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Abstract

Electronic health records (EHRs) provide a
powerful basis for predicting the onset of health
outcomes. Yet EHRs primarily capture in-
clinic events and miss aspects of daily behavior
and lifestyle containing rich health information.
Consumer wearables, by contrast, continuously
measure activity, heart rate, and sleep, and
more, offering complementary signals that can
fill this gap. Despite this potential, there has
been little systematic evaluation of the benefit
that wearable data can bring to health outcome
prediction on top of EHRs. In this study, we
present an extensible framework for multimodal
health outcome prediction that integrates EHR
and wearable data streams. Using data from
the All of Us Program, we systematically com-
pared the combination of different encoding
methods on EHR and wearable data, including
the traditional feature engineering approach, as
well as foundation model embeddings. Across
ten clinical outcomes, wearable integration con-
sistently improved model performance relative
to EHR-only baselines, e.g., average AAUROC

+6.8% for major depressive disorder, +9.7% for
hypertension, and +12.6% for diabetes. On av-
erage across all ten outcomes, fusing EHRs with
wearable features shows 8.5% improvement in
AUROC. To our knowledge, this is the first
large-scale evaluation of wearable-EHR fusion,
underscoring the utility of wearable-derived sig-
nals in complementing EHRs and enabling more
holistic, personalized health outcome predic-
tions. Meanwhile, our analysis elucidates fu-
ture directions for optimizing foundation mod-
els for wearable data and its integration with
EHR data.

Keywords: Electronic Health Records (EHR),
Wearable Data, Multimodal Data Fusion,
Health Outcome Prediction
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BEYoND THE CLINIC: AUGMENTING EHR wITH WEARABLE DATA FOR HEALTH PREDICTION

1. Introduction

Electronic health records (EHRs) have become an im-
portant data foundation for predicting health out-
comes in the past decades, with predictive models
developed from them demonstrating strong perfor-
mance across a variety of clinical tasks (Rajkomar
et al., 2018; Goldstein et al., 2017). However, EHRs
only capture episodic, clinic-centered snapshots of
health status (Goldstein et al., 2017), missing the
continuous physiological and behavioral patterns un-
folding in patients’ daily lives between clinical en-
counters. This temporal sparsity represents a crit-
ical blind spot: while EHRs excel at documenting
what happens during healthcare interactions, they
cannot capture daily health indicators such as devi-
ations in resting heart rate, changes in activity pat-
terns, or sleep disruptions that often precede clini-
cal events and could enable earlier intervention (Liu
et al., 2025b; Xu et al., 2023).

Consumer wearable devices offer a solution to ad-
dress this gap, providing continuous behavrioral and
physiological data streams to capture everyday be-
havior patterns that embed health-related informa-
tion complementary to EHRs (Li et al., 2017; AllofUs,
2019; Ginsburg et al., 2024) and have the potential to
enhance EHR-based predictive models. Recent stud-
ies have shown that at the population scale, daily
behaviors captured by consumer wearables link to
various clinical outcomes: Master et al. (2022) “iden-
tified consistent and statistically significant associa-
tions between activity levels and incident diabetes,
hypertension, GERD, MDD, obesity and sleep ap-
nea”; Zheng et al. (2024) has found that irregular
timing and shorter sleep relate to higher hazards for
conditions including hypertension, MDD, and gen-
eralized anxiety disorder (GAD). Recent work has
started to evaluate ML models on wearable data to
predict health outcomes. For example, Kundrick
et al. (2025) built wearable-based models to pre-
dict future hospitalization and incident cardiovascu-
lar disease (CVD). Xu et al. (2023) built algorithms
on wearable data to predict young adults’ depressive
symptoms in daily behavior.

Building on this encouraging signal, there are
emerging efforts that combine EHRs and wearable
data for clinical outcome prediction. Modde Ep-
stein and McCoy (2023) conducted a feasibility study
linking EHRs with Fitbit data and showed that lon-
gitudinal heart rate patterns during pregnancy re-
veal distinct physiological changes and could help de-

tect maternal health problems early. Some studies
combined EHR data with wearable sensor features
to predict hospital readmission, demonstrating that
the combined signals can significantly improve model
performance (Yhdego et al., 2023; Nagarajan et al.,
2024). However, most of these works are either lim-
ited by small, single-center cohorts or focused on nar-
rowly scoped clinical questions of particular health
outcomes. The value of wearable data to enhance
EHR-based predictive models has not been validated
in any systematic, large-scale setup.

