chris
Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for coresets.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp. 462–473, 2022.
2, 3, 4, 5, 6, 8, 18

Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding windows.
CoRR, abs/1611.00129, 2016. 2

Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications. SIAM J. Comput., 39(3):923–947, 2009. 6

Wenjing Chen, Shuo Xing, Samson Zhou, and Victoria G. Crawford. Fair submodular cover. CoRR,
abs/2407.04804, 2024. 3

12

Published as a conference paper at ICLR 2025

Anshuman Chhabra, Karina Masalkovaite, and Prasant Mohapatra. An overview of fairness in
clustering. IEEE Access, 9:130698–130720, 2021. 1

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems, pp. 5029–5037, 2017. 1, 3, 4, 10

Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale inequalities:
A survey. Internet Math., 3(1):79–127, 2006. doi: 10.1080/15427951.2006.10129115. URL
https://doi.org/10.1080/15427951.2006.10129115. 25

Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated clustering. In
ICALP, volume 132 of LIPIcs, pp. 41:1–41:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. full version: https://arxiv.org/abs/2208.14129. 6, 20

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In STOC, pp. 169–182. ACM, 2021. 6

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
optimal lower bounds for k-median and k-means coresets. In STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 1038–1051, 2022. 2

Vincent Cohen-Addad, David P. Woodruff, and Samson Zhou. Streaming euclidean k-median and
k-means with o(log n) space. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 883–908, 2023. 2

Mayur Datar and Rajeev Motwani. The sliding-window computation model and results, 2016. 2

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream statistics over
sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. 2, 4

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Innovations in Theoretical Computer Science, pp. 214–226, 2012. 1

Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam. Submodular
optimization over sliding windows. In Proceedings of the 26th International Conference on World
Wide Web, WWW, pp. 421–430, 2017. 2

Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Improved sliding
window algorithms for clustering and coverage via bucketing-based sketches. In Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 3005–3042, 2022. 4

Seyed A. Esmaeili, Brian Brubach, Leonidas Tsepenekas, and John Dickerson. Probabilistic fair
clustering. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS, 2020. 4

Seyed A. Esmaeili, Brian Brubach, Aravind Srinivasan, and John Dickerson. Fair clustering under a
bounded cost. In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS, pp. 14345–14357, 2021. 4

Facebook. https://www.facebook.com/policy.php. 2

Mehrdad Ghadiri, Samira Samadi, and Santosh S. Vempala. Socially fair k-means clustering. In
FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 438–448,
2021. 4

Google. https://policies.google.com/technologies/retention. 2

Shivam Gupta, Ganesh Ghalme, Narayanan C. Krishnan, and Shweta Jain. Efficient algorithms for
fair clustering with a new notion of fairness. Data Min. Knowl. Discov., 37(5):1959–1997, 2023. 4

Sèdjro Salomon Hotegni, Sepideh Mahabadi, and Ali Vakilian. Approximation algorithms for fair
range clustering. In International Conference on Machine Learning, ICML, pp. 13270–13284,
2023. 4

13

https://doi.org/10.1080/15427951.2006.10129115
https://arxiv.org/abs/2208.14129

Published as a conference paper at ICLR 2025

Lingxiao Huang, Shaofeng H.-C. Jiang, and Nisheeth K. Vishnoi. Coresets for clustering with fairness
constraints. In NeurIPS, pp. 7587–7598, 2019. 3, 8, 10

Lingxiao Huang, Shaofeng H.-C. Jiang, and Jianing Lou. The power of uniform sampling for
k-median. In International Conference on Machine Learning, ICML, pp. 13933–13956, 2023. 5

Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean (k, z)-
clustering. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC,
pp. 1594–1604, 2024. 2

Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for data streams and
sliding windows. In PODS ’22: International Conference on Management of Data, pp. 29–40,
2022. 2

Xinrui Jia, Kshiteej Sheth, and Ola Svensson. Fair colorful k-center clustering. Math. Program., 192
(1):339–360, 2022. 4

Matthew Jones, Huy L. Nguyen, and Thy Dinh Nguyen. Fair k-centers via maximum matching. In
Proceedings of the 37th International Conference on Machine Learning, ICML, pp. 4940–4949,
2020. 4

Christopher Jung, Sampath Kannan, and Neil Lutz. Service in your neighborhood: Fairness in center
location. In Aaron Roth (ed.), 1st Symposium on Foundations of Responsible Computing, FORC
2020, pp. 5:1–5:15, 2020. 4

Michael Kahn. Diabetes. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5T59G.
10

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. In 8th Innovations in Theoretical Computer Science Conference,
ITCS, pp. 43:1–43:23, 2017. 3

Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering for data
summarization. In Proceedings of the 36th International Conference on Machine Learning, ICML,
pp. 3448–3457, 2019a. 4

Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern. Guarantees for
spectral clustering with fairness constraints. In Proceedings of the 36th International Conference
on Machine Learning, ICML, pp. 3458–3467, 2019b. 4

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
Comput. Complex., 8(1):21–49, 1999. 15

Lap-Kei Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pp.
724–732, 2006a. 2

Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding frequent
items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 290–297, 2006b. 2

Sepideh Mahabadi and Ali Vakilian. Individual fairness for k-clustering. In Proceedings of the 37th
International Conference on Machine Learning, ICML, pp. 6586–6596, 2020. 4

Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering. In
Conference on Learning Theory, COLT, pp. 3246–3264, 2021. 4

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams. Proc.
VLDB Endow., 5(12):1699, 2012. 2

Chris Meek, Bo Thiesson, and David Heckerman. US Census Data (1990). UCI Machine Learning
Repository, 2001. DOI: https://doi.org/10.24432/C5VP42. 10

Adam Meyerson. Online facility location. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 426–431. IEEE, 2001. 17

14

Published as a conference paper at ICLR 2025

Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In 47th International Colloquium
on Automata, Languages, and Programming, ICALP, pp. 85:1–85:16, 2020. 4

Rita P Moro S and Cortez P. Bank Marketing. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5K306. 10

Maryam Negahbani and Deeparnab Chakrabarty. Better algorithms for individually fair k-clustering.
In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS, pp. 13340–13351, 2021. 4

Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketching distributed
sliding-window data streams. VLDB J., 24(3):345–368, 2015. 2

Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with constraints. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP, pp. 96:1–96:14,
2018. 4

Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair coresets and streaming algorithms
for fair k-means clustering. arXiv preprint arXiv:1812.10854, 2018. 10

Roy Schwartz and Roded Zats. Fair correlation clustering in general graphs. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM,
pp. 37:1–37:19, 2022. 4

Zhao Song, Ali Vakilian, David P. Woodruff, and Samson Zhou. On socially fair low-rank approxi-
mation and column subset selection. In Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS, 2024. 3

Ali Vakilian and Mustafa Yalçiner. Improved approximation algorithms for individually fair clustering.
In International Conference on Artificial Intelligence and Statistics, AISTATS, pp. 8758–8779,
2022. 4

Zhewei Wei, Xuancheng Liu, Feifei Li, Shuo Shang, Xiaoyong Du, and Ji-Rong Wen. Matrix sketch-
ing over sliding windows. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD Conference, pp. 1465–1480. ACM, 2016. 2

David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 1183–1196, 2021. 2

David P. Woodruff, Peilin Zhong, and Samson Zhou. Near-optimal k-clustering in the sliding window
model. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2023. 2, 3, 4, 5, 6, 8

A LOWER BOUNDS

In this section, we show that fair clustering cannot be performed in the sliding window model in
sublinear space, up to any finite multiplicative error.

We first define the one-way two-party augmented indexing communication problem. Formally, in the
AugIndn problem, Alice receives a vector v ∈ {0, 1}n and Bob receives an index i ∈ [n], as well as
the values of v1, . . . , vi−1. The goal is for Alice to send some message Π to Bob, so that Bob may
compute vi with probability at least 2

3 . We recall the following communication complexity lower
bounds for the augmented indexing problem.
Theorem A.1. (Kremer et al., 1999) Any protocol that solves AugIndn with probability at least 2

3
requires Ω(n) bits of communication.

We now show that the augmented indexing communication problem is hard even if it is promised
that half of the entries of Alice’s input vector are nonzero. Formally, in the AugIndn2n problem, Alice
receives a vector v ∈ {0, 1}2n, which has exactly n nonzeros, and Bob receives an index i ∈ [2n], as
well as the values of v1, . . . , vi−1. The goal is again for Alice to send some message Π to Bob, so
that Bob may compute vi with probability at least 2

3 .

15

Published as a conference paper at ICLR 2025

Corollary A.2. Any protocol that solves AugIndn2n with probability at least 2
3 requires Ω(n) bits of

communication.

Proof. Suppose there exists a protocol Π that solves AugIndn2n with probability at least 2
3 . Given an

instance of AugIndn, let s be the number of nonzero entries in Alice’s input vector v ∈ {0, 1}n. Then
Alice can create a vector u ∈ {0, 1}2n with exactly n nonzeros by appending to v a total of n− s
coordinates that are 1, followed by s coordinates that are 0. Since the number of nonzero entries in v
is s and Alice appends n− s nonzero entries afterwards, then it follows that u has exactly n nonzero
coordinates. Alice and Bob can then run the protocol Π for AugIndn2n on u to find ui, where i ∈ [n] is
the input to AugIndn. By construction, we have ui = vi, and thus the protocol solves AugIndn with
probability at least 2

3 , due to the correctness of Π. Hence, Π requires Ω(n) bits of communication by
Theorem A.1.

We now prove our lower bound for fair clustering in the sliding window model.

Theorem 1.1. Any algorithm for fair (k, z)-clustering in the sliding window model that either
achieves any multiplicative approximation or additive ∆

2 − 1 error, with probability at least 2
3 , must

use Ω(n) space.

Proof. Let v ∈ {0, 1}2n with exactly n nonzero entries and i ∈ [2n] be an input to AugIndn2n. Alice
creates an instance of fair (k, z)-clustering on R, with k = 2. There are two groups C1, C2. The
fairness constraint is that every cluster should contain at least 0.5-fraction of points from C2. For
each i ∈ [2n], Alice adds a point xi at vi ·∆, all points in sequence x (including those points which
are defined later) belong to C1. There are exactly n points at the origin and exactly n points at ∆.
Alice then creates a stream S by inserting the points x1, . . . , x2n in order.

Let Π be any algorithm for fair (k, z)-clustering in the sliding window model, with window size
4n. Alice then runs Π on S and passes the state of the algorithm to Bob, who has v1, . . . , vi−1

and thus also x1, . . . , xi−1. Bob sets x2n+j = xj for j ∈ [i − 1] and inserts the points into the
stream. Then Bob sets x2n+i = 0 and inserts the point into the stream. Finally, Bob inserts n points
that are located at the origin and belong to C2, another n points that are located at ∆ and belong
to C2. By construction, the active points in the window are precisely the 2n points from C1, i.e.
xi+1, . . . , x2n+i and 2n points from C2.

Since all points are located at {0,∆}, the optimal center set is {0,∆}. The number of points from
C1 that are located at the origin equals to |{j ∈ [i+ 1, 2n+ i] : xj = 0}| = n+ I(xi = 1).

• If xi = 0, then both location 0 and ∆ contains n points from C1 and n points from C2. The
optimal solution is to assign every point p to the center at the same location as p, which
requires zero cost.

• If xi = 1, then location 0 contains n + 1 points from C1 and n points from C2. In the
optimal solution, either one of the points from C1 and located at 0 is assigned to center ∆,
or one of the points from C2 and located at ∆ is assigned to center 0. For either case, the
cost of optimal solution is no less than ∆.

Thus if Π achieves either any multiplicative approximation or additive error ∆
2 − 1 with probabil-

ity at least 2
3 , then Π can distinguish between these cases, thereby solving AugIndn2n. Hence by

Corollary A.2, Π uses Ω(n) bits of space.

We can slightly modify the proof of Theorem 1.1 to obtain a lower bound of arbitrary additive
violation δ.

Theorem A.3. Any algorithm that, with probability at least 2/3, either achieves any multiplicative
approximation or additive ∆/2− 1 error, even using δ additive violation in the fairness constraints
must use Ω(n/δ) space.

Proof. Using the construction in the proof of Theorem 1.1, we can obtain a point sequence A of
length ⌊ n

δ+1⌋, such that any algorithm for fair (k, z)-clustering in the sliding window that either

16

Published as a conference paper at ICLR 2025

achieves any multiplicative approximation or additive ∆/2− 1 error on instance A with probability
at least 2/3, must use Ω(n/δ) space.

Next we construct sequence B by repeating each point in A for δ + 1 times, i.e. B =
(A1, A1, . . . , A1, A2, . . . , A2, A3, . . . , A⌊ n

δ+1 ⌋). In the proof of Theorem 1.1, we reduce AugIndn2n
to fair clustering in the sliding window by running the fair clustering algorithm on A to distinguish
whether window (xi+1, xi+2, . . . , x2n+i−1, 0) has n zeros or n+ 1 zeros (x is defined in the proof).
Now suppose we have a fair clustering in the sliding window algorithm A which outputs a solu-
tion with at most δ additive violation and at most ∆/2 − 1 additive error (to the optimal solution
with no violation). Similar to the proof of Theorem 1.1, we can also distinguish whether window
(xi+1, xi+2, . . . , x2n+i−1, 0) has n zeros or n + 1 zeros by running A on B, which completes the

reduction from AugInd
⌊ n
δ+1 ⌋

2⌊ n
δ+1 ⌋

to fair clustering in the sliding window with additive violation. This

implies A must use Ω(n/δ) space.

B MEYERSON SKETCH

We provide a brief overview of the Meyerson sketch (Meyerson, 2001) and its key properties
relevant to our work. The Meyerson sketch achieves a bicriteria (C1, C2)-approximation for (k, z)-
clustering on a data stream consisting of points x1, . . . , xn ∈ [∆]d, where C1 = 2z+7 and C2 =
O
(
22z log n log∆

)
, i.e., it provides a C1-approximation while using at most C2k centers. An

important feature of the Meyerson sketch that we shall utilize is that upon the arrival of each point xi,
the algorithm permanently assigns xi to one of the C2k centers, even if there is subsequently a center
closer to xi that is opened. Moreover, the clustering cost at the end of the stream is determined based
on the center to which xi was assigned at time i.

To simplify the discussion, we describe the Meyerson sketch for the case where z = 1, noting
that the intuition extends naturally to other values of z. The Meyerson sketch operates using a
guess-and-double strategy, where it begins by estimating the optimal clustering cost. Based on this
estimated cost, it randomly converts each point xi into a center, with probability proportional to the
distance of the point xi from the existing centers at time i. If the algorithm opens too many centers, it
concludes that the estimated optimal clustering cost was too low and doubles the value of the guess.

C PROOF OF LEMMA 3.3

Lemma 3.3. Consider q ∈ [∆]d, r > 0, ε, δ ∈ (0, 1), k, z ≥ 1, and weighted set P =
(p1, p2, . . . , pn) ⊆ [∆]d ∩ ring(q, r/2, r) listed in the increasing order of time steps. Let
N := w(P) and S be the output of RINGCORESET(P, ε, δ) (in Algorithm 2). We have E[|S|] =
poly(2zkε−1 log(N∆ε−1δ−1)), and with probability at least 1− δ, there exists a weighted set S′

such that

• S′ = S,
• For every p ∈ S, wS′(p) ∈ (1± ε)wS(p),
• For every center set C ⊆ Rd, |C| ≤ k and every assignment constraint Γ with respect to P,C, we

have |cost(S′, C,Γ)− cost (P,C,Γ)| ≤ ε
4 (cost(P,C,Γ) + cost(S′, C,Γ) +Nrz).

To prove Lemma 3.3, we start with showing the following Lemma C.1 which has the online coreset
error guarantee only for one center set C and assignment constraint Γ, and only holds when all centers
are close to q. The condition of Lemma C.1 is guaranteed by Lemma C.3, which reduces infinitely
many pairs of (C,Γ) with unbounded diam(C) to finite pairs with diam(C) = O (z/ε) · diam(P).
We will conclude Lemma 3.3 by combining Lemma C.1 and Lemma C.3.

Define Rfar := 10zr/ε and Cfar := {c ∈ C : d(q, c) > Rfar}. Lemma C.1 assumes the point set P
lies in B(q,Rfar).

Lemma C.1. For every r > 0, ε, δ ∈ (0, 1), d, k, z ≥ 1, q ∈ [∆]d, weighted set P ⊆
[∆]d ∩ ring(q, r/2, r), center set C ⊆ B(q,Rfar), |C| ≤ k, and assignment constraint Γ with
respect to P,C, let N = w(P) and S be the output of RINGCORESET(P). We have E[|S|] =
poly(2zdkε−1 log(N∆ε−1δ−1)), and with probability at least 1 − δ′ (let δ′ follows the definition

17

Published as a conference paper at ICLR 2025

in Algorithm 2), there exists a weighted set S′ with |cost(S′, C,Γ)− cost (P,C,Γ)| ≤ εNrz , such
that S′ = S and for every p ∈ S, wS′(p) ∈ (1± ε)wS(p).

Pick any ε
12z r-net of ball B(q,Rfar), denoted by Cq . In Lemma C.3, we reduce arbitrary center sets

to subsets of Cq. For assignment constraints, we discretize every value Γ(c) into H := {i · Nt : i =

0, 1, . . . , t}, where t := ⌈k2(10z/ε+ 1)z⌉.
Define

F = {(C,Γ) : C ⊆ Cq, |C| ≤ k, ∀c ∈ C,Γ(c) ∈ H,Γ(C) = w(P)} .
We have |F| ≤ O (1) · kO(kd)(z/ε)O(kzd).

We introduce the following generalized triangle inequality for the proof of Lemma C.3.
Lemma C.2. (Braverman et al., 2022) For every d, z ≥ 1, δ ∈ (0, 1], a, b, c ∈ Rd, the following
inequality holds,

d(a, b)z ≤ (1 + t)z−1d(a, c)z + (1 + t−1)z−1d(b, c)z.

Lemma C.3. For every weighted set P ⊆ ring(q, r/2, r), k-center set C ⊂ Rd and assignment
constraint Γ with respect to P,C, let N := w(P), there exists k-point center set and assignment
constraint (C ′,Γ′) ∈ F such that

cost(P,C,Γ) ∈ cost(P,C ′,Γ′)± ε

10
Nrz ± ε

4
cost(P,C,Γ) +

∑
c∈Cfar

Γ(c)d(c, q)z.

Proof. First, we move every center c outside B(q,Rfar) (i.e. c ∈ Cfar) to q, and move every center
c inside B(q,Rfar) (i.e. c ∈ C\Cfar) to its nearest neighbor in Cq. Suppose c is moving to Cq(c),
for every center c. Let C̃ := Cq(C) = {Cq(c) : c ∈ C}. Let Γ̃ be the assignment constraint after
movements, i.e. Γ̃(c) =

∑
c′∈C:Cq(c′)=c Γ(c

′).

For every assignment function σ w.r.t P,C and assignment function σ̃ w.r.t P, C̃, σ ∼ Γ, σ̃ ∼ Γ̃,
we call (σ, σ̃) is corresponding if σ̃(x, q) =

∑
c′∈Cfar σ(x, c′) and σ̃(x, c) = σ(x, c) for every

x ∈ P, c ∈ C\Cfar. In order to bound the difference between cost(P,C,Γ) and cost(P, C̃, Γ̃), we
consider the cost difference of every corresponding pair (σ, σ̃), i.e.

∑
x∈P

∑
c∈C

σ(x, c)d(x, c)z −
∑
c∈C̃

σ̃(x, c)d(x, c)z

 =
∑
c∈C

∑
x∈P

σ(x, c)(d(x, c)z − d(x, Cq(c))z).

Define ε′ := (1+ ε/6)1/(z−1)−1 = Θ(ε/z). For every center c ∈ Cfar and point x ∈ P , c is moved
to q. By Lemma C.2, we have

σ(x, c)(d(x, c)z − d(x, q)z) ≤ σ(x, c)((1 + ε′)z−1d(c, q)z + (1 + ε′−1)z−1d(x, q)z)

≤ (1 + ε′)z−1σ(x, c)
(
d(c, q)z + ε′−z+1

(ε

10z
d(c, q)

)z)
≤ (1 + ε/6)σ(x, c)

(
1 +

ε

10z

)
d(c, q)z

≤ (1 + ε/5)σ(x, c)d(c, q)z

From the opposite direction, σ(x, c)(d(x, c)z − d(x, q)z) is lower bounded by

σ(x, c)(d(x, c)z − d(x, q)z) ≥ σ(x, c)((d(c, q)− d(x, q))z − d(x, q)z)

≥ σ(x, c) ((d(c, q)− (ε/10z)d(c, q))z − ((ε/10z)d(c, q))
z
)

≥ ((1− (ε/10z))z − (ε/10z)z)σ(x, c)d(c, q)z

≥ (1− ε/5)σ(x, c)d(c, q)z

For every center c ∈ C\Cfar and point x ∈ P , when d(x, c′) > d(x, c), moving c to c′ = Cq(c)
increases the cost by

σ(x, c)(d(x, c′)z − d(x, c)z) ≤ σ(x, c)(((1 + ε′)z−1 − 1)d(x, c)z + (1 + ε′−1)z−1d(c, c′)z)

18

Published as a conference paper at ICLR 2025

≤ σ(x, c)
(
εd(x, c)z/6 + (1 + ε/6)ε′−z+1(εr/12z)z

)
≤ σ(x, c)

(ε
6
d(x, c)z +

ε

12
rz
)
.

When d(x, c) > d(x, c′), by the same argument we have,

σ(x, c)(d(x, c)z − d(x, c′)z) ≤ σ(x, c)(((1 + ε′)z−1 − 1)d(x, c′)z + (1 + ε′−1)z−1d(c, c′)z)

≤ σ(x, c)
(ε
6
d(x, c)z +

ε

12
rz
)
.

In summary,∑
c∈C

∑
x∈P

σ(x, c)(d(x, c)z − d(x, Cq(c))z)

∈
(
1± ε

6

) ∑
c∈Cfar

∑
x∈P

σ(x, c)d(c, q)z ± ε

4

∑
c∈C\Cfar

∑
x∈P

σ(x, c)d(x, c)z ± ε

12
Nrz

∈
∑

c∈Cfar

Γ(c)d(c, q)z ± ε

6

∑
c∈Cfar

∑
x∈P

σ(x, c)(d(x, c)± d(x, q))z

± ε

4

∑
c∈C\Cfar

∑
x∈P

σ(x, c)d(x, c)z ± ε

12
Nrz

∈
∑

c∈Cfar

Γ(c)d(c, q)z ± ε

6

∑
c∈Cfar

∑
x∈P

(1± (ε/10z))σ(x, c)d(x, c)z

± ε

4

∑
c∈C\Cfar

∑
x∈P

σ(x, c)d(x, c)z ± ε

12
Nrz

∈
∑

c∈Cfar

Γ(c)d(c, q)z ± ε

4
cost(P,C,Γ)± ε

12
Nrz.

Since the bound holds for every corresponding σ, σ′, let σ∗ be the optimal assignment function of
cost(P,C,Γ) and σ̃ be some corresponding assignment function of σ∗, we have

cost(P,C,Γ) = costσ
∗
(P,C,Γ)

≥ costσ̃(P, C̃, Γ̃) +
∑

c∈Cfar

Γ(c)d(c, q)z − ε

4
cost(P,C,Γ)− ε

12
Nrz

≥ cost(P, C̃, Γ̃) +
∑

c∈Cfar

Γ(c)d(c, q)z − ε

4
cost(P,C,Γ)− ε

12
Nrz. (1)

On the opposite side, let σ̃∗ be the optimal assignment function of cost(P, C̃, Γ̃) and σ be some
corresponding assignment function of σ̃∗, we have

cost(P, C̃, Γ̃) = costσ̃
∗
(P, C̃, Γ̃)

≥ costσ(P,C,Γ)−
∑

c∈Cfar

Γ(c)d(c, q)z − ε

4
cost(P,C,Γ)− ε

12
Nrz

≥ cost(P,C,Γ)−
∑

c∈Cfar

Γ(c)d(c, q)z − ε

4
cost(P,C,Γ)− ε

12
Nrz. (2)

Combining (1) and (2), we have∣∣∣∣∣∣cost(P,C,Γ)− cost(P, C̃, Γ̃)−
∑

c∈Cfar

Γ(c)d(c, q)z

∣∣∣∣∣∣ ≤ ε

4
cost(P,C,Γ) +

ε

12
Nrz. (3)

Next, we find Γ̃′ : C̃ → H such that Γ̃′(C̃) = N and for every c ∈ C̃, |Γ̃(c)− Γ̃′(c)| < 1/t, which
always exists. On the other hand, there also exists assignment function σ′ ∼ Γ′ such that for every

19

Published as a conference paper at ICLR 2025

c ∈ C̃,
∑

x∈P |σ(x, c)− σ′(x, c)| < 1/t. The difference of cost between σ and σ′ is bounded by

| cost(P, C̃, Γ̃)− cost(P, C̃, Γ̃′)| ≤

∣∣∣∣∣∣
∑
c∈C̃

∑
x∈P

(σ(x, c)− σ′(x, c))d(x, c)z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
c∈C̃

∑
x∈P

(σ(x, c)− σ′(x, c))(diam(Cq) + 2r)z

∣∣∣∣∣∣
≤ (10z/ε+ 1)z

k

t
rz

≤ ε

8
rz. (4)

Now we are able to give a error bound between cost(P,C,Γ) and cost(P, C̃, Γ̃′) by summing up (3)
and (4),∣∣∣∣ cost(P,C,Γ)− cost(P, C̃, Γ̃′)−

∑
c∈Cfar

Γ(c)d(c, q)z
∣∣∣∣

≤

∣∣∣∣∣∣cost(P,C,Γ)− cost(P, C̃, Γ̃)−
∑

c∈Cfar

Γ(c)d(c, q)z

∣∣∣∣∣∣+ | cost(P, C̃, Γ̃)− cost(P, C̃, Γ̃′)|

≤
(ε

12
N +

ε

8

)
rz +

ε

4
cost(P,C,Γ)

≤ ε

10
Nrz +

ε

4
cost(P,C,Γ).

We conclude the proof by picking C ′ = C̃,Γ′ = Γ̃′.

Proof of Lemma 3.3. By union bound, with probability at least 1− δ, the statement of Lemma C.1
holds for every Γ ∈ F .

For every (C,Γ), let (C ′,Γ′) ∈ F be the center set and assignment constraint stated in Lemma C.3
with respect to (C,Γ). We have
| cost(S,C,Γ)− cost(P,C,Γ)|

≤ | cost(S,C ′,Γ′)− cost(P,C ′,Γ′)|+ |(cost(S,C,Γ)− cost(S,C ′,Γ′))

− (cost(P,C,Γ)− cost(P,C ′,Γ′))|

≤ | cost(S,C ′,Γ′)− cost(P,C ′,Γ′)|+ ε

5
Nrz +

ε

4
(cost(S,C,Γ) + cost(P,C,Γ))

≤ ε

4
(Nrz + cost(S,C,Γ) + cost(P,C,Γ)).

Since the size of S is independent of C and Γ, the upper bound of E[|S|] is the same as the result in
Lemma C.1. This finishes the proof of Lemma 3.3.

C.1 PROOF OF LEMMA C.1

Lemma C.1. For every r > 0, ε, δ ∈ (0, 1), d, k, z ≥ 1, q ∈ [∆]d, weighted set P ⊆
[∆]d ∩ ring(q, r/2, r), center set C ⊆ B(q,Rfar), |C| ≤ k, and assignment constraint Γ with
respect to P,C, let N = w(P) and S be the output of RINGCORESET(P). We have E[|S|] =
poly(2zdkε−1 log(N∆ε−1δ−1)), and with probability at least 1 − δ′ (let δ′ follows the definition
in Algorithm 2), there exists a weighted set S′ with |cost(S′, C,Γ)− cost (P,C,Γ)| ≤ εNrz , such
that S′ = S and for every p ∈ S, wS′(p) ∈ (1± ε)wS(p).

Some parts of the proof of this lemma are inspired by Cohen-Addad & Li (2019), but compared to
Cohen-Addad & Li (2019), our proof needs to handle additional difficulties, such as dealing with
weighted input points and non-uniform sampling probabilities.

20

Published as a conference paper at ICLR 2025

As w(S) may not equal to w(P), cost(S,C,Γ) is not well-defined since Γ is not an assignment
constraint with respect to S. Before discussing the cost of (S,C,Γ), we need to generalize the
definition of the cost function to the case that w(S) ̸= Γ(C). Then we prove Lemma C.1 by showing
that both | cost(P,C,Γ)− cost′(S,C,Γ)| and | cost(S′, C,Γ)− cost′(S,C,Γ)| are small.

Definition C.4. For weighted point set P ⊆ [∆]d and a center set C ⊆ Rd, a partial assignment
function with respect to P and C is a function σ : P × C → R≥0. For a partial assignment function
σ with respect to P,C and an assignment constraint Γ with respect to P ′, C, where P ′ is some
arbitrary weighted point set (P ′ is only used in Γ(C) = w(P ′)), we say σ is partially consistent with
Γ if the following property holds, denoted by σ ∼′ Γ.

• For every p ∈ P ,
∑

c∈C σ(p, c) ≤ wP (p).

• For every c ∈ C,
∑

p∈P σ(p, c) ≤ Γ(c).

• If w(P) ≥ Γ(C), then σ satisfies that for every c ∈ C,
∑

p∈P σ(p, c) = Γ(c).

• If w(P) ≤ Γ(C), then σ satisfies that for every p ∈ P ,
∑

c∈C σ(p, c) = wP (p).

A partial assignment function can be viewed as a maximum flow of the following flow network.

• For every p ∈ P , there is an edge from source node to p with capacity wP (p).

• For every c ∈ C, there is an edge from c to sink node with capacity Γ(c).

• For every p ∈ P, c ∈ C, there is an edge from p to c with infinite capacity.

Now we can define the cost of S with respect to the constraint of Γ.

cost′(S,C,Γ) = min
σ:S×C→R≥0,σ∼′Γ

∑
p∈P

∑
c∈C

σ(p, c) dist(p, c)z.

Lemma C.5. With probability at least 1− δ/2, |cost′(S,C,Γ)− cost(P,C,Γ)| ≤ εNrz/2.

Proof. The proof is postponed to Appendix C.2.

Lemma C.6. With probability at least 1 − δ/2, there exists a weighted point set S′ with
|cost′(S,C,Γ) − cost(S′, C,Γ)| ≤ εNrz/2, such that S′ = S and for every p ∈ S, wS′(p) ∈
(1± ε)wS(p).

Proof. The proof is postponed to Appendix C.3.

Lemma C.7. Let T, prob follow the definition in Algorithm 2,
∑n

i=1 probi ≤ T lnN + 1.

Proof. Notice that

sumn

n∏
i=2

(
1− wP (pi)

sumn

)
= wP (p1),

n∏
i=2

(
1− wP (pi)

sumn

)−1

=
sumn

wP (p1)
,

n∑
i=2

wP (pi)

sumi
≤ −

n∑
i=2

ln

(
1− wP (pi)

sumn

)
= ln

sumn

wP (p1)
≤ lnN

So we have
n∑

i=1

probi = 1 +

n∑
i=2

min

(
T · wP (p)

sumi
, 1

)
≤ T lnN + 1.

21

Published as a conference paper at ICLR 2025

Proof of Lemma C.1. By applying a union bound to the results of Lemma C.5 and Lemma C.6, we
can show that with probability at least 1−δ, there exists a weighted point set S′ with | cost(P,C,Γ)−
cost(S′, C,Γ)| ≤ εNrz , such that S′ = S and for every p ∈ S, wS′(p) ∈ (1± ε)wS(p).

By Lemma C.7, E[|S|] =
∑n

i=1 probi ≤ T lnN + 1.

C.2 PROOF OF LEMMA C.5

To prove |cost′(S,C,Γ) − cost(P,C,Γ)| ≤ εNrz/2, we show that given an optimal assignment
function σ of cost(P,C,Γ), we can always construct a partial assignment function with cost no more
than cost(P,C,Γ) + εNrz/2, vice versa.

In the following discussion, let n, T, p1, . . . , pn, sum1, . . . , sumn,prob1, . . . ,probn follow the defi-
nition in Algorithm 2 and let S be the output of RINGCORESET(P, ε, δ). For every 1 ≤ i ≤ n, let
indicator variable Xi denotes I(pi ∈ S).

We first prove a concentration inequality used in the following proofs.
Lemma C.8. For every 0 < ε, δ < 1,W > 0, α1, α2, . . . , αn such that ∀1 ≤ i ≤ n, 0 ≤ αi ≤
W · wP (pi), as long as T = Ω(ε−2 log(δ−1ε−1)(log log(NW))2), we have

Pr

[∣∣∣∣∣
n∑

i=1

αiprob
−1
i Xi −

n∑
i=1

αi

∣∣∣∣∣ > ε

n∑
i=1

αi + εNW

]
≤ δ.

Proof. Here we assume all points pi satisfy probi < 1, otherwise we always have αiprob
−1
i Xi = αi

and we can eliminate these points from P without changing
∣∣∑n

i=1 αiprob
−1
i Xi −

∑n
i=1 αi

∣∣. Hence
we always have probi =

T ·wP (pi)
sumi

. As a result, for every 1 ≤ i ≤ n, we have

αiprob
−1
i ≤W · wP (pi) ·

sumi

T · wP (pi)
≤ NW

T
.

Let γ = 1+ ε
8 lnN , we divide P into L = O

(
ε−1 logN log(ε−1nNW/T)

)
groups Gjmin

, Gjmin+1,
. . . , Gjmax

⊆ [n], where jmin = ⌈logγ(ε/n)⌉, jmax = ⌈logγ(NW/T)⌉. Group Gj contains the
indices of all points pi such that αiprob

−1
i ∈ (γj−1, γj]. In particular, Gjmin contains all points pi

such that αi ≤ γjmin .

For every jmin < j ≤ jmax, we have∣∣∣∣∣∣
∑
i∈Gj

αiprob
−1
i Xi −

∑
i∈Gj

αi

∣∣∣∣∣∣ ≤ γj

∣∣∣∣∣∣
∑
i∈Gj

Xi −
∑
i∈Gj

probi

∣∣∣∣∣∣+ (γ − 1)γj−1
∑
i∈Gj

(Xi + probi) (5)

For j = jmin we have
∑

i∈Gjmin
αiprob

−1
i ≤ ε.

For the second term of (5), it is sufficient to bound
∑

i∈Gj
probi since by Chernoff bound we have

Pr

[
n∑

i=1

Xi > max

(
2

n∑
i=1

probi, 4 ln(2/δ)

)]
≤ δ/2.

By Lemma C.7, with probability at least 1− δ/2, we have

jmax∑
j=jmin

(γ − 1)γj−1
∑
i∈Gj

(probi +Xi) ≤ (γ − 1)γjmax−1
n∑

i=1

(probi +Xi)

≤ (γ − 1)γjmax−1

(
2

n∑
i=1

probi + 4 ln(1/δ)

)

≤ (γ − 1)
NW

T
(2T lnN + 4 ln(1/δ) + 2)

22

Published as a conference paper at ICLR 2025

≤ εNW

2
. (6)

Next consider the first term of (5). Let µj =
∑

i∈Gj
probi, Aj =

∑
i∈Gj

αi, notice that

µj =
∑
i∈Gj

probi ≤
∑
i∈Gj

αi

γj−1
=

Aj

γj−1
.

By Chernoff bound, let t = max(εAj , 3ε
−1γj+1 ln(2L/δ)), we have

Pr

∣∣∣∣∣∣
∑
i∈Gj

Xi − µj

∣∣∣∣∣∣ ≥ tγ−j

 ≤ 2 exp

(
− t2

3γ2jµj

)

≤ 2 exp

(
− t2

3γj+1Aj

)
≤ δ

2L
.

By a union bound, with probability at least 1− δ/2, we have

jmax∑
j=jmin

γj

∣∣∣∣∣∣
∑
i∈Gj

Xi −
∑
i∈Gj

probi

∣∣∣∣∣∣ ≤ ε

jmax∑
j=jmin

Aj + 3ε−1

jmax∑
j=jmin

(1 + ε0)
j+1 ln(2L/δ)

≤ ε

n∑
i=1

αi + 3ε−2γjmax+1 ln(2L/δ)

≤ ε

n∑
i=1

αi + 3ε−2γ2 ln(2L/δ)max
i∈[n]

αiprob
−1
i

≤ ε

n∑
i=1

αi +
3ε−2γ2 ln(2L/δ)

T
NW

≤ ε

n∑
i=1

αi +
ε

2
NW. (7)

Combining (6) and (7) by a union bound, we have

Pr

[∣∣∣∣∣
n∑

i=1

αiprob
−1
i Xi −

n∑
i=1

αi

∣∣∣∣∣ > ε
n∑

i=1

αi + εNW

]
≤ δ.

Define R = (20z/ε+2)r ≥ diam(C)+diam(P). For every pair c ∈ C, p ∈ P , dist(p, c) is bounded
by R. Let ε0 = (ε/22z)−z−1 ≤ (20z/ε+ 2)−zε. In the following proofs, we show these errors are
bounded by ε0NRz and that implies err ≤ ε0NRz ≤ εNrz .
Lemma C.9. Pr[cost′(S,C,Γ) ≤ cost(P,C,Γ) + εNrz/2] ≥ 1− δ/4.

Proof. To imply cost′(S,C,Γ) ≤ cost(P,C,Γ) + εNrz/2, we show that given an optimal as-
signment function σ : P × C → R≥0 of cost(P,C,Γ) there always exists a partial assignment
function σ′ : S × C → R≥0 for cost′(S,C,Γ) such that

∑
p∈S

∑
c∈C dist(p, c)zσ′(p, c) ≤∑

p∈P

∑
c∈C dist(p, c)zσ(p, c) + εNrz/2.

A natural way for constructing σ′ is to assign σ(p,c)
wP (p)wS(p) units of weight from p to c, denoted by

assignment τ . Let the cost of this assignment be

costτ :=
∑
p∈S

∑
c∈C

σ(p, c)

wP (p)
wS(p) · d(p, c)z.

23

Published as a conference paper at ICLR 2025

However, τ may not be consistent with Γ. Since S is a random point set, some centers may receive
more than Γ(c) units of weight, denoted by center set C+, and some may receive less than Γ(c) units
denoted by center set C−. We transform τ into an assignment consistent with Γ by collecting the
surplus weights from C+ and send them to C− so that σ′ is partially consistent with Γ. Re-routing
w weight started at point p from c to c′ costs at most w(dist(p, c′)z − dist(p, c)z) ≤ w ·Rz . Hence
this step costs at most

Rz
∑
c∈C

∣∣∣∣∣∣Γ(c)−
∑
p∈S

σ(pi, c)

wP (pi)
wS(pi)

∣∣∣∣∣∣ = Rz
∑
c∈C

∣∣∣∣∣Γ(c)−
n∑

i=1

σ(pi, c)prob
−1
i Xi

∣∣∣∣∣
Taking ε′ = ε0

8k , δ
′ = δ

8k ,W = 1,∀1 ≤ i ≤ n, αi = σ(pi, c) in Lemma C.8, we have for every
c ∈ C,

Pr

[∣∣∣∣∣Γ(c)−
n∑

i=1

σ(pi, c)prob
−1
i Xi

∣∣∣∣∣ > ε0
8k

(Γ(c) +N)

]
≤ δ

4k

By taking union bound over every c ∈ C, with probability at least 1− δ/8, we have

|costτ − cost′(S,C,Γ)| ≤ Rz
∑
c∈C

∣∣∣∣∣Γ(c)−
n∑

i=1

σ(pi, c)prob
−1
i Xi

∣∣∣∣∣ ≤ ε0
4
NRz.

Next, we show that the cost of τ is close to the real cost of P .

|costτ − cost(P,C,Γ)| ≤

∣∣∣∣∣∑
c∈C

n∑
i=1

dist(pi, c)
z

(
σ(pi, c)

wP (pi)
· wS(pi)− σ(pi, c)

)∣∣∣∣∣
Taking ε′ = ε0

8k , δ
′ = δ

8k ,W = Rz,∀1 ≤ i ≤ n, αi = dist(pi, c)σ(pi, c) in Lemma C.8, we have for
every c ∈ C,

Pr

[∣∣∣∣∣
n∑

i=1

dist(pi, c)
z

(
σ(pi, c)

wP (pi)
· wS(pi)− σ(pi, c)

)∣∣∣∣∣ > ε0
8k

(cost(P,C,Γ) +NRz)

]
≤ δ

8k

By taking union bound over every c ∈ C, with probability at least 1− δ/8, we have∑
c∈C

∣∣∣∣∣
n∑

i=1

dist(pi, c)
z

(
σ(pi, c)

wP (pi)
· wS(pi)− σ(pi, c)

)∣∣∣∣∣ ≤ ε0
4
NRz.

In summary, with probability at least 1− δ/4, we have

cost′(S,C,Γ)− cost(P,C,Γ) ≤ (cost′(S,C,Γ)− costτ) + (costτ − cost(P,C,Γ))

≤ ε0
2
NRz ≤ ε

2
Nrz.

Since S is a random set and contains much fewer points than P , constructing an assignment function
with respect to P,C from a partial assignment function of cost′(S,C,Γ) is difficult. Hence we first
compare cost(P,C,Γ) to the expectation of cost′(S,C,Γ) and then show the concentration bound
of cost′(S,C,Γ).
Lemma C.10. cost(P,C,Γ) ≤ E[cost′(S,C,Γ)] + εNrz/4.

Proof. Let σ : P × C → R≥0 be an assignment function with respect to P,C. Let σ∗ be a random
partial assignment function that denotes the optimal assignment function for cost′(S,C,Γ).

Since σ∗ ∼′ Γ, we have ∀c ∈ C,
∑

p∈P E[σ∗(p, c)] ≤ Γ(c) and ∀p ∈ P,
∑

c∈C E[σ∗(p, c)] ≤
wP (p). We can construct σ by initializing σ(p, c) as E[σ∗(p, c)], then arbitrarily assigning the

24

Published as a conference paper at ICLR 2025

remaining weights of data points to the remaining capacities of centers. This assigning step costs at
most

Rz

(
N −

∑
p∈P

∑
c∈C

E[σ∗(p, c)]

)
= Rz

N − E

∑
p∈P

∑
c∈C

σ∗(p, c)

= RzE[N −min{w(S), N}] (σ∗ ∼ Γ)
= RzE[max{N − w(S), 0}]

≤ RzE

[∣∣∣∣∣
n∑

i=1

wP (pi)prob
−1
i Xi −

n∑
i=1

wP (pi)

∣∣∣∣∣
]

Taking ε′ = ε0
8 , δ

′ = ε0
Nw(P) ,W = 1,∀1 ≤ i ≤ n, αi = wP (pi) in Lemma C.8, we have

Pr

[∣∣∣∣∣
n∑

i=1

wP (pi)prob
−1
i Xi −

n∑
i=1

wP (pi)

∣∣∣∣∣ > ε0
8
N

]
≤ ε0

Nw(P)
,

which implies

RzE

[∣∣∣∣∣
n∑

i=1

wP (pi)prob
−1
i Xi −

n∑
i=1

wP (pi)

∣∣∣∣∣
]
≤ Rz

(
ε0N

8
+

ε0n · sumn

Nw(P)

)
≤ ε0

4
NRz ≤ ε

4
Nrz.

We use a concentration inequality based on martingales (Chung & Lu, 2006) to show the concentration
bound of cost′(S,C,Γ). For convenience, we use xl...r to represent (xl, xl+1, . . . , xr) for every
vector x of dimension d, 1 ≤ l ≤ r ≤ d. This notation is also used for function arguments, e.g.
f(x1...i) represents f(x1, x2, . . . , xi).
Lemma C.11. (Chung & Lu, 2006) Let V = X1 × X2 × . . . × Xn (X1,X2, . . . ,Xn ⊆ R) be a
set of n-dimensional real vectors. Suppose there is a function f : V → R and n distributions
D1, D2, . . . , Dn over X1,X2, . . . ,Xn respectively and D is the joint distribution over V , Define
f (i)(z1, z2, . . . , zi) = E[f(x) | x1 = z1, . . . , xi = zi].

If σ2
1 , σ

2
2 , . . . , σ

2
n satisfies for every 1 ≤ i ≤ n, z1 ∈ X1, . . . , zi−1 ∈ Xi−1,

Varx∼Di
(f (i)(z1, z2, . . . zi−1, x)) ≤ σ2

i ,

and M satisfies that for every 1 ≤ i ≤ n, z ∈ V, z′i ∈ Xi such that Prx∼D[x = z] > 0,Prx∼D[x1 =
z1, . . . , xi = z′i, . . . , xn = zn] > 0, we have

|f(z1, z2, . . . , zn)− f(z1...i−1, z
′
i, zi+1...n)| ≤M,

then for every t > 0,

Pr
x∼D

[|f(x)− Ex∼D[f(x)]| > t] ≤ 2 exp

(
−t2

2(
∑n

i=1 σ
2
i +Mt/3)

)
.

Lemma C.12. Pr[|cost′(S,C,Γ)− E[cost′(S,C,Γ)]| ≤ εNrz/4] ≥ 1− δ/8.

Proof. Define function f : Rn
≥0 → R≥0 as f(x1, x2, . . . , xn) := cost′(R,C,Γ) where R := {pi :

i ∈ [n], xi > 0} and wR(pi) := xi.

Define random vector x = (x1, x2, . . . , xn) be the vector representation of S, i.e.

xi =

{
wS(pi) pi ∈ S

0 pi /∈ S
.

Let D be the distribution of the weights x, where

xi =

{
wS(pi) pi ∈ S

0 pi /∈ S
,

25

Published as a conference paper at ICLR 2025

and S is the output of RINGCORESET(P).

By the definition of x, x1, x2, . . . , xn are independent random variables. If probi = 1, then xi

always equals to wP (pi). Otherwise, xi has a two-point distribution

xi =

{
sumi

T w.p. probi
0 w.p. 1− probi

.

We assume probi < 1 in the following discussion since the conclusions obviously hold when
probi = 1.

Suppose every x1, x2, . . . , xn is fixed except xi. In f(x1, x2, . . . , xn), adding xi by 1 corresponds
to adding wS(pi) by 1, which increases cost′(S,C,Γ) by at most Rz (recall that every partial
assignment function can be viewed as a maximum flow of certain flow network). Hence the difference
of f(x1, . . . , xi−1, 0, . . . , xn) and f(x1, . . . , xi−1,

sumi

T , . . . , xn) is at most Rz sumi

T ≤ Rz N
T .

Define f (i)(z1, z2, . . . , zi) = E[f(x) | x1 = z1, . . . , xi = zi]. To give an upper bound of
Var(f (i)(z1...i−1, xi)) (z ∈ Rn,Prx∼D[x = z] > 0), we first consider the difference between
F0 := f (i)(z1...i−1, 0) and F1 := f (i)(z1...i−1, sumi/T). By the arguments above, we have

|F0 − F1| ≤
∑

zi+1,...,zn∈R
Pr[xi+1...n = zi+1...n] ·

∣∣∣f(z1...i−1, 0, zi+1...n)− f
(
z1...i−1,

sumi

T
, zi+1...n

)∣∣∣
≤ Rzsumi

T
.

Then we have
Var(f (i)(z1...i−1, xi)) = probiF

2
1 + (1− probi)F

2
0 − (probiF1 + (1− probi)F0)

2

= probi(1− probi)(F0 − F1)
2

≤ probi(R
zsumi/T)

2

≤ R2zN

T
wP (pi).

Taking M = RzN/T and σ2
i = R2zN

T wP (pi) in Lemma C.11, we have

Pr
[
cost′(S,C,Γ) ≤ E[cost′(S,C,Γ)]− ε0

4
NRz

]
≤ 2 exp

(
ε20N

2R2z

32(
∑n

i=1(R
2zNwP (pi)/T) + ε0MNRz/3)

)
≤ 2 exp

(
ε20T

32

)
≤ δ/8.

Lemma C.5. With probability at least 1− δ/2, |cost′(S,C,Γ)− cost(P,C,Γ)| ≤ εNrz/2.

Proof. By applying union bound to results of Lemma C.9, Lemma C.10 and Lemma C.12, we get
Pr[|cost′(S,C,Γ)− cost(P,C,Γ)| ≤ εNrz/2] ≥ 1− δ/2. This concludes the proof.

C.3 PROOF OF LEMMA C.6

Lemma C.6. With probability at least 1 − δ/2, there exists a weighted point set S′ with
|cost′(S,C,Γ) − cost(S′, C,Γ)| ≤ εNrz/2, such that S′ = S and for every p ∈ S, wS′(p) ∈
(1± ε)wS(p).

Proof. Taking ε′ = ε0
4 , δ

′ = δ/2,W = 1,∀1 ≤ i ≤ n, αi = wP (pi) in Lemma C.8, we have

Pr

[
w(S)

N
∈ 1± ε0

4

]
= Pr

∑
pi∈S

wP (pi)prob
−1
i Xi ∈

(
1± ε0

4

) ∑
pi∈P

wP (pi)

26

Published as a conference paper at ICLR 2025

≥ 1− δ/2.

Let α = w(S)
N . Conditioning on α ∈ 1 ± ε0

4 , we show that |cost′(S,C,Γ) − cost(S′, C,Γ)| ≤
ε0NRz/2 always holds, where S′ contains all elements in S and the weights is defined by wS′(x) =
α−1wS(x) for every x ∈ S.

For every partial assignment function σ with respect to S,C and partially consistent with Γ, and
assignment function σ′ with repsect to S′, C and consistent with Γ, we have

∑
x∈P

∑
c∈C σ′(x, c) =

N and
∑

x∈P

∑
c∈C σ(x, c) = min(w(P), N) = min(α, 1)N . In the following construction, we

use min(α, 1) to normalize the weight of σ.

First we prove that cost′(S,C,Γ) ≤ cost(S′, C,Γ) + εNrz/2. Let σ′ be the optimal assignment
function in cost(S′, C,Γ). We define the partial assignment function σ as σ(p, c) = min(α, 1)σ′(p, c)
for every p ∈ P, c ∈ C. We can verify that σ is partially consistent with Γ.

cost′(S,C,Γ) ≤
∑
p∈P

∑
c∈C

σ(p, c) dist(p, c)z

≤ min(α, 1) cost(S′, C,Γ)

≤ cost(S′, C,Γ).

Next we prove that cost(S′, C,Γ) ≤ cost′(S,C,Γ) + εNrz/2. Let σ be the optimal partial
assignment function in cost′(S,C,Γ). We initialize the assignment function σ′ as σ′(p, c) =
max(α−1, 1)σ(p, c). However, σ′ may not be consistent with Γ. In order to obtain an assignment
function consistent with Γ, we apply the following modifications to σ′.

• Let S′
+ = {x ∈ S′ :

∑
c∈C σ′(x, c) > wS′(x)}, S′

− = {x ∈ S′ :
∑

c∈C σ′(x, c) <
wS′(x)}. For every center c ∈ C, we re-assign weights from σ′(x, c) (x ∈ S′

+) to σ′(x′, c)
(x′ ∈ S′

−). Repeating this process until
∑

c∈C σ′(x, c) = wS′(x) for every x ∈ P . This
step costs at most Rz

∑
x∈S′ |wS′(x)−

∑
c∈C max(α−1, 1)σ(x, c)|.

• Let C+ = {c ∈ C :
∑

x∈P σ′(x, c) > Γ(c)}, C− = {c ∈ C :
∑

x∈P σ′(x, c) < Γ(c)}.
Notice that the previous step does not affect

∑
x∈P σ′(x, c). For every point x ∈ S′, we

re-assign weights from σ′(x, c) (c ∈ C+) to σ′(x, c′) (c′ ∈ C−). Repeating this process
until

∑
x∈S′ σ′(x, c) = Γ(c) for every c ∈ C. This step costs at most Rz

∑
c∈C |Γ(c) −

max(α−1, 1)
∑

x∈S′ σ(x, c)|.

After these modifications, the cost of σ′ is bounded by

costσ
′
(P,C,Γ)− cost′(P,C,Γ)

≤ Rz
∑
x∈S′

∣∣∣∣∣wS′(x)−max(α−1, 1)
∑
c∈C

σ(x, c)

∣∣∣∣∣+Rz
∑
c∈C

∣∣∣∣∣Γ(c)−max(α−1, 1)
∑
x∈S′

σ(x, c)

∣∣∣∣∣
If w(S) ≥ N (i.e. α−1 ≤ 1), then

∑
x∈S′ σ(x, c) = Γ(c) holds for every center c ∈ C.

costσ
′
(P,C,Γ)− cost′(P,C,Γ)

≤ Rz
∑
x∈S′

∣∣∣∣∣wS′(x)−
∑
c∈C

σ(x, c)

∣∣∣∣∣+Rz
∑
c∈C

∣∣∣∣∣Γ(c)−∑
x∈S′

σ(x, c)

∣∣∣∣∣
= Rz

∑
x∈S′

∣∣∣∣∣wS′(x)−
∑
c∈C

σ(x, c)

∣∣∣∣∣
≤ Rz

∑
x∈S′

(wS(x)− wS′(x)) +

(
wS(x)−

∑
c∈C

σ(x, c)

)
≤ 2Rz(w(S)−N) ≤ ε0

2
NRz

27

Published as a conference paper at ICLR 2025

If w(S) < N (i.e. α−1 > 1), then
∑

c∈C σ(x, c) = wS(x) holds for every x ∈ P .

costσ
′
(P,C,Γ)− cost′(P,C,Γ)

≤ Rz
∑
x∈S′

∣∣∣∣∣wS′(x)− α−1
∑
c∈C

σ(x, c)

∣∣∣∣∣+Rz
∑
c∈C

∣∣∣∣∣Γ(c)− α−1
∑
x∈S′

σ(x, c)

∣∣∣∣∣
= Rzα−1

∑
x∈S′

(
wS(x)−

∑
c∈C

σ(x, c)

)
+Rz

∑
c∈C

∣∣∣∣∣Γ(c)− α−1
∑
x∈S′

σ(x, c)

∣∣∣∣∣
= Rz

∑
c∈C

∣∣∣∣∣Γ(c)− α−1
∑
x∈S′

σ(x, c)

∣∣∣∣∣
= Rz

∑
c∈C

(α−1 − 1)Γ(c) + α−1

(
Γ(c)−

∑
x∈S′

σ(x, c)

)
= 2Rz(α−1 − 1)N ≤ ε0

2
NRz.

Summing up together we get cost(S′, C,Γ) ≤ cost′(S,C,Γ)+ ε0NRz/2. This concludes the proof.

28

	Introduction
	Our Results
	Related Work

	Preliminaries
	Online Assignment-Preserving Coresets
	Streaming Algorithms
	Experiments
	Lower Bounds
	Meyerson Sketch
	Proof of
	Proof of
	Proof of
	Proof of

