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ABSTRACT

This paper proposes a new 3D molecule generation framework, called GOAT, for
fast and effective 3D molecule generation based on the flow-matching optimal
transport objective. Specifically, we formulate a geometric transport formula for
measuring the cost of mapping multi-modal features (e.g., continuous atom coor-
dinates and categorical atom types) between a base distribution and a target data
distribution. Our formula is solved within a joint, equivariant, and smooth repre-
sentation space. This is achieved by transforming the multi-modal features into a
continuous latent space with equivariant networks. In addition, we find that iden-
tifying optimal distributional coupling is necessary for fast and effective transport
between any two distributions. We further propose a mechanism for estimating
and purifying optimal coupling to train the flow model with optimal transport. By
doing so, GOAT can turn arbitrary distribution couplings into new deterministic
couplings, leading to an estimated optimal transport plan for fast 3D molecule
generation. The purification filters out the subpar molecules to ensure the ultimate
generation quality. We theoretically and empirically prove that the proposed opti-
mal coupling estimation and purification yield transport plan with non-increasing
cost. Finally, extensive experiments show that GOAT enjoys the efficiency of
solving geometric optimal transport, leading to a double speedup compared to the
sub-optimal method while achieving the best generation quality regarding validity,
uniqueness, and novelty. The code is available at github.

1 INTRODUCTION

The problem of 3D molecule generation is essential in various scientific fields, such as material
science, biology, and chemistry (Hoogeboom et al., 2022; Watson et al., 2023; Xie et al., 2022).
Typically, 3D molecules can be represented as atomic geometric graphs (Hoogeboom et al., 2022;
Xu et al., 2023; Song et al., 2023b), where each atom/node is embedded in the Cartesian coordinates
and encompasses rich features, such as atom types and charges. There has been fruitful research
progress on geometric generative modeling for facilitating the process of 3D molecule generation.
Specifically, geometric generative models are proposed to estimate the distribution of complex ge-
ometries and are used for generating feature-rich geometries. The success of these generative mod-
eling mainly comes from the advancements in using the notion of probability measurement transport
for generating samples. Generative modeling aims to generate samples via mapping a simple prior
distribution, e.g., Gaussian, to a desired target probability distribution. This mapping process can be
termed as a distribution transport/generative problem (Peluchetti, 2023).

Recent representative models for sampling 3D molecules in silicon include diffusion-based mod-
els (Hoogeboom et al., 2022; Wu et al., 2022; Xu et al., 2023) and flow matching-based mod-
els (Song et al., 2023a; Klein et al., 2023). Diffusion-based models have shown superior results
on molecule generation tasks (Xu et al., 2023; Hoogeboom et al., 2022; Jung et al., 2024). They
simulate a stochastic differential equation (SDE) to transport a base distribution (e.g., Gaussian) to
the data distribution. However, a major drawback of diffusion-based models is their slow inference
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Figure 1: The Illustration of Probability Paths based on Different Molecule Generative Models.
1. The diffusion path (Hoogeboom et al., 2022; Xu et al., 2023), which typically deviates from a
straight line map, necessitates a large number of sampling steps. 2. The hybrid transport (Song
et al., 2023a) ensures straight transport for atomic coordinates, but it does not guarantee the same for
atom features. Furthermore, this cost does not consider the optimal distribution couplings, leading to
suboptimal transport between distributions. 3. GOAT simultaneously considers the optimal transport
for atom coordinates and features, providing a joint and straight path for fast sampling.

speed with the learned stochastic transport trajectory (Hoogeboom et al., 2022; Wu et al., 2022;
Xu et al., 2023); they typically need approximately 1, 000 sampling steps to produce valid samples.
This could make large-scale inference prohibitively expensive. Accordingly, flow matching — built
upon continuous normalizing flows — has emerged as a new paradigm that could potentially provide
effective density estimation and fast inference (Lipman et al., 2022; Tong et al., 2023; Dao et al.,
2023; Liu et al., 2022; Klein et al., 2023; Song et al., 2023a).

This paper aims to deal with the problem of fast and effective 3D molecule generation based on flow
matching optimal transport principle. In particular, our objective is to obtain a distribution transport
trajectory with optimal transport cost and generation quality regarding molecule validity, unique-
ness, and novelty. A few recent works have been proposed to improve the sampling efficiency of
the geometrical domains via flow matching principle. (Klein et al., 2023) was proposed for efficient,
simulation-free training of equivariant continuous normalizing flows, which can produce samples
from the equilibrium Boltzmann distribution of a molecule in Cartesian coordinates. However, it
can only work for many-body molecular systems and does not consider atomic features.

In the context of molecule generation, properly characterizing the transport cost to optimize over is
indispensable and challenging. There are two main challenges. Firstly, the multi-modal property
of molecular space, typically consisting of continuous atom coordinates and categorical atom types,
makes the transport cost measurement hard to optimize. Secondly, the optimal transport problem
essentially is to search optimal distribution couplings for mapping. This process typically requires
similarity computation of the two distributions. However, the various sizes of geometric graphs
to transport introduce difficulties in evaluating the distribution similarity. The closest to ours is
EquiFM (Song et al., 2023a), which attempts to address the multi-modality issue by using different
probability paths to transport each modality separately. The proposed equivariant optimal transport
(OT) for transporting atom coordinates indeed forms a straight-line trajectory for training, while the
variance-preserving principle could not ensure a straight-line trajectory for atom features. Therefore,
the fused flow paths might deviate strongly from the OT paths and could not ensure optimal coupling
between two probability measurements, leading to high computational costs and numerical errors.

In this work, we propose a new framework for fast 3D molecule generation based on a novel and
principled optimal transport flow-matching objective, dubbed as Geometric OptimAl Transport
(GOAT). In particular, we formulate a geometric transport cost measurement for optimally transport-
ing continuous atom coordinates and categorical features, which is inherently a Bilevel optimization
problem. To deal with the first challenge induced by transporting multiple modalities, GOAT lever-
ages a latent variable model equipped with equivariant networks to map the multi-modal features
into a joint, equivalent, and smooth representation space. This equivariant latent variable model has
been proven to be flexible and expressive for modeling complex 3D molecules (Satorras et al., 2021;
Xu et al., 2023). A latent flow matching then operates over the latent space, which can provide
distributional coupling estimation.
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To tackle the second challenge — obtaining the optimal distribution couplings, we propose to re-
frain from directly working with distribution similarity computation. Specifically, we propose to
rectify the flow with the estimated ones based on the latent flow matching. Because the estimated
distributional couplings are identified based on the synthesized samples, they might deviate from the
real-world samples in terms of quality. We provide a purification process for high-quality samples
regarding validity, uniqueness, and novelty. With this process, we can turn arbitrary couplings into
deterministic and causal ones, leading to the optimal transport path for fast and effective generation.

We theoretically demonstrate that optimal coupling estimation and purification result in non-
increasing geometric transport costs. Moreover, we empirically highlight the superiority of GOTA
by conducting experiments on widely used benchmarks. The proposed method reduced the trans-
port cost by nearly 89.65%, halving the sampling times compared to EquiFM. In terms of generation
quality, our method achieves up to a 17.1% improvement over existing algorithms.