In this work, we conduct the first comprehen-
sive and systematic evaluation of EHR and
wearable integration for multimodal predic-
tive models across diverse disease outcomes by
leveraging the recent All of Us Program that offers
large cohorts with longitudinal wearable data (Fit-
bit) linked with their EHRs (formatted in Observa-
tional Medical Outcomes Partnership OMOP Com-
mon Data Model) (AllofUs, 2019).

We build a standardized, reproducible data pro-
cessing and modeling pipeline to fuse EHR and wear-
able modalities. = We systematically evaluate our
pipeline across ten diseases: Hyperlipidemia, Hyper-
tension, Gastroesophageal Reflux Disease (GERD),
Generalized Anxiety Disorder (GAD), Major Depres-
sive Disorder (MDD), Obesity, Sleep Apnea, Type
IT Diabetes, Heart Failure, Atrial Fibrillation. Fig-
ure 1 presents the task setup. A common chal-
lenge in this effort is determining the most effec-
tive way to represent and integrate these distinct
data modalities. To address this, we draw upon re-
cent advancements in representation learning to com-
pare a traditional feature engineering approach with
a state-of-the-art foundation model for each data
type. For EHR data, we evaluate both the traditional
method of high-dimensional OMOP indicators and
a sequence-generative approach, CEHR-GPT, which
preserves chronological patient timelines and enables
reproducible, shareable representations (Pang et al.,
2024). For wearable data, we explore both a manual
feature engineering approach that aggregates behav-
ioral statistics over time and a time-series founda-
tion model, MOMENT, which can provide general-
purpose wearable data embeddings (Goswami et al.,
2024). Finally, we evaluate three strategies for fusing
these varied representations: concatenation, adjusted
weighting, and top-k feature selection.

Our results show that integrating wearable data
yields consistent and substantial performance gains
for most conditions regardless of the encoding and
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Figure 1: Overall workflow. (a) Task definition: we use historical EHR and wearable data to predict for

disease onset recorded in the EHR system (b) Cohort Definition: Participants with both EHR and
wearable data were selected and required to meet data quality control criteria. (¢) Embedding
and Modeling: Wearable data were encoded using feature engineering and MOMENT embeddings,
while EHR data were represented using OMOP indicators and CEHR embeddings. Three fusion
strategies—concatenation, weighted concatenation, and feature selection—were applied, and the

fused representations were used for health outcome prediction.

fusion approaches. On average across all ten out-
comes, fusing EHRs with wearable features
shows 8.5% improvement in Area under the
ROC curve (AUROC). Beyond these results, our
comparisons of encoding methods offer deeper in-
sights into the limitations of current general-purpose
foundation models when applied to health outcome
prediction. Our contributions are three-fold:

e We present the first large-scale, systematic
benchmark on integrating consumer wearable
data with EHRs for predicting ten diverse health
outcomes. Our work provides a comprehensive
and nuanced analysis of the significant predic-
tive value that wearable data adds, quantifying
the magnitude of improvement across different
health conditions.

e Our analyses further identify the limitations
of the state-of-the-art foundational models in
health outcome prediction tasks, which shed
light on future priority areas to advance EHR
and wearable foundational models for AT health
analytics.

e We open-source a standardized, reproducible,
and extensible data processing and modeling
pipeline to fuse EHR and wearable modalities for

developing future multimodal health prediction
models.

2. Methods

In this work, we address the predictive task of deter-
mining whether a patient will develop a given condi-
tion in the future based on their historical EHR data
combined with continuous wearable sensor streams
collected prior to diagnosis (pre-index period). Our
experimental pipeline consists of the following key
components: 1) Cohort Definition (Sec. 2.1) - find-
ing clean cohorts with available EHR and wearable
data and distinct disease onset; 2) Feature Extrac-
tion (Sec. 2.2) - comparing traditional feature en-
gineering against foundation model embeddings for
both EHR and wearable modalities; 3) Multimodal
Feature Fusion (Sec. 2.3) - evaluating strategies to
optimally combine these distinct data types; and 4)
Systematic Evaluation (Sec. 2.4) - benchmarking per-
formance across ten diverse clinical outcomes using
the All of Us dataset. Our framework is extensible
to any clinical outcome of interest and allows us to
quantify the added predictive value of wearable data
beyond EHR-only baselines while exploring new ap-
proaches for multimodal health prediction.
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2.1. Cohort Definition

We implemented a rigorous cohort definition to de-
velop high-quality datasets for clinical outcome pre-
diction using integrated EHR and wearable sensor
data from the All of Us registered tier. For partic-
ipants with both EHR and wearable data, we applied
systematic wearable data filters to ensure reliable
physiological measures. A valid day required >240
minutes of sleep, heