
Appendix: Variational Continual Bayesian
Meta-Learning

Qiang Zhang1,2,3∗†, Jinyuan Fang4†, Zaiqiao Meng5,6, Shangsong Liang4,6‡ , Emine Yilmaz7‡
1 Hangzhou Innovation Center, Zhejiang University, China

2 College of Computer Science and Technology, Zhejiang University, China
3 AZFT Knowledge Engine Lab, China; 4 Sun Yat-sen University, China

5 University of Glasgow, United Kingdom
6 Mohamed bin Zayed University of Artificial Intelligence, United Arab Emirates

7 University College London, United Kingdom
{qiang.zhang.cs@zju.edu.cn; fangjy6@gmail.com; zaiqiao.meng@gmail.com}

{liangshangsong@gmail.com; emine.yilmaz@ucl.ac.uk}

A Variational Continual Learning

In variational continual learning, the posterior distribution of interest is frequently intractable and
approximation is required. A projection operation is usually required to take the intractable un-
normalized distribution p∗(θ) and returns a tractable normalized approximation q(θ), that is q(θ) =
proj (p∗(θ)). With the recursive updating of the posterior, we have

p (θt | D1:t) ≈ q(θt) = proj (q(θt−1)p (Dt | θt)) . (16)

The field of approximate inference provides several choices for the projection operation including i)
Laplace’s approximation, ii) variational KL minimization, iii) moment matching, and iv) importance
sampling. Let q(θt) be parameterized by ψt, that is, q(θt) = q(θ;ψt). The online VI approach is
implemented by minimizing a variational KL divergence,

KL [q(θt)‖q(θt−1)p (Dt | θt)]

=

∫ +∞

−∞
q(θt) log

q(θt)

q(θt−1)p (Dt | θt)
dθt

=KL [q(θt)‖q(θt−1)]− Eq(θt) [log p (Dt | θt)]
=LVCL(ψt).

(17)

This is equivalent to maximizing the likelihood log p(Dt | D1:t−1).

log p(Dt | D1:t−1)

= log

∫
p(Dt | θt)p(θt | D1:t−1)dθt

≥Eq(θt) [log p (Dt | θt)]−KL [q(θt)‖p(θt | D1:t−1))]

=Eq(θt) [log p (Dt | θt)]−KL [q(θt)‖q(θt−1)]

=−KL [q(θt)‖q(θt−1)p (Dt | θt−1)] , (18)

where q(θt−1) = p(θt | D1:t−1) means the prior of θt equals the variational posterior of θt−1.

∗The work was done while at University College London
†Equal Contributions
‡Corresponding Author

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Therefore the optimum q(θt) is

q(θt) = arg min
q∈Q

KL

[
q(θt)‖

1

Zt
q(θt−1)p (Dt | θt)

]
,

for t = 1, 2, . . . , T.

(19)

The zeroth approximate distribution is defined to be the prior, q(θ0) = p(θ). Zt is the intractable
normalizing constant and is not required to compute the optimum.

B Finite Stick-Breaking Construction of CRP

A truncated (or finite) version of the stick-breaking construction is used to reap the benefits of Chinese
Restaurant Process at a cheaper computational cost. The finite stick-breaking model simply places an
upper bound on the number of mixture components and bypasses the need for varying number of
mixture components. Such a construction of the CRP can be given as follows:

βk | α ∼ Beta(1, α) for k = 1, . . . ,K − 1,

πk = βk

k−1∏
l=1

(1− βl) for k = 1, . . . ,K − 1,

πK =

K−1∏
l=1

(1− βl) .

(20)

Here on, for brevity, π = stickbreak(β) will denote the above transformations, where we define
vectors β = [βk]1≤k≤K−1 and π = [πk]1≤k≤K , since π is the prior parameters of theK-dimensional
category variable zt.

With the help of the finite stick-breaking construction of the CRP, we show the generative process of
CRP-DGMM for Variational Continual Bayesian Meta-Learning as follows:

zt | π ∼ CategoricalK(π),

θzt=k
t ∼ N

(
µk

t ,Σ
k
t

)
,

φt | θzt=k
t ∼ p(φt | θzt=k

t),

Dt | φt ∼ p(Dt | φt),

(21)

where µk
t and Σk

t are the the mean vector and the semi-positive covariance matrix that parameterize
the k-th component distribution in DGMM.