2 PROBLEM SETUP

Notations. A three-dimensional (3D) molecule with N atoms can be represented as a geometric
graph denoted as g = ⟨x,h⟩, where x = (x1, . . . ,xN ) ∈ RN×3 represents the atom coordinates
and h = (h1, . . . ,hN ) ∈ RN×d is the atom features containing atomic types, charges, etc. d is
the dimensionality of the atom features. A zero center-of-mass (Zero CoM) space is defined as
X = {x ∈ RN×3 : 1

N

∑N
i=1 x

i = 0}, indicating that the mean of the N atoms’ coordinates should
be 0. In what follows, we will introduce some necessary concepts, including flow matching and
optimal transport, to facilitate the definition of our problem.

General Flow Matching1. Given noise x0 ∈ RN ∼ p0 and data x1 ∈ RN ∼ p1, the general flow-
based model considers a mapping f : RN → RN as a smooth time-varying vector field u : [0, 1]×
RN → RN , which defines an ordinary differential equation (ODE): dx = ut(x)dt. Continuous
normalizing flows (CNFs) were introduced with black-box ODE solvers to train approximate ut.
However, CNFs are hard to train as they need numerous evaluations of the vector field.

Flow matching (Lipman et al., 2022), a simulation-free approach for training CNFs, is pro-
posed to regress the neural network vθ(x, t) to some target vector field ut(x): LFM(θ) :=
Et∼U(0,1),x∼pt(x)∥vθ(x, t) − ut(x)∥2, where pt(x) is the corresponding probability path which
conditioned on x1 ∼ p1 and then defined as pt(x|x1) =

∫
pt(x|x1)p1(x1)dx1. In implementa-

tion, common probability paths include variance exploding (VE) diffusion path (Song et al., 2020),
variance preserving (VP) diffusion path (Ho et al., 2020), and straight transport path (Lipman et al.,
2022; Liu et al., 2022).

Optimal Transport (OT). Transport plan between p0 and p1 is also called coupling and we denoted
it as Γ(p0, p1) (Ambrosio et al., 2021). OT addresses the problem of finding the optimal coupling
that minimizes the transport cost, typically in the form of E[c(x1−x0)], where c : RN → R is a cost
function, such as c(·) = ∥ · ∥2. Formally, a coupling Γ(p0, p1) is called optimal only if it achieves
the minimum value of E[c(x1 − x0)|(x1,x0) ∈ Γ(p0, p1)] among all couplings that share the same
marginals. An ideal optimal transport trajectory is a map of optimal couplings.

Geometric Optimal Transport. In our task, we consider a pair of geometric probability distri-
butions 2 over RN×(3+d) with densities p(g0) and p(g1) (or denoted as p0 and p1). Geometric
generative modeling considers the task of fitting a mapping f from RN×(3+d) to RN×(3+d) that
transforms g0 to g1. More specifically, if g0 is distributed with density p0 then f(g0) is distributed
with density p1. Typically, p0 is an easily sampled density, such as a Gaussian.

In our specific problem, beyond geometric distribution transport, we concentrate on fast 3D molecule
generation based on the flow model with optimal transport (OT), which has been proven effective in
accelerating non-geometric flow models (Liu et al., 2022; Tong et al., 2023). Therefore, our problem
is defined as geometric optimal transport flow matching.

1We are aware of the drawbacks of reusing the notation x, which represents a general data point here.
2Geometric probability distribution denotes the molecular data distribution and it is to reflect the geometric

property of molecules as opposed to non-geometric data, such as text.

3



Published as a conference paper at ICLR 2025

3 OUR METHOD: GOAT

3.1 FORMULATING GEOMETRIC OPTIMAL TRANSPORT PROBLEM

Our objective is to obtain an optimal transport trajectory for fast 3D molecule geometry generation
based on optimal transport flow models. In this regard, we can reformulate our problem into search-
ing for optimal coupling for geometric optimal transport. Specifically, it involves the transportation
of molecules via optimal coupling, where each atom follows a straight and shortest path. In other
words, each molecule is coupled with a noisy sample that incurs the minimum cost, and each atom
within the target molecule is paired with its counterpart in the noise, leading to the minimum cost.
To encapsulate the optimal scenario, we consider the problem of geometric optimal transport with
two components: 1) optimal molecule transport (OMT) with equivariant OT for atom coordinates
and invariant OT for atom features; 2) optimal distribution transport (ODT) with optimal molecule
coupling.

Geometric Transport Cost. Transporting a molecule includes transforming atom coordinates and
features. We can depict the molecule transport cost as below:

cg(g0,g1) = ∥x1 − x0∥2 + ∥h1 − h0∥2, (1)

where g0 ∼ p0 and g1 ∼ p1. In addition, given coupling Γ(p0, p1), we measure the distribution
similarity between two distributions denoted as p0 and p1 based on the probability transport cost as
follows:

Cg =E[cg(g0,g1)], (g0,g1) ∈ Γ(p0, p1). (2)

Geometric Optimal Transport Problem. Building upon the established transport cost, we can
formulate the geometric optimal transport problem for fast and effective 3D molecule generation.
In particular, a molecule remains invariant for any rotation, translation, and permutation, while
the transport cost is not invariant or equivariant to the above operations. Therefore, there exists a
minimum molecule transport cost with 1) optimal rotation and translation transformations such that
the molecules from the data and noise are nearest to each other at the atomic coordinate level and 2)
optimal permutation transformation such that the atomic features of the two are also nearest.

We supplement the detailed analysis of equivariance and invariance in Appendix A and present
geometric optimal transport as follows:

min
Γ

E[ĉg(g0,g1)],

s. t. (g0,g1) ∈ Γ(p0, p1),

ĉg(g0,g1) = λ min
R,t,π

∥π(Rx1
1 + t,Rx2

1 + t, . . . ,RxN
1 + t)− (x1

0,x
2
0, . . . ,x

N
0 )∥2

+ (1− λ)min
π
∥π(h1

1,h
2
1, . . . ,h

N
1 )− (h1

0,h
2
0, . . . ,h

N
0 )∥2,∀π,R, and t,

(3)

where ĉg denotes optimal molecule transport cost, π represents a permutation of N elements, λ
is a trade-off coefficient balancing the transport costs of atom coordinates and atom features for
searching optimal permutation (π̂). Additionally, R and t denote a rotation matrix and a translation,
respectively. The defined geometric optimal transport problem forms a bi-level optimization prob-
lem that involves two levels of optimization tasks. Specifically, minimizing molecule transport cost
is nested inside the optimizing distribution transport cost.

The Challenges of Solving the Geometric Optimal Transport Problem. First, optimal molecule
transport involves searching for a unified optimal permutation for atom coordinates and features with
minimum transport cost. The paths for transporting continuous coordinates and categorical features
are incompatible and require sophisticated, hybrid modeling of multi-modal variables (Song et al.,
2023a), leading to a sub-optimal solution. Second, a molecular distribution comprises molecules
with diverse numbers of atoms, introducing difficulties in quantifying the transport cost for search-
ing optimal coupling. As a result, the minimization of geometric transport Cg within molecular
distributions poses a more significant challenge compared to other domains such as computer vi-
sion (Tong et al., 2023) or many-body systems (Klein et al., 2023). Moreover, the proposed geomet-
ric optimal transport problem, which involves a nested optimization structure, presents a significant
computational challenge for optimization.
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3.2 SOLVING GEOMETRIC OPTIMAL TRANSPORT PROBLEM

In this section, we will address the above challenges under the depicted problem for fast and effec-
tive 3D molecule generation from two aspects, including optimal molecule transport and optimal
distribution transport.

3.2.1 SOLVING OPTIMAL MOLECULE TRANSPORT

As illustrated in Eq. (3), our objective for optimal molecule transport is to find R̂, t̂, and π̂ that
minimize the transport cost denoted as cg for two given molecule geometries represented as g0 and
g1:

R̂, t̂, π̂ = arg min
R,t,π

cg(g0,g1),∀π,R, and t. (4)

As per Eq. (3), the optimal molecule transport problem entails the consideration of both atom co-
ordinates and features for comprehensive representations of 3D molecules. Though coordinates
and features represent different modalities, they need to be considered in tandem. Previous re-
search (Song et al., 2023a; Klein et al., 2023) either solely focused on equivariant optimal transport
for coordinates or transported atom features via a distinct yet non-optimal path. In contrast, we
propose to unify the transport of atom coordinates and features. If we can unify different modalities
within an equivariant and smooth representation space, optimal transport from a base distribution to
the data distribution, leading to fast and effective molecule generation, is possible.

Specifically, we map the atom coordinates and features from the data space into a latent space with
an equivariant autoencoder (Satorras et al., 2021), which enables us to compute a unified optimal
permutation (π̂).

After the mapping, we ascertain the optimal rotation (R̂) for two atomic coordinate sets for trans-
portation, utilizing the Kabsch algorithm (Kabsch, 1976) as did in (Song et al., 2023a; Klein et al.,
2023). The computed rotation matrix ensures that the coordinates of the target molecules in the la-
tent space are in closest proximity to the noise molecules. In addition, to achieve optimal translation
(t̂), we establish the data distribution p1 and base distribution p0 in the zero CoM space (Hoogeboom
et al., 2022; Xu et al., 2023). Equipped with the equivariant autoencoder, the latent representation
also resides in the zero CoM space, thus ensuring optimal translation in the latent space.

Implementation. Initially, the distributions p0 and p1 are aligned to the Zero CoM by subtracting
the center of gravity using t̂.

Subsequently, an equivariant autoencoder is designed to project g1 ∼ p1 into the latent space. Here,
the encoder Eϕ transforms g1 into latent domain z1 = Eϕ(g1), where z1 = ⟨zx,1 ∈ RN×3, zh,1 ∈
RN×k⟩ and k represents the latent dimensionality for the atomic features. The decoder Dϵ then
learns to decode z1 back to molecular domain formulated as ĝ1 = Dϵ(z1). The equivariant autoen-
coder can be trained by minimizing the reconstruction objective, which is d(D(E(g1)),g1). With
the encoded z1 and the sampled noise z0 = ⟨zx,0 ∈ RN×3, zh,0 ∈ RN×k⟩ from p0, we then formu-
late the atom-level cost matrix as Mcg [i, j] = ∥zi1−zj0∥2 = ∥zix,1−zjx,0∥2+∥zih,1−zjh,0∥2, which
is the 2-norm distance between i-th atom of z1 and j-th atom of z0 including the latent coordinates
zx and the latent features zh. With Mcg , the optimal permutation π̂ is induced with the Hungarian
algorithm (Kuhn, 1955). The coordinates of the noise molecule zx,0 and the latent coordinates of the
target molecule zx,1 are then aligned through rotation R̂ solved by the Kabsch algorithm (Kabsch,
1976). In summary, we perform the above-calculated translation, encoding, rotation, and permuta-
tion on the target molecule g1 to obtain ẑ1, which forms the optimal molecule transport cost with
the sampled noise z0. The complete process is denoted as ẑ1 = π(R̂Eϕ(g1 + t̂)).

3.2.2 SEARCHING OPTIMAL COUPLING FOR OPTIMAL DISTRIBUTION TRANSPORT

By solving Eq. (4), we can obtain R̂, t̂, and π̂ yielding an optimal molecule transport trajectory — a
straight one — given two data points from the base distribution and target distribution, respectively
(see the gray trajectory in Figure 2). Nevertheless, ensuring a straight trajectory does not necessarily
yield optimal transport for generative modeling because a straight map for two data points does not
indicate a straight map between two distributions. Figure 2 depicts two possible trajectories for
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generative modeling. The gray one shows a straight but not the shortest map, while the red one
represents the shortest map, indicating an optimal trajectory. As discussed in Sec. 3.1, an optimal
trajectory can only be achieved with optimal coupling, leading to the shortest path for mapping
the base distribution to the target distribution. To approximate optimal coupling and further boost
the sampling speed, we introduce the second part of our framework, optimal flow estimation and
purification, which is dedicated to solving optimal distribution transport.

Straight But Not Optimal Straight and Optimal

Target Data
Distribution 𝑝!

Gaussian Noise 
Distribution 𝑝"

Figure 2: An Illustration of the Difference
Between Straight Coupling and Optimal Cou-
pling. GOAT approximates optimal coupling for
a fast generation.

The pathway to optimal distribution transport is to
identify the optimal coupling Γ̂(p0, p1) that satisfies
the condition formulated as:

Γ̂ = argmin
Γ

E[ĉg(z0, z1)]

s. t. (z0, z1) ∈ Γ(p0, p1),
(5)

where Γ is an arbitrary coupling plan between p0 and
p1 and ĉg is optimal molecule transport cost defined
in Eq. (3).

However, measuring the distribution transport cost
for searching for optimal coupling is challenging due
to the various sizes of molecules. Inspired by (Liu
et al., 2022), we circumvent the need to quantify
transport costs by estimating the optimal coupling,
Γ̂(p0, p

′
1) based on a trained flow model with the ini-

tial coupling denoted as Γ(p0, p1).

The estimated optimal coupling can minimize the
transport cost but may introduce generation error for
the following reasons. The first type of error arises
from estimating the flow path between p0 to p1 via a
neural network vθ, implying that p′1, characterized by vθ, does not perfectly match the data distribu-
tion p1. The second type of error stems from the discreteness of molecular data and the continuity of
the distribution. In essence, an intermediate value between two similar and valid molecules, which
are closely distributed, may not be biochemically valid. To compensate for such discrepancies,
we implement a purification process on the generated coupling to ensure effective generation. We
present a detailed implementation below.

Implementation. First, based on Sec. 3.2.1, we can obtain a set of noise and target molecule
pairs with optimal molecule transport cost. We leverage the corresponding transport path as the
conditional probability path for training the flow with the loss formulated as:

LF1(θ) = Et,p0,p1
∥vθ(ẑt, t)− (ẑ1 − z0)∥2, (6)

where ẑt = tẑ1 + (1 − t)z0, t ∈ [0, 1]. Compared with using conditional optimal transport path
and variance-preserving path in a hybrid fashion (Song et al., 2023a), our method employs a unified
linear interpolation of ẑ1 − z0 as the flow probability path. Such straight trajectory adheres to the
naive ODE formula denoted as dzt = (ẑ1 − z0)dt, thereby providing a more straight flow path for
fast sampling. The optimum of LF1 is achieved when vθ̂(zt, t) = E[z1 − z0|zt].

The proposed framework then samples data pairs (z0, z′1) via trained flow model θ̂1 as the estimated
optimal coupling. Specifically, z′1 can be sampled following dzt = vθ̂1(zt, t)dt starting from z0 ∼
p0 and the process of sampling is denoted as ODEvθ̂

. Pair of z0 and z′1 is set as fixed and a batch
of pairs will be generated as the estimated optimal coupling represented as Γ̂(p0, p′1) = {(z0, z′1)},
where z′1 = ODEvθ̂

(z0). Finally, we estimate and purify the flow. Specifically, z′1 is decoded by Dϵ

for g′
1 and evaluated in terms of stability and validity by RdKit (Landrum et al., 2016). This provides

a criterion for filtering out invalid molecules to purify the coupling. Subsequently, the optimal flow
is trained using the loss in Eq. (6) with estimated and purified coupling.

Provably Reduced Geometric Transport Cost. The estimated optimal coupling Γ̂ can boost gen-
eration only when geometric transport cost is reduced. We theoretically show that our approach can
indeed reduce geometric transport costs as follows:
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Theorem 3.1. The coupling Γ̂ incurs no larger geometric transport cost than the random coupling
Γ(p0, p1) in that E[ĉg(z0, z

′
1)] ≤ E[ĉg(z0, z1)], where (z0, z′1) = Γ̂(p0, p

′
1), (z0, z1) = Γ(p0, p1),

and ĉg is optimal molecule transport cost.

With this theorem, the proposed GOAT is guaranteed a Pareto descent on the geometric transport
cost, leading to faster generation. A comprehensive proof is given in Appendix B, and the pseu-
docode for training and sampling is presented in Appendix C.

4 EXPERIMENTAL STUDIES

Datasets. We evaluate over benchmark datasets for 3D molecule generation, including QM9 (Ra-
makrishnan et al., 2014) and the GEOM-DRUG (Axelrod & Gómez-Bombarelli, 2022). QM9 is a
standard dataset that contains 130k 3D molecules with up to 29 atoms. GEOM-DRUG encompasses
around 450K molecules, each with an average of 44 atoms and a maximum of 181 atoms. More
dataset details are presented in Appendix E.

Baselines. We compare GOAT with several competitive baseline models. G-Schnet (Gebauer
et al., 2019) and Equivariant Normalizing Flows (ENF) (Chen et al., 2018) are equivariant gen-
erative models utilizing the autoregressive models and continuous normalizing flow, respectively.
Equivariant Graph Diffusion Model (EDM) and its variant GDM-Aug (Hoogeboom et al., 2022),
EDM-Bridge (Wu et al., 2022), GeoLDM (Xu et al., 2023) are diffusion-based approaches.
GeoBFN (Song et al., 2023b) leverages Bayesian flow networks for distributional parameter approx-
imation. EquiFM (Song et al., 2023a) is the first flow-matching method for 3D molecule generation.

4.1 EVALUATION METRICS

Evaluating Generation Quality. Without loss of generality, we use validity, uniqueness, and nov-
elty to evaluate the quality of generated molecules (Zhang et al., 2023). Existing experiments calcu-
late validity, uniqueness, and novelty, which are nested; novelty measures novel molecules among
unique and valid molecules. However, such a calculation cannot reflect the ultimate quality among
all samples. We further propose a new metric toward the significance of generative models (Walters
& Murcko, 2020).

Below, we provide the detailed definitions of these metrics. 1) Validity. An essential criterion for
molecule generation is that the generated molecules must be chemically valid, which implies that
the molecules should obey chemical bonds and valency constraints. We use RdKit (Landrum et al.,
2016) to check if a molecule obeys the chemical valency rules. Validity calculates the percentage
of valid molecules among all the generated molecules; 2) Uniqueness. An important indicator
of a molecule generative model is whether it can continuously generate different samples, which is
quantified by the uniqueness. We evaluate uniqueness by measuring the fraction of unique molecules
among all the generated valid ones; 3) Novelty. An ideal generative model for de novo molecule
design should be able to generate novel molecular samples that do not exist in the training set.
Therefore, we report novelty that quantifies the percentage of novel samples among all the valid and
unique molecules; 4) Significance. To comprehensively evaluate the molecule generative models,
we represent a new metric, significance, to quantify the percentage of valid, unique, and novel
molecules among the generated samples.

Evaluating Generation Efficiency. 1) We report sampling steps to measure the generation speed.
The time cost of each sampling step in most baselines, including EDM, EDM-Bridge, GeoBFN,
GeoLFM, and EquiFM, is identical because they all applied EGNN (Satorras et al., 2021) with the
same layers and parameters. Fewer steps indicate higher generation efficiency. For EquiFM and the
proposed GOAT, we applied the same adaptive stepsize on ODE solver Dopri5 (Dormand & Prince,
1980) for a fair comparison. 2) Considering the generation quality and efficiency simultaneously,
we propose to report the m il (valid, unique, and novel) molecule, denoted as S-Time. The metric
is calculated by the number of significant molecules over the total time consumed by generating all
molecules, and it comprehensively reflects the performance of generation quality and efficiency. 3)
We measure the generation efficiency by comparing geometric transport cost, which is calculated by
Eq. (2).
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4.2 RESULTS AND ANALYSIS

Table 1: Comparisons of generation quality regarding Atom Stability, Validity, Uniqueness, Novelty,
and Significance. And comparisons of generation efficiency regarding Steps and Time. The best
results are highlighted in bold.

QM9 Quality (↑) Efficiency (↓)
Metrics Atom Sta Valid Uniqueness Novelty Significance Steps S-Time

Data 99.0 97.7 100.0 - - - -
ENF 85.0 40.2 98.0 - - - -

G-Schnet 95.7 85.5 93.9 - - - -
GDM-aug 97.6 90.4 99.0 74.6 66.8 1000 1.50

EDM 98.7 91.9 98.7 65.7 59.6 1000 1.68
EDM-Bridge 98.8 92.0 98.6 - - 1000 -

GeoLDM 98.9 93.8 98.8 58.1 53.9 1000 1.86
GeoBFN 98.6 93.0 98.4 70.3 64.4 100 0.16
EquiFM 98.9 94.7 98.7 57.4 53.7 200 0.37

GOAT (Ours) 99.2 92.9 99.0 78.6 72.3 90 0.12

Table 2: Comparisons of generation quality regarding
Atom Stability, Validity, Steps, and Time on GEOM-
DRUG. The best results are highlighted in bold.

GEOM-DRUG Quality (↑) Efficiency (↓)
Metrics Atom Sta Valid Steps S-Time

Data 86.5 99.9 - -
GDM-aug 77.7 91.8 1000 -

EDM 81.3 92.6 1000 14.88
EDM-Bridge 82.4 92.8 1000 -

GeoLDM 84.4 99.3 1000 12.84
GeoBFN 78.9 93.1 100 1.27
EquiFM 84.1 98.9 200 2.02

GOAT (Ours) 84.8 96.2 90 0.94
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Figure 3: The blue histogram plots the
comparisons of distribution transport cost.
The red line chart depicts the average trans-
port cost per atom (best view in color).

In this study, we generate 10K molecular samples for each method and compute the aforementioned
metrics for comparisons. The evaluation results are presented in Tables 1 and 2 with Figure 3.

Performance Comparisons with Diffusion-Based Methods. We observe that all diffusion-based
generation methods indeed need 1000 sampling steps to achieve comparable generation quality. Sur-
prisingly, with the least sampling steps, GOAT achieves the best atom stability, uniqueness, novelty,
and significance over QM9. Specifically, it improves novelty by up to 35.2% and significance by
up to 34.1%, respectively. Among these diffusion models, GeoLDM achieves the best validity per-
formance. However, it owns relatively poor novelty and significance, 58.1% and 53.9% on QM9,
respectively. These results indicate that the latent diffusion models can model the complex geomet-
ric 3D molecules well but introduce a serious overfitting problem — generating more molecules that
are the same as the training samples. Though GDM-Aug can achieve the second-best novelty among
all methods, it needs 1000 sampling steps for 3D molecule generation. As for GEOM-DRUG, we
directly compare the validity as ultimate significance since all compared methods achieved almost
100% uniqueness (Xu et al., 2023). Table 2 shows that the proposed algorithm also achieves com-
petitive performance while maintaining a leading edge in generation speed on such a large-scale
dataset. Specifically, GOAT only spends 0.94 seconds for each valid, unique, and novel molecule on
average and reaches 96.2% validity, while GeoLDM takes more than 10× seconds to reach 99.3%.
We believe this performance is competitive and more efficient.

Performance Comparisons with Flow-Matching-Based Methods. EquiFM and GOAT are all
based on flow matching, using an ODE solver for generation. We can see that flow-matching-based
methods can obtain faster generation speeds than diffusion models. In particular, GOAT only needs
90 steps, while EquiFM requires 200 steps for sampling. EquiFM solely considers optimal transport
for atom coordinates. Therefore, the generation speed is still inferior to ours. Because the proposed
GOAT solves optimal molecule transport and optimal distribution transport together, the number
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Table 3: MAE for molecular property prediction. A lower
number indicates a better controllable generation result. The
best results are highlighted in bold.

Property Steps α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

QM9 - 0.100 64 39 36 0.043 0.040
Random - 9.010 1470 645 1457 1.616 6.857
N atoms - 3.860 866 426 813 1.053 1.971

EDM 1000 2.760 655 356 583 1.111 1.101
GeoLDM 1000 2.370 587 340 522 1.108 1.025
EquiFM 220 2.410 591 337 530 1.106 1.033

GOAT (Ours) 200 1.725 585 330 521 0.906 0.881
GeoBFN 100 3.875 768 426 855 1.331 1.401
EquiFM 100 3.006 830 392 735 1.064 1.177

GOAT (Ours) 100 2.740 605 350 534 1.010 0.883
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Figure 4: Quality vs. Speed (α).
GOAT shows the optimal trade-off be-
tween generation quality and speed.

of sampling steps is further reduced by 2× compared to EquiFM with the same ODE solver. This
verifies our hypothesis that a joint optimal transport path can further boost the generation efficiency.

Though EquiFM can perform well in terms of molecule validity, it achieves unsatisfactory perfor-
mance in novelty and significance on QM9 among all methods. More specifically, nearly half of
the generated samples are the same as the training samples, which is unacceptable in the context
of de novo molecule design. In contrast, GOAT can obtain 78.6% novelty with 37% improvement
and 72.3% significance with 34.6% improvement compared to EquiFM. On GEOM-DRUG, the pro-
posed method achieves approximate performance compared to EquiFM while taking only half the
sampling steps. GeoBFN (Song et al., 2023b) can have comparable sampling efficiency to ours,
which is neither diffusion-based nor flow-matching based methods. We find that its generation qual-
ity over GEOM-DRUG is around 3% lower than GOAT regarding the validity, and it owns around
8% decrease in novelty with a similar sampling speed.

Geometric Transport Cost Comparisons. As EquiFM and GOAT are both flow-matching-based
transport methods, we compare their transport costs and present the visualized results in Figure
3. We present distribution transport cost (p0 → p1) in blue bars and molecule transport cost av-
eraged over the number of atoms (g0 → g1) in red lines. Compared to EquiFM transports with
a hybrid method, the proposed method reduced the geometric transport cost with 1) unified trans-
port (Unified), 2) optimal molecule transport (1-OMT), and 3) optimal distribution transport cost
(1-ODT), thereby achieving a significant reduction in geometric transport cost by nearly 89.65%,
leading to faster generation. We further minimize molecule and distribution transport costs (2-OMT
and 2-ODT) and observe that the transport cost is reduced marginally, indicating a nearly optimum
of the proposed method. The above analysis reveals that the proposed method indeed reduced the
geometric transport cost by unifying transport, minimizing molecule transport cost, and estimating
optimal couplings. The most intuitive manifestation of the reduction in transport cost is the boost in
generation speed, which has been demonstrated in the previous section.

Controllable Molecule Generation. Without loss of generality, GOAT can be readily adapted to
perform controllable molecule generation with a desired property s by modeling the neural network
as vθ(z, t|s). We evaluated the performance of GOAT on generating molecules with properties
including α, ∆ε, εHOMO, εLUMO, µ, and Cv . The quality of the generated molecules concerning
their desired property was assessed using the Mean Absolute Error (MAE) between the conditioned
property and the predicted property. This measure helps to determine how closely the generated
molecules align with the desired property.

We use the property classifier network φ from (Garcia Satorras et al., 2021) and split the QM9
training partition into two halves with 50K samples each. The classifier φ is trained in the first
half, while the Conditional GOAT is trained in the second half. Then, φ is applied to evaluate
conditionally generated samples by the GOAT. We report the numerical results in Table 3. Random
means we simply do random shuffling of the property labels in the dataset and then evaluate φ on it.
Natoms predicts the molecular properties by only using the number of atoms in the molecule.

Compared to existing methods, our proposed approach demonstrates superior performance in con-
trollable generation tasks. Specifically, it achieves the best results across all six tasks when eval-
uated with 100 sampling steps, outperforming other variable sampling step methods (EquiFM and
GeoBFN). Furthermore, even with increased sampling steps, our method maintains outstanding per-
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Table 4: Ablation Studies. OMT represents optimal molecule transport, and ODT stands for opti-
mal distribution transport. The best results are highlighted in bold, and the second-best results are
highlighted with underlines.

Metrics (QM9) Quality (↑) Efficiency (↓)
Components λ Atom Sta Valid Uniqueness Novelty Significance Steps Time Cost

w/o EAE - 98.8 92.8 92.2 58.4 53.9 280 0.63 30.25
w/o ODT 1 97.7 89.5 98.7 70.1 61.9 120 0.17 5.01
w/o ODT 0.75 97.9 89.7 98.9 70.2 62.3 110 0.16 4.63
w/o ODT 0.5 98.1 89.9 98.8 70.4 62.5 100 0.14 4.13
w/o ODT 0.25 97.8 89.6 98.7 70.1 62.0 120 0.17 4.87
w/o ODT 0 97.5 89.3 98.8 70.0 61.8 130 0.19 5.41
w/o OMT 0.5 96.5 85.0 98.9 69.1 58.1 170 0.31 5.32

GOAT 0.5 99.2 92.9 99.0 78.6 72.3 90.0 0.12 3.14

formance in generating molecules with properties α, µ, and Cv , whereas other methods require
longer sampling steps to achieve comparable results. Notably, only GeoBFN, which requires more
than doubled sampling steps, shows a marginal advantage in other properties. To better illustrate
the advantages of the proposed method, we present a performance comparison in accuracy and effi-
ciency, as measured by property α, in Figure 4. The figure demonstrates that the proposed method
achieves a new trade-off between accuracy and efficiency in conditional molecule generation.

Parameter Analysis and Ablation Studies. In this section, we first analyze the effectiveness of
the parameter λ, which determines the trade-off between transporting atom coordinates and atom
features. Since the parameter only affects the optimization of molecule transport, we compare its
influence without considering optimal distribution transport. Our results in Table 4 indicate that
when λ = 0.5, meaning the weights for optimizing transport costs in two modalities are equal,
the proposed algorithm achieves the best transport plan. We hypothesize that this is because the
transport cost calculated by equation 3 with λ = 0.5 accurately reflects the actual cost for the
generative model in transporting noise to the data distribution.

Additionally, we conduct ablation studies on equivariant autoencoder (EAE), optimal molecule
transport, and optimal distribution transport. Without considering optimal transport, the model
trained solely with flow matching in the latent space (w/o OMT) shows a significant increase in
training speed. This can be attributed to the reduced transport cost resulting from the unified
space, although the performance remains suboptimal. When solving OMT without ODT (w/o ODT,
λ = 0.5), both performance and speed improve, but they still do not reach the final results, which
account for both molecule and distribution in geometric optimal transport.

Limitations. Addressing the optimal transport costs, particularly those involving rotation and per-
mutation aspects, can be computationally intensive (Song et al., 2023a; Klein et al., 2023). However,
these operations can be efficiently parallelized on CPUs to enhance the training speed. Besides, re-
fining the flow may require additional time-consuming training, but such an operation boosts the
generation speed and improves novelty without compromising quality. In summary, the above-
mentioned operations will accelerate the generation of molecules once and for all after training,
which is prioritized in this research. We leave improvements concerning training efficiency and
other methods for boosting generation speed, such as distillation (Liu et al., 2022), for future work.

5 CONCLUSION

This paper introduces GOAT, a 3D molecular generation framework that tackles optimal transport for
enhanced generation quality and efficiency in molecule design. Recognizing that in silico molecule
generation is a problem of probability distribution transport and the key to accelerating this lies in
minimizing the transport cost. To this end, we formulated the geometric optimal transport problem
tailored for molecular distribution. This proposed problem led us to consider the transport cost of
atom coordinates, atom features, and the complete molecules. This motivates the design of joint
transport to solve optimal molecule transport with different modalities and the framework to mini-
mize the distributional transport cost. Both theoretical and empirical validations confirm that GOAT
reduces the geometric transport cost, resulting in faster and more effective molecule generation.
Our method achieves state-of-the-art performance in generating valid, unique, and novel molecules,
thereby enhancing the ultimate significance of in-silico molecule generation.
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APPENDIX

A EQUIVARIANCE AND INVARIANCE IN GEOMETRIC OPTIMAL TRANSPORT

Equivariance. Molecules, typically existing within a three-dimensional physical space, are sub-
ject to geometric symmetries, including translations, rotations, and potential reflections. These are
collectively referred to as the Euclidean group in 3 dimensions, denoted as E(3) (Celeghini et al.,
1991).

A function F is said to be equivariant to the action of a group G if Tg ◦ F (x) = F ◦ Sg(x) for all
g ∈ G, where Sg , Tg are linear representations related to the group element g (Serre et al., 1977).
Invariance. A function F is said to be invariant to the action of a group G if F ◦ π(x) = F (x) for
all g ∈ G and every permutation π ∈ Sn.

Equivariance and Invariance in Molecules. For geometric graph generation, we consider the
special Euclidean group SE(3), involving translations and rotations. Moreover, the transformations
Sg or Tg can be represented by a translation t and an orthogonal matrix rotation R.

For a molecule g = ⟨x,h⟩, the node features h are SE(3)-invariant while the coordinates x are
SE(3)-equivariant, which can be expressed as Rx+ t = (Rx1 + t, . . . ,RxN + t).

Equivariance and Invariance in Geometric Optimal Transport. For non-topological data, such
as images, the transport cost between two given data points is fixed. However, this does not apply
to topological graphs. For instance, when a topological graph (molecule) undergoes rotation or
translation, the inherent properties of the molecule remain unchanged, but the cost of transporting
coordinates may vary. Similarly, if the atom order in one of the molecules changes in silico, the
molecule remains constant, but the transport cost of coordinates and features may alter. Therefore,
the proposed optimal molecule transport problem aims to find an optimal rotation, translation, and
permutation transformation for one molecule to minimize the distance, considering both coordinates
and features, from another molecule.

B PROOF FOR THEOREM 3.1

The theorem 3.1 is reproduced here for convenience:

Theorem 3.1 The coupling Γ̂ incurs no larger geometric transport costs than the arbitrary coupling
Γ(p0, p1) in that E[ĉg(z0, z

′
1)] ≤ E[ĉg(z0, z1)] where (z0, z′1) ∈ Γ̂(p0, p

′
1), (z0, z1) ∈ Γ(p0, p1),

and ĉg(z0, z1) = min ∥π(Rz1x,1 + t,Rz2x,1 + t, . . . ,RzNx,1 + t) − (z1x,0, z
2
x,0, . . . , z

N
x,0)∥2 +

min ∥π(z1h,1, z2h,1, . . . , zNh,1)− (z1h,0, z
2
h,0, . . . , z

N
h,0)∥2,∀π,R, and t.

z is geometry g in the latent space, which is composed of zx ∈ RN×3 and zh ∈ RN×k, where k is
the latent dimension characterized by Eϕ.

With node-granular optimal transport R̂, t̂ and π̂ we have:

E[ĉg(z0, z′1)] =E[min ∥π(Rz′1x,1 + t,Rz′2x,1 + t, . . . ,Rz′Nx,1 + t)− (z1x,0, z
2
x,0, . . . , z

N
x,0)∥2

+min ∥π(z′1h,1, z′2h,1, . . . , z′Nh,1)− (z1h,0, z
2
h,0, . . . , z

N
h,0)∥2,∀π,R, and t]

=E[∥π̂(R̂z′1x,1 + t̂, R̂z′2x,1 + t̂, . . . , R̂z′Nx,1 + t̂)− (z1x,0, z
2
x,0, . . . , z

N
x,0)∥2

+ ∥π̂(z′1h,1, z′2h,1, . . . , z′Nh,1)− (z1h,0, z
2
h,0, . . . , z

N
h,0)∥2]
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Let ẑx = π̂(R̂z1x + t̂, R̂z2x + t̂, . . . , R̂zNx + t̂), ẑh = π̂(z1h, z
2
h, . . . , z

N
h ), and ẑ = [ẑx, ẑh] ∈

RN×(3+k), then we have:

E[ĉg(z0, z′1)] =E[∥(ẑ′1x,1+, ẑ′2x,1+, . . . , ẑ′Nx,1)− (z1x,0, z
2
x,0, . . . , z

N
x,0)∥2

+ ∥(ẑ′1h,1, ẑ′2h,1, . . . , ẑ′Nh,1)− (z1h,0, z
2
h,0, . . . , z

N
h,0)∥2]

=E[∥(ẑ′11 +, ẑ′21 +, . . . , ẑ′N1 )− (z10, z
2
0, . . . , z

N
0 )∥2]

=E[∥ẑ′1 − z0∥2].

Likewise, we have:
E[ĉg(z0, z1)] = E[∥ẑ1 − z0∥2]. (7)

At this point, what we aim to prove is simplified to:

E[∥ẑ′1 − z0∥2] ≤ E[∥ẑ1 − z0∥2] (8)

Proof. Given that z′1 = ODEθ̂(z0), dzt = vθ̂(zt, t)dt, we have:

E[ĉg(z0, z′1)] = E
[∥∥∥∥∫ 1

0

vθ̂(zt, t)dt

∥∥∥∥
2

]
(9)

∥ · ∥2 : RN×(3+k) → R+ is the Euclidean norm of · and it is convex, therefore, with
∥
∫
Ω
vdt∥ ≤

∫
Ω
∥v∥ dt induced by Jensen’s inequality we have:

E[ĉg(z0, z′1)] ≤ E
[∫ 1

0

∥∥vθ̂(zt, t)∥∥2 dt] . (10)

With defined vθ̂(zt, t) = E[z1 − z0|zt], we then have:

E[ĉg(z0, z′1)] = E
[∫ 1

0

∥E[z1 − z0|zt]∥2 dt
]
. (11)

Again, with the finite form of Jensen’s inequality, we have:

E[ĉg(z0, z′1)] ≤ E
[∫ 1

0

E[∥z1 − z0∥2 |zt]dt
]

// Jensen’s inequality

=

∫ 1

0

E
[
E[∥z1 − z0∥2 |zt]

]
dt

=

∫ 1

0

E[∥z1 − z0∥2]dt // E[∥z1 − z0∥2|zt] = ∥z1 − z0∥2

= E[∥ẑ1 − ẑ0∥2]
= E[ĉg(z0, z1)] // By Eq. 7

(12)

Combining equations 9 to 12, Eq. 8 is proved.