C Derivation for Variational Posterior

The posterior after seeing the t-th dataset is p (θt | D1:t) ∝ p (Dt | θt) p (θt | D1:t−1) where

p(Dt | θt) =

∫
p(Dt | θt, zt)p(zt)dzt

=

∫ [∫
p(Dt | φt)p(φt | θztt)dφt

]
p(zt)dzt

=

∫ ∫ [∫
p(Dt | φt)p(φt | θztt)dφt

]
p(zt|β)p(β)dztdβ. (22)

Similar to Equation 18 in the continual learning setting, what we can do is to use handy Dt to
infer latent variables. Since the exact posteriors of interest are intractable, we resort to approximate
variational inference and define the variational distributions of these latent variables as:

q(φt,θt, zt,β | Dt) = q(φt | θztt ,Dt;λt)q(θ
zt
t | Dt;ψt)q(zt;ηt)×

K−1∏
k=1

q(βk;γk). (23)

2

As a result, the ELBO of logarithmic marginal likelihood of observations at time t can be derived as:

log p(Dt | D1:t−1)

= log

∫∫
p(Dt | zt,D1:t−1)p(zt|β)p(β)dztdβ

≥Eq(zt;ηt)

[
log p(Dt | zt,D1:t−1)

]
− Eq(β;γ)

[
KL
[
q(zt;ηt)||p(zt|β)

]]
−KL

[
q(β;γ)||p(β)

]
≥Eq(zt;ηt)q(θ

zt
t |Dt;ψt)q(φt|θzt

t ,Dt;λt)

[
log p(Dt | φt)

]
− Eq(zt;ηt)q(θ

zt
t |Dt;ψt)

[
KL
[
q(φt | θztt ,Dt;λt)||p(φt|θztt)

]]
− Eq(zt;ηt)

[
KL
[
q(θztt | Dt;ψt)||p(θztt | D1:t−1)

]]
− Eq(β;γ)

[
KL
[
q(zt;ηt)||p(zt|β)

]]
−KL

[
q(β;γ)||p(β)

]
, LVC−BML(λt,ψt,ηt,γ). (24)

The second inequality is obtained by applying Jensen’s inequality to derive the lower bound of the
conditional likelihood: log p(Dt | zt,D1:t−1). The ELBO of our likelihood function is represented as
LVC−BML(λt,ψt,ηt,γ), and the variational distributions are optimized by maximizing this ELBO.

Variational distribution of β. To obtain the optimal variational distribution of βk, for =̨1, . . . ,K−
1, we only consider the terms related to βk in the ELBO, which are given by:

F
(
q(βk;γk)

)
= Eq(zt;ηt)

[
Eq(β;γ)

[
log p(βk) + log p(zt|β)

]]
− Eq(βk;γk)

[
log q(βk;γk)

]
.

(25)

By taking the functional derivative of above equation with respective to q(βk;γk) and equate to zero:

∂

∂q(βk;γk)
F
(
q(βk;γk)

)
=

∫
q(zt;ηt)q(β\k;γ\k)

[
∂

∂q(βk;γk)

∫
q(βk;γk)

[
log p(βk) + log p(zt|β)− log q(βk;γk)

]
dβk

]
dβ\kdzt

=

∫
q(zt;ηt)q(β\k;γ\k)

[
log p(βk) + log p(zt|β)− log q(βk;γk)− 1

]
dβ\kdzt,

where q(β\k;γ\k) is the variational distribution of β without βk, we can obtain the variational
distribution of βk as:

log q(βk;γk) ∝ Eq(zt;ηt)

[
Eq(β\k;γ\k)

[
log p(βk) + log p(zt|β)

]]
= log p(βk) + Eq(zt;ηt)

[
Eq(β\k;γ\k)

[K−1∑
k=1

(
zt,k logβk +

k−1∑
l=1

zt,k log(1− βl)

)

+

K−1∑
l=1

zt,K log(1− βl)
]]

∝ log p(βk) + Eq(zt;ηt)

[
zt,k logβk +

K−1∑
r=k+1

zt,r log(1− βk) + zt,K log(1− βk)

]

= log p(βk) + ηt,k logβk +

K∑
r=k+1

ηt,r log(1− βk). (26)

3

Since p(βk) ∼ Beta(·; 1, α) is a Beta distribution, we have:

log p(βk) ∝ (1− 1) logβk + (α− 1) log(1− βk). (27)

Consequently, the optimal variational distribution of βk can be represented as:

log q(βk;γk) ∝
(
0 + ηt,k

)
logβk +

(
α− 1 +

K∑
r=k+1

ηt,r
)

log(1− βk), (28)

which is also a beta distribution with parameters:

γk,1 = 1 + ηt,k, (29)

γk,2 = α+

K∑
r=k+1

ηt,r. (30)

As a result, the optimal variatioal distribution of βk is a beta distribution, which is represented as
q(βk) ∼ Beta(βk; γk,1, γk,2).