It is important to note that solving the geometric optimal transport problem in the latent space does
not necessarily ensure that the molecule itself or its distribution also satisfies the optimal transport
in the original space. However, given that the proposed flow model is trained in the latent space, it is
sufficient to ensure that latent molecules and distributions are transported with optimal cost, thereby
accelerating the flow model in the generation of molecules.

C ALGORITHMS

This section contains the main algorithms of the proposed GOAT. First, we present the algorithm for
solving optimal molecule transport and unified flow in Algorithm 1 and Algorithm 2, respectively.
Algorithm 3 presents the pseudo-code for training the GOAT. Algorithm 4 presents the process of
fast molecule generation with GOAT.
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Algorithm 1 Optimal Molecule Transport

1: Input: z1 and z0.
2: Output: ẑ1 and z0.
3: Optimal Molecule Transport:
4: Mcg [i, j]← ∥zi1 − zj0∥2 ← ∥zix,1 − zjx,0∥2 + ∥zih,1 − zjh,0∥2 // Construct Atom-level Transport

Cost Matrix
5: π̂ ← Hungarian algorithm (Kuhn, 1955) // Optimal Permutation
6: R̂← Kabsch algorithm (Kabsch, 1976) // Optimal Rotation
7: ẑ1 = π(R̂z1) // Optimal Molecule Transport
8: return ẑ1, z0

Algorithm 2 Equivariant Autoencoder

1: Input: geometric data point g = ⟨x,h⟩, equivariant encoder Eϕ
2: Output: encoded data point z
3: Unified Flow:
4: x← x−G(x) // Translate to CoM Space
5: µx,µh ← Eϕ(x,h) // Encode
6: ⟨ϵx, ϵh⟩ ∼ N (0, I) // Sample noise for Equivariant Autoencoder
7: ϵx ← ϵx −G(ϵx) // Translate to CoM Space
8: zx, zh ← µ+ ⟨ϵx, ϵh⟩ ⊙ σ0 // Obtain Latent Representation
9: z← [zx, zh]

10: return z

Algorithm 3 Geometric Optimal Transport

1: Input: data distribution p1, equivariant encoder Eϕ, decoder Dϵ, flow network vθ
2: Output: GOAT: (v̂θ)
3: for g1 = ⟨x,h⟩ ∼ p1 do
4: z1 ←Equivariant Autoencoder(g1) // Algorithm2
5: z0 ← ⟨zx,0, zh,0⟩ ∼ N (0, I) // Sample noise from base distribution p0
6: ẑ1, z0 = Optimal Molecule Transport (z1, z0) // Algorithm 1
7: LF1(θ) = Et,p0,p1∥vθ(ẑt, t)− (ẑ1 − z0)∥2 // Loss for the flow
8: θ̂ ← optimizer(LF , θ) // Optimize
9: end for

10: for g1 = ⟨x,h⟩ ∼ p1 do
11: z0, z

′
1,g

′
1 ←Sampling(Dϵ, θ̂) // Algorithm 4

12: if g′
1 meets quality (measure by RdKit (Landrum et al., 2016)) then

13: ẑ′1, z0 = Optimal Molecule Transport (z′1, z0) // Algorithm 1
14: LF1(θ) = Et,p0,p1

∥vθ(ẑ′t, t)− (ẑ′1 − z0)∥2 // Loss for the flow
15: θ̂ ← optimizer(LF , θ) // Optimize
16: end if
17: end for
18: return θ̂

Algorithm 4 Sampling

1: Input: equivariant decoder Dϵ, flow network θ.
2: Output: noise: z0, generated latent sample: z′1, generated molecule: g′

1.
3: z0 ← ⟨zx,0, zh,0⟩ ∼ N (0, I) // Sample noise from base distribution p0
4: z′1 ← ODEvθ̂

(z0)
5: g′

1 ← Dϵ(z
′
1) // Solve ODE

6: return z0, z
′
1,g

′
1
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D RELATED WORKS

Molecule Generation Models. Initial research in molecule generation primarily concentrated on
the creation of molecules as 2D graphs (Jin et al., 2018; Liu et al., 2018; Shi et al., 2019). How-
ever, the field has seen a shift in interest towards 3D molecule generation. Techniques such as
G-SchNet (Gebauer et al., 2019) and G-SphereNet (Luo & Ji, 2022) employ autoregressive methods
to incrementally construct molecules by progressively linking atoms or molecular fragments. These
approaches necessitate either a detailed formulation of a complex action space or an ordering of
actions.

Motivated by the success of Diffusion Models (DMs) in image generation, the focus has now turned
to their application in 3D molecule generation from noise (Hoogeboom et al., 2022; Xu et al., 2023;
Wu et al., 2022; Han et al., 2023). To address the inconsistency of unified Gaussian diffusion across
various modalities, a latent space was introduced by (Xu et al., 2023). To resolve the atom-bond in-
consistency issue, (Peng et al., 2023) proposed different noise schedulers for different modalities to
accommodate noise sensitivity. However, diffusion-based models consistently face the challenge of
slow sampling speed, resulting in a significant computational burden for generation. To enhance the
speed, recent proposals have introduced flow matching-based (Song et al., 2023a) and Bayesian flow
network-based (Song et al., 2023b) models. Despite these advancements, there remains substantial
potential for improvement in these frameworks regarding speed, novelty, and ultimate significance.

Flow Models. Introduced in (Chen et al., 2018), Continuous Normalizing Flows (CNFs) represent
a continuous-time variant of Normalizing Flows (Rezende & Mohamed, 2015). Subsequently, flow
matching (Lipman et al., 2022) and rectified flow (Liu et al., 2022) were proposed to circumvent the
need for ODE simulations during forward and backward propagation in CNF, and they introduced
optimal transport for faster generation. Leveraging these advanced flow models, (Garcia Satorras
et al., 2021) pioneered the use of flow models for molecule generation, which was later followed by
the proposal of (Song et al., 2023a), based on hybrid transport. Beyond the realm of 3D molecule
generation, the concept of flow matching and optimal transport has also found applications in many-
body systems (Garcia Satorras et al., 2021) and molecule simulations (Midgley et al., 2023). Despite
these advancements, existing models primarily focus on atomic coordinates, leaving the challenge
of geometric optimal transport unresolved.

E DATASET

E.1 QM9 DATASET

QM9 (Ramakrishnan et al., 2014) is a comprehensive dataset that provides geometric, energetic,
electronic, and thermodynamic properties for a subset of the GDB-17 database (Ruddigkeit et al.,
2012) comprises a total of 130,831 molecules 3. We utilize the train/validation/test partitions de-
lineated in (Anderson et al., 2019), comprising 100K, 18K, and 13K samples for each respective
partition.

E.2 GEOM-DRUG DATASET

GEOM-DRUG (Geometric Ensemble Of Molecules) dataset (Axelrod & Gómez-Bombarelli, 2022)
encompasses around 450,000 molecules, each with an average of 44.2 atoms and a maximum of 181
atoms4. We build the GEOM-DRUG dataset following (Hoogeboom et al., 2022) with the provided
code.

F IMPLEMENTATION DETAILS

In this study, all the neural networks utilized for the encoder, flow network, and decoder are imple-
mented using EGNNs (Satorras et al., 2021). The dimension of latent invariant features, denoted as
k, is set to 2 for QM9 and 1 for GEOM-DRUG, to map the molecule for a unified flow matching.

3https://springernature.figshare.com/ndownloader/files/3195389
4https://dataverse.harvard.edu/file.xhtml?fileId=4360331&version=2.0
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For the training of the flow neural network, we employ EGNNs with 9 layers and 256 hidden features
on QM9, and 4 layers and 256 hidden features on GEOM-DRUG, with a batch size of 64 and 16,
respectively.

In the case of equivariant autoencoders, the decoder is parameterized in the same manner as the
encoder, but the encoder is implemented with a 1-layer EGNN. This shallow encoder effectively
constrains the encoding capacity and aids in regularizing the latent space (Xu et al., 2023).

All models utilize SiLU activations and are trained until convergence. Across all experiments, the
Adam optimizer (Kingma & Ba, 2015) with a constant learning rate of 10−4 is chosen as our default
training configuration. The training process for QM9 takes approximately 3000 epochs, while for
GEOM-DRUG, it takes about 20 epochs.

With the flow model trained on QM9 or GEOM-DRUG, we then generate and purify the coupling
to obtain a total of 100K molecular pairs, which form the estimated couplings.

Hardware Configuration

1. GPU: NVIDIA GeForce RTX 3090
2. CPU: Intel(R) Xeon(R) Platinum 8338C CPU
3. Memory: 512 GB
4. Time: Around 7 days for QM9 and 20 days for GEOM-DRUG.

G MORE EXPERIMENTAL RESULTS

We present the full results in Tables 5 and 6. In our detailed experimental results on QM9, we
reproduced EDM, GeoLDM, and EquiFM on the QM9 dataset to obtain the actual generation time
consumption with the same compute configuration. As a result, the proposed method achieves the
fastest sampling speed, which is consistent with the measurement of sampling steps. We also witness
a huge generation speed improvement by the proposed GOAT for GEOM-DRUG.

In addition to supplementing the actual time used for generation, we also added the metrics of
molecule stability, and it is obvious that all methods achieve nearly 0% molecule stability in GEOM-
DRUG. This is because metrics, atom and molecule stability, create errors during bond type predic-
tion based on pair-wise atom types and distances. Therefore, we concentrate on metrics measured
by RdKit.

Lastly, we produced the full results of GeoBFN using sampling steps from 50 to 1,000. It is worth
noting that the novelty and significance continue to decrease on QM9 datasets as sampling steps
increase, which aligns with our conjecture in the experiments. Besides, we also observed that its
performance on GEOM-DRUG also decreased in terms of validity. Combined with its efficiency and
quality, we believe that our method, GOAT, has competitive performance compared with GeoBFN.

We present the visualization of generated molecules on QM9 and GEOM-DRUG in Figures 5 and
6.
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Table 5: Comparisons of generation quality (larger is better) in terms of Atom Stability, Molecule
Stability, Validity, Uniqueness, Novelty, and Significance. And comparisons of generation efficiency
regarding generation time and sampling steps for one molecule (less is better). The best results are
highlighted in bold.

QM9

# Metrics
Efficiency Quality (%)

S-Time Steps Atom Sta Mol Sta Valid Uniqueness Novelty Significance
Data - - 99.0 95.2 97.7 100.0 - -
ENF - - 85.0 4.9 40.2 98.0 - -

G-Schnet - - 95.7 68.1 85.5 93.9 - -
GDM-aug 1.50 1000 97.6 71.6 90.4 99.0 66.8 73.9

EDM 1.68 1000 98.7 82.0 91.9 98.7 65.7 64.8
EDM-Bridge - 1000 98.8 84.6 92.0 98.6 - -

GeoLDM 1.86 1000 98.9 89.4 93.8 98.8 58.1 53.9

GeoBFN

- 50 98.3 85.1 92.3 98.3 72.9 66.1
0.16 100 98.6 87.2 93.0 98.4 70.3 64.4

- 500 98.8 88.4 93.4 98.3 67.7 62.1
- 1000 99.1 90.9 95.3 97.6 66.4 61.8

EquiFM 0.37 200 98.9 88.3 94.7 98.7 57.4 53.7
GOAT 0.12 90 98.4 84.1 90.0 99.0 78.6 72.3

Table 6: Comparisons of generation quality (larger is better) in terms of Atom Stability, Molecule
Stability, Validity, Uniqueness, Novelty, and Significance. And comparisons of generation efficiency
regarding generation time and sampling steps per molecule (less is better). The best results are
highlighted in bold.

GEOM-DRUG

# Metrics
Efficiency Quality (%)

S-Time Steps Atom Sta Mol Sta Valid Uniqueness
Data - - 86.5 0.0 99.9 100.0
ENF - - - - - -

G-Schnet - - - - - -
GDM-aug - 1000 77.7 - 91.8 -

EDM 14.88 1000 81.3 0.0 92.6 99.9
EDM-Bridge - 1000 82.4 - 92.8 -

GeoBFN

- 50 78.9 - 93.1 -
- 100 81.4 - 93.5 -
- 500 85.6 - 92.1 -
- 1000 86.2 - 91.7 -

GeoLDM 12.84 1000 84.4 0.0 99.3 99.9
EquiFM - 200 84.1 - 98.9 -
GOAT 0.94 90 84.8 0.0 96.2 99.9
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Figure 5: Molecules Generated by GOAT trained on QM9.

Figure 6: Molecules Generated by GOAT trained on GEOM-DRUG.
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H DISTANCE BETWEEN NOISES AND GENERATED MOLECULES

We presented a comparison of the distance between generated molecules and the initial noise, in-
cluding compared methods, the proposed GOAT, and its variants (w/o ODT and w/o OMT). We
presented the experimental results in the Table:

Table 7: Distance Between Noises and Generated Molecules

QM9 GEOM-DRUG
Metrics Average

distance
Average
distance
per atom

Average
distance

Average
distance
per atom

EDM 651.52 22.47 1834.22 10.13
GeoLDM 185.01 6.38 1046.67 5.78
EquiFM 530.86 18.31 1543.23 8.57

GOAT-w/o ODT 72.48 2.50 924.50 5.14
GOAT-w/o OMT 93.36 3.22 1190.88 6.62

GOAT 55.10 1.90 702.89 3.88

The experimental results on the distance between molecules and noises validate that the proposed
method achieves the minimum transport distance from the noise and thereby also verifies the supe-
riority of our method in generation speed.

I IMPACT STATEMENTS

This paper contributes to the advancement of generative Artificial Intelligence (AI) in scientific do-
mains, including material science, chemistry, and biology. The insights gained will significantly
enhance generative AI technologies, thereby streamlining the process of scientific knowledge dis-
covery.

The application of machine learning to molecule generation expands the possibilities for molecule
design beyond therapeutic purposes, potentially leading to the creation of illicit drugs or hazardous
substances. This potential for misuse and unforeseen consequences underscores the need for strin-
gent ethical guidelines, robust regulation, and responsible use of these technologies to safeguard
individuals and society.
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