Variational distribution of zt. Since zt is a category variable, we assume the variational distribu-
tion of zt to be a categorical distribution parameterized with ηt:

q(zt;ηt) = CategoricalK(zt;ηt). (31)

Similarly, to obtain the optimal variational distribution of zt, we only consider the terms related to zt
in the ELBO, which are given by:

F
(
q(zt;ηt)

)
=

K∑
k=1

ηt,k · Eq(β;γ)

[
log p(zt = k | β)

]
− ηt,k log ηt,k

− ηt,k ·KL
[
q(θzt=k

t | Dt;ψt)||p(θzt=k
t | D1:t−1)

]
− ηt,k · Eq(θ

zt=k
t |Dt;ψt)

[
KL
[
q(φt | θzt=k

t ,Dt;λt)||p(φt|θzt=k
t)

]]
. (32)

By taking derivative of F
(
q(zt;ηt)

)
with respective to ηt,k and equate to zero:

∂

∂ηt,k
F
(
q(zt;ηt)

)
=Eq(β;γ)

[
log p(zt = k | β)

]
− log ηt,k + 1

−KL
[
q(θzt=k

t | Dt;ψt)||p(θzt=k
t | D1:t−1)

]
− E

q(θ
zt=k
t |Dt;ψt)

[
KL
[
q(φt | θzt=k

t ,Dt;λt)||p(φt|θzt=k
t)

]]
, (33)

we can obtain the optimal value for ηt,k as:

log ηt,k ∝Eq(β;γ)

[
πk

]
−KL

[
q(θzt=k

t | Dt;ψt)||p(θzt=k
t | D1:t−1)

]
− E

q(θ
zt=k
t |Dt;ψt)

[
KL
[
q(φt | θzt=k

t ,Dt;λt)||p(φt|θzt=k
t)

]]
, (34)

under the constraint that
∑K

k=1 ηt,k = 1.

Variational distribution of θt The meta-parameter distribution is assumed to contain a mixture of
component distributions. Deriving the exact posterior distribution of meta-parameter is intractable
due to the nonlinearities of the model. We follow the principle of variational inference and assume
the variational distribution of meta-parameter for the k-th component to be:

q
(
θzt=k
t | Dt;ψt

)
= N

(
mk

t ,Λ
k
t

)
, (35)

which is a Gaussian distribution with parameters ψzt=k
t = {mk

t ,Λ
k
t }. mk

t is the mean vector and Λk
t

is the semi-positive covariance matrix of the k-th component. Following the principle of variational
continual learning [1], we assume that the prior of θkt is given by the variational posterior of θkt−1,
i.e., µk

t = mk
t−1,Σ

k
t = Λk

t−1. The variational distribution of θkt can be recursively updated by
maximizing EBLO with stochastic back propagation and the reparameterization trick [2].

4

Variational distribution ofφt For q(φt | θztt ,Dt;λt),φt are the weights of a deep neural network
and λt are variational parameters of the weight distribution (i.e., means and standard deviations).
Learning local variational parameters λt for high-dimension φt becomes difficult due to the costs of
storing and computing λt. Therefore, we compute λt with amortized variational inference (AVI) [3],
where a global learned model is used to predict λt from the support set DS

t . It is shown that inference
can be amortized by finding a good initialization, a la MAML [4]. Hence, from a global initialization
θzt=k
t , we produce the variational parameter λt by conducting several steps of gradient descents.

Let LDS
t

(ψt,λt) = −Eq(φt|θzt
t ,Dt;λt)

[
log p

(
DS

t | φt

)]
+ KL [q(φt | θztt ,Dt;λt)‖p (φt | θztt)] be

the loss on the datasetDS
t . We define the procedure of stochastic gradient descent, SGDJ(θztt ,DS

t , ε),
to produce λt from the the global initialization θzt=k

t :

1. λ(0)
t = θztt .

2. for j = 0, . . . , J − 1, set
λ
(j+1)
t = λ

(j)
t − ε∇λ(j)

t
LDS

t

(
ψt,λ

(j)
t

)
.

3. λt = λ
(J)
t

(36)

J is the number of steps of gradient descents and ε is the learning rate. Hereby q(φt | θztt ,Dt;λt) =
q(φt;SGDJ(θztt ,DS

t , ε)).

D Pseudo codes

We summarize the meta-training process of our VC-BML in algorithm 1. For simplicity, in the
algorithm, we only use a single batch of data to update the parameters. It can be easily extended to
mini-batch training by sampling a batch of data and aggregating the gradients as in [4].

Algorithm 1: Variational Continual Bayesian Meta-Learning.
Input :Task distribution p(τ) and data distribution p(D | τ),

maximum number of mixture components K,
concentration parameter α,
number of inner update steps J ,
inner-update learning rate ε,
outer-update learning rate ζ.

1 Initialize parameters: µk
1 , Σk

1 , ∀k = 1, · · · ,K;
2 for t = 1, . . . do
3 Sample a task τt ∼ p(τ);
4 Sample task dataset Dt = {DS

t ,DQ
t } ∼ p(Dt | τt);

5 Initialize ηt,k, ∀k = 1, . . . ,K;
6 Update γk according to Equation 29 and Equation 30, ∀k = 1, . . . ,K − 1 ;
7 // Initialize variational parameters ψk

t = {mk
t ,Λ

k
t }

8 mk
t ← µk

t , ∀k = 1, . . . ,K;
9 Λk

t ← Σk
t , ∀k = 1, . . . ,K;

10 while not converge do
11 Update ηt,k according to Equation 34, ∀k = 1, . . . ,K;
12 for k = 1, . . . ,K do
13 Sample θzt=k

t from q(θzt=k
t | Dt;ψt);

14 Update λt ← SGDJ(θzt=k
t ,DS

t , ε);
15 Update ψk

t ← ψk
t + ζ∇ψk

t
L(λt,ψt,ηt,γ);

16 // Update priors of meta-parameter distributions
17 µk

t+1 ←mk
t , ∀k = 1, . . . ,K;

18 Σk
t+1 ← Λk

t , ∀k = 1, . . . ,K .

5

E Detailed Experimental Settings

E.1 Experimental details about baselines

For fair comparison, we adopt the widely-used neural network architecture proposed by [5] in our
VC-BML and all the baselines. We additionally describe the experimental settings of baselines.

TOE: We use the same Bayesian meta-learning model in our VC-BML as the base learner of TOE.
The differences between TOE and VC-BML are that TOE only maintains a single meta-parameter
distribution and is meta-trained on all the available data so far (i.e., D1:t) at each timestamp t. We
train TOE with 3 batch gradient descent steps with a learning rate of 0.1 for inner update, and use
Adam optimizer with a learning rate of 0.001 for outer update.

TFS: The experimental settings of TFS is the same as TOE, and the difference is that TFS is only
meta-trained on the current data (i.e., Dt) at each timestamp t.

FTML [6]: We apply a slight modification to the original FTML algorithm. FTML utilizes all the
available data so far (i.e., D1:t) for meta-training, which is memory consuming and contradicting to
our continual learning setting of streaming data and tasks. For fair comparison, we only meta-train
FTML on the currently available data (i.e., Dt), which is the same as our VC-BML. Moreover, we
evaluate FTML on the unseen tasks (i.e., tasks sampled from meta-test set) instead of the training
tasks that the original FTML used. The rest of experimental settings remain unchanged compared to
the original FTML paper. Throughout the experiments, we train FTML with 3 inner gradient descent
steps and a inner learning rate of 0.1, and train the convolution network using Adam optimizer with
a learning rate of 0.001. In the setting of non-stationary task distribution, we meta-train FTML for
5000 steps on each dataset. Classification accuracies are calculated from the meta-test sets of each
dataset. Specifically, to evaluate FTML, we randomly sample 100 tasks from the meta-test sets and
calculate the average classification accuracies.

OSML [7]: In the original paper, the authors use a well pre-trained convolution network to initialize
their OSML model. However, both our VC-BML and other baselines are randomly initialized and
trained from scratch. It would be unfair to adopt the original initialization procedure in OSML.
Consequently, in our experiments, we randomly initialize the parameters of OSML and train OSML
from scratch. The experimental setting of OSML is similar to FTML. Throughout the experiments,
we use 3 knowledge blocks in each layer of the convolution network. In the settings of non-stationary
task distribution, we use 5 inner gradient descent steps with an inner learning rate of 0.01, and use an
outer learning rate of 0.001 on Omniglot, 0.0001 on CIFAR-FS, miniImagenet and VGG-Flowers.

DPMM [8]: The experimental settings of DPMM is also similar to FTML. In the settings of non-
stationary task distribution, we use an inner learning rate of 0.1, an outer learning rate of 0.001 on
Omniglot and CIFAR-FS, and use an inner learning rate of 0.01, an outer learning rate of 0.0001 on
miniImagenet and VGG-Flowers.

OSAKA [9]: In the original setting of OSAKA, it involves two learning stages: pre-training stage
for parameter initialization and continual learning stage for online adaption. Similar to OSML, for
fair comparison, we omit the pre-training stage and only deploy the continual learning stage in our
experiments. To learn OSAKA, we use 3 inner gradient descent steps with an inner learning rate
of 0.1, and use an outer learning rate of 0.001 on Omniglot, CIFAR-FS, 0.0001 on miniImagenet,
VGG-Flowers. We train OSAKA for 5000 steps with Adam optimizer on each dataset.

BOMVI [10]: In our experiments, we use variational inference to approximate the posterior of
meta-parameters. We train BOMVI with 5 batch gradient descent steps with a learning rate of 0.1
for inner update, and use Adam optimizer with a learning rate of 0.001 for outer update. The other
settings are also similar to our VC-BML.

The hyperparameters of these baselines are chosen in a similar way as our VC-BML (see Section E.3.2
for details) and are tuned to be optimal based on their performance on the validation sets.

E.2 Practical Implementation Details

When inferring posterior of z (Equation 34), the likelihood of task dataset, i.e., p(Dt | φ), is absent
from the equation. We empirically found that it is beneficial to incorporate the likelihood function
into the equation. Practically, the likelihood of task dataset is leveraged to calculate the posterior of z,

6

Table 1: The CNN architecture for VC-BML and baselines.

Output size Layers

28× 28× 3 Input images

14× 14× 64 conv2d(3× 3, stride=1, padding=1), BatchNormalization, Relu, maxPool(2× 2, stride=2)
7× 7× 64 conv2d(3× 3, stride=1, padding=1), BatchNormalization, Relu, maxPool(2× 2, stride=2)
3× 3× 64 conv2d(3× 3, stride=1, padding=1), BatchNormalization, Relu, maxPool(2× 2, stride=2)
1× 1× 64 conv2d(3× 3, stride=1, padding=1), BatchNormalization, Relu, maxPool(2× 2, stride=2)
64 flatten

which is given by:

log ηt,k ∝Eq(β;γ)

[
πk

]
−KL

[
q(θzt=k

t | Dt;ψt)||p(θzt=k
t | D1:t−1)

]
− E

q(θ
zt=k
t |Dt;ψt)

[
KL
[
q(φt | θzt=k

t ,Dt;λt)||p(φt|θzt=k
t)

]]
+ Eq(zt;ηt)q(θ

zt
t |Dt;ψt)q(φt|θzt

t ,Dt;λt)

[
log p(Dt | φt)

]
. (37)

E.3 Non-stationary task distribution

E.3.1 Datasets

Omniglot [11]: Omniglot contains 1623 handwritten characters (classes), each with 20 examples. All
characters are grouped in 50 alphabets. We follow previous work [5] and randomly split the dataset:
1100 characters for meta-training, 100 characters for validation the remaining 423 characters for
meta-test. All images are resized to 28× 28. Since we study the 5-way 5-shot classification problem,
we form a sequence of tasks by sampling 5 classes from the meta-training set with replacement as a
task. For each task, we randomly sample 5 examples for each class in the support set and 15 examples
for each class in the query set. The same sampling strategy of support set and query set is also used
in validation and testing.

CIFAR-FS [12]: CIFAR-FS is adapted from the CIFAR-100 dataset [13] for few-shot learning. It
contains 100 classes of images, each with 600 instances. We use the same split as [12]: 64 classes for
meta-training, 16 classes for validation and 20 classes for meta-test.

miniImagenet: The miniImagenet is a challenging dataset constructed from ImageNet [14] , which
comprises a total of 100 different classes, each with 600 instances. We use the same splits of [15],
where there are 64 classes for meta-training, 16 classes for validation and 20 classes for meta-test.

VGG-Flowers: The VGG-Flowers [16] contains 102 different classes of flowers, with 8,189 instances
in total. We randomly sample 66 classes for meta-training, 16 classes for validation and 20 classes
for meta-test.

Note that on CIFAR-FS, miniImagenet and VGG-Flowers datasets, we follow the same preprocessing
steps as Omniglot to generate a sequence of tasks. Moreover, the datasets we are using are publicly
available image data with their licenses, which have been frequently used in the research community,
and they do not contain any personally identifiable information or offensive content.

E.3.2 Settings

As the latent variables in this paper are meta-parameters and task-specific parameters, the dimen-
sionality of the latent space is actually determined by the number of parameters in the deep neural
network. In particular, we define a CNN architecture and present its details in Table 1. Roughly,
there are 112,000 parameters in the defined CNN. So the dimensionality of the latent space is about
112,000.

For each task, we randomly sample 5 and 15 shots per class to obtain DS
t and DQ

t respectively.
We use the same convolution network architecture proposed by [5] as our base model, which is

7

Table 2: Hyperparameters for VC-BML on the settings of non-stationary task distribution.

Hyperparameter Omniglot CIFAR-FS miniImagenet VGG-Flowers

Number of inner SGD steps 1 5 3 3
Inner-update learning rate 0.1 0.1 0.1 0.05
Down-weighting parameters
of KL-divergence ν

0.05 0.005 1.0 1.0

Number of outer SGD steps 5000 5000 5000 5000
Outer-update learning rate 0.001 0.001 0.0001 0.0001

described in Table 1. After the convolution layers, we use a fully-connected layer to predict the class
probabilities with softmax function. For fair comparison, the same neural network architecture is
used in all the baselines. Moreover, since we aim to deal with streaming tasks, at each time step t, we
meta-train VC-BML and baselines (except TOE) on the current task.

To train different datasets on the same network, we resize the images from these datasets to 28×28×3.
We set the maximum number of mixture components K = 6 and the concentration parameter α = 1.
Throughout the experiments, we use batch gradient descent to obtain the task-specific parameters and
Adam optimizer to update the variational parameters with a batch size of 32. We use 5 samples for
Monte Carlo estimation.

For other hyperparameters, we choose the inner update steps from {1, 3, 5}, inner update learning
from {0.001, 0.01, 0.05, 0.1}, outer update steps from {2500, 5000}, outer update learning rate from
{0.0001, 0.001, 0.01} and ν from {0.005, 0.05, 0.01, 0.1, 1.0}. We choose hyperparameters based
on the evaluation scores on the validation sets for both our VC-BML and baselines. For evaluation,
we randomly sample 100 tasks from the meta-test set of each dataset, perform 5 inner gradient descent
steps to obtain task-specific parameters, and calculate the mean classification accuracies. Additional
hyperparameter settings can be found in Table 2. We ran experiments for 5 times on each setting with
different random seed, and report their average accuracies and standard deviations.

We implement our model based on the code of BOMVI [10]. We appreciate the authors for making
their code publicly available. We ran experiments on a single machine with 8 NVIDIA GeForce RTX
2080Ti with 11GB memory, 56 Intel Xeon CPUs (E5-2680 v4 @ 2.40GHz). It takes about 80 hours
to train VC-BML with K=6 on each dataset.

F Additional Experimental results

F.1 Meta-test Accuracies on each Dataset at Different Meta-training Stage

Due to the space limit, in the main text, we only report the meta-test accuracies on each dataset at the
beginning and ending of meta-training stages. We additionally report the full results in this section,
which is presented in Figure 3. In the main text, we observe that parametric methods suffer from more
severer knowledge forgetting problem than Bayesian methods on Omniglot dataset. From Figure 3,
we can observe that similar results can also be found on CIFAR-FS and miniImagenet datasets. For
example, on CIFAR-FS, the accuracies of parametric methods (FTML, OSML, DPMM and OSAKA)
decrease from 69.79%-71.41% to 52.29%-59.74% at the end of training, while the accuracies of
Bayesian methods (BOMVI, VC-BML) barely change (from 69.12%-75.61% to 70.16%-75.20%).
Similarly, on miniImagenet, the accuracies of parametric methods decrease from 55.85%-59.17% to
41.43%-44.93% at the end of training, while the accuracies of Bayesian methods still barely change
(from 58.38%-61.24% to 57.94%-61.43%). Moreover, in the main text, we observe that Bayesian
methods have better generalization capability on unseen tasks than parametric methods when meta-
trained on Omniglot dataset. Similar results can also be found on CIFAR-FS and miniImagenet
datasets. It can be observed from Figure 3 that Bayesian methods, i.e., VC-BML and BOMVI,
always obtain the best and the second best performance on unseen tasks, i.e., miniImagenet and
VGG-Flowers at CIFAR-FS meta-training stage and VGG-Flowers at miniImagenet meta-training
stage. These results validate the analyses in the main text.

8

Table 3: Meta-test accuracies (%) on each dataset at different meta-training stage. "Average" represents the
mean meta-test accuracies on four datasets. (The best performance per dataset per meta-training stage is marked
with boldface and the second best is marked with underline.)

Meta-training Stage Algorithms Omniglot CIFAR-FS miniImagenet VGG-Flowers Average

Omniglot

TOE 98.43± 0.48 42.83± 1.77 33.09± 1.44 64.19± 2.11 59.64± 1.45
TFS 98.22± 0.50 43.36± 1.91 33.49± 1.38 63.18± 2.05 59.56± 1.46

FTML 99.11± 0.16 42.48± 1.88 34.69± 1.22 57.32± 2.06 58.40± 1.33
OSML 99.30± 0.29 41.20± 1.82 32.52±1.33 55.39± 2.19 57.10± 1.41
DPMM 99.33± 0.28 42.31± 1.62 34.40± 1.61 57.58±2.16 58.45± 1.42
OSAKA 99.01± 0.29 43.24± 1.79 35.44± 1.35 60.13± 2.08 59.46± 1.38
BOMVI 96.25± 0.66 48.22±1.94 37.83±1.45 66.24±1.98 63.06± 1.51

VC-BML 98.62± 0.38 50.86± 1.94 38.11± 1.51 68.63± 2.08 64.06± 1.48

CIFAR-FS

TOE 96.07± 0.96 65.03± 1.82 53.32± 1.61 73.33±1.64 71.94± 1.51
TFS 96.27± 0.68 68.51± 1.91 54.77±1.70 75.78± 1.69 73.83± 1.50

FTML 94.87±0.80 69.79± 1.82 54.81± 1.67 73.33± 1.81 73.20± 1.53
OSML 97.71± 0.69 70.11± 1.69 54.91± 1.75 76.58± 1.99 74.83± 1.53
DPMM 95.63± 0.58 71.41± 1.84 52.74± 1.70 71.08± 1.99 72.71± 1.52
OSAKA 95.36± 0.72 70.38± 1.76 54.57± 1.62 72.16± 1.96 73.12± 1.52
BOMVI 96.98± 0.63 69.12± 1.86 55.59± 1.61 77.15± 1.85 74.71± 1.49

VC-BML 98.28± 0.48 75.61± 1.82 60.15± 1.68 80.63± 1.73 78.67± 1.43

miniImagenet

TOE 93.24± 1.07 58.37± 1.88 51.04± 1.64 71.90± 1.93 68.64± 1.63
TFS 95.21± 1.11 63.75± 2.02 55.92± 1.67 73.09± 1.82 71.99± 1.66

FTML 93.00± 0.85 67.05± 1.77 55.85± 1.60 71.74± 1.96 71.91± 1.55
OSML 96.36± 0.53 69.87± 1.95 59.17± 1.59 77.74± 1.64 75.79± 1.43
DPMM 94.11± 0.72 69.85± 1.77 57.92± 1.61 72.16± 1.66 73.51± 1.44
OSAKA 95.84± 0.69 70.34± 1.89 56.83± 1.86 75.44± 1.73 74.61± 1.54
BOMVI 96.76± 0.74 69.81± 1.84 58.38± 1.65 78.23± 1.59 75.80± 1.46

VC-BML 98.23± 0.39 75.40± 1.99 61.24± 1.64 82.13± 1.84 79.25± 1.46

VGG-Flowers

TOE 93.12± 1.18 50.07± 2.20 41.97± 1.74 73.13± 1.71 64.57± 1.71
TFS 87.84± 1.89 51.99± 1.89 41.53± 1.74 80.62± 1.41 65.50± 1.73

FTML 87.01± 1.35 52.29± 1.90 41.43± 1.67 81.10± 1.58 65.46± 1.63
OSML 93.14± 0.90 59.74± 1.85 48.44± 1.60 82.25± 1.43 70.89± 1.44
DPMM 92.71± 0.76 58.76±1.83 46.95± 1.54 81.92± 1.48 70.09± 1.40
OSAKA 90.05± 1.13 53.37± 2.01 44.93± 1.68 80.37± 1.73 67.18± 1.64
BOMVI 96.60± 0.55 70.16± 1.84 57.94± 1.65 81.54± 1.81 76.56± 1.46

VC-BML 97.47± 0.73 75.20± 1.80 61.43± 1.49 83.39± 1.73 79.37±1.44

F.2 Performance of VC-BML under Different Meta-training Order

In the setting of non-stationary task distribution, we sequentially meta-train VC-BML on four datasets:
Omniglot, CIFAR-FS, miniImagenet and VGG-Flowers. To show that the performance of VC-BML
is irrelevant to the meta-training orders, we conduct further experiments by meta-training VC-BML
and baselines under different orders of datasets. Specifically, we sequentially meta-train VC-BML
and baselines on: VGG-Flowers, miniImagenet, CIFAR-FS and Omniglot, and show the experimental
results in Figure 1. It can be observed that the parametric baselines (FTML, DPMM, OSML and
OSAKA) still suffer from the forgetting problem when the task distribution shifts, while our VC-BML
is able to alleviate this forgetting problem and maintains the performance when meta-trained on
different task distributions. These results are in line with the results in the main text, which validates
that VC-BML is agnostic to the meta-training orders, and that VC-BML is effective to handle the
potentially dissimilar tasks from a non-stationary distribution, regardless of the meta-training orders.

F.3 Number of Mixture Components

In the main text, when studying the effects of the number of mixture components K, we report the
mean meta-test accuracies on all the learned dataset. We additional present the evolution of meta-test
accuracies for VC-BML with different K when meta-trained on sequentially arriving datasets, which
is shown in Figure 2. The result shows that, after training on the four datasets, VC-BML with K = 1
has the worst performance, indicating the inefficiency of maintaining a single set of meta-parameters
when encountering non-stationary task distribution. Moreover, the performance of VC-BML improves
as K gets larger, suggesting that it is beneficial to instantiate disparate meta-parameter distributions
for different task clusters. The similar performance between VC-BML with K=6 and VC-BML with
K=4 indicates that it is not helpful to instantiate more meta-parameter distributions. The results and
analyses coincide with the results and analyses in the section 7.3 of main text.

9

60

70

80

V
G

G
-F

lo
w

er
s

VGG-Flowers miniImagenet CIFAR-FS Omniglot

40

50

60

m
in

iI
m

a
g

en
et

52

62

72

C
IF

A
R

-F
S VC-BML

TOE

TFS

FTML

92

95

98

O
m

n
ig

lo
t OSML

DPMM

OSAKA

BOMVI

M
et

a
-t

es
t

A
cc

u
ra

cy
(%

)

Meta-training Iteration

Figure 1: The evolution of the meta-test accuracies (%) for VC-BML and baselines when sequentially
meta-trained on four datasets with different order. Each row represents the meta-test accuracies for a
specific dataset over cumulative number of meta-training epochs.

90

94

98

O
m

n
ig

lo
t

Omniglot CIFAR-FS miniImagenet VGG-Flowers

55

65

75

C
IF

A
R

-F
S

50

55

60

m
in

iI
m

a
g

en
et K=1

K=2

K=4

K=6

77

80

83

V
G

G
-F

lo
w

er
s

M
et

a
-t

es
t

A
cc

u
ra

cy
(%

)

Meta-training Iteration

Figure 2: The evolution of the meta-test accuracies (%) for VC-BML with different K when
sequentially meta-trained on different datasets. Each row represents the meta-test accuracies for a
specific dataset over cumulative number of meta-training epochs.

F.4 Impact of KL-divergence

As mentioned in the main text, we suspect the reason why VC-BML does not obtain the best
performance on Omniglot is the over regularization caused by the KL-divergence in the ELBO. To
understand the impact of KL-divergence, we vary ν, i.e., the down-wighting hyperparameter of
KL-divergence, from 10−4 ∼ 1.0 on Omniglot dataset and the experimental results are shown in
Figure 3. Note that we only compare against the results of FTML, OSML and DPMM because they
have the best performance on Omniglot. The result shows that the performance of VC-BML is better
than or comparative with baselines when ν is smaller than 0.01, and then the performance decreases
as ν gets larger. This confirms our hypothesis that the sub-optimal performance of VC-BML on
Omniglot is caused by the over regularization of KL-divergence. It also motivates us to introduce ν
to tune the KL-divergence to avoid over-fitting.

10

10−4 10−3 10−2 10−1 100

ν

93

95

97

99

A
cc

ur
ac

y
(%

)

VC-BML

FTML

OSML

DPMM

Figure 3: Classification accuracies of VC-BML and baselines under different ν on the Omniglot dataset.

Mode collapse: If the initial distribution is not adequately diverse, our model may not be able to
capture all data modes. In order to reduce the strong loss caused by the data of collapsed modes, there
are two methods. First, our model will adaptively add new components to the mixture distributions,
and the new components will focus on collapsed modes to reduce relevant losses. Second, we can
adjust the ELBO function to avoid the posterior collapsing to the prior. Specifically, we can use the
hyperparameter to down-weight the KL-divergence term in ELBO. Smaller ν encourages our model
to find the mode of the true posterior of the incoming data instead of collapsing to the prior.

References
[1] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. In

International Conference on Learning Representations, 2017.

[2] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2014.

[3] Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2018.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pages 1126–1135, 2017.

[5] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in neural information processing systems, pages 3630–3638, 2016.

[6] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In Interna-
tional Conference on Machine Learning, pages 1920–1930, 2019.

[7] Huaxiu Yao, Yingbo Zhou, Mehrdad Mahdavi, Zhenhui Li, Richard Socher, and Caiming Xiong. Online
structured meta-learning. In International Conference on Learning Representations, 2020.

[8] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling meta-learning and continual
learning with online mixtures of tasks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, 2019.

[9] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas Page-Caccia,
Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, et al. Online fast adaptation and
knowledge accumulation (osaka): a new approach to continual learning. Advances in Neural Information
Processing Systems, 33, 2020.

[10] Pau Ching Yap, Hippolyt Ritter, and David Barber. Bayesian online meta-learning. arXiv preprint
arXiv:2005.00146, 2021.

[11] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of simple
visual concepts. In Proceedings of the annual meeting of the cognitive science society, volume 33, 2011.

[12] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on Learning Representations, 2018.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

11

[15] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In International
Conference on Learning Representations, 2016.

[16] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729, 2008.

12

	Variational Continual Learning
	Finite Stick-Breaking Construction of CRP
	Derivation for Variational Posterior
	Pseudo codes
	Detailed Experimental Settings
	Experimental details about baselines
	Practical Implementation Details
	Non-stationary task distribution
	Datasets
	Settings

	Additional Experimental results
	Meta-test Accuracies on each Dataset at Different Meta-training Stage
	Performance of VC-BML under Different Meta-training Order
	Number of Mixture Components
	Impact of KL-divergence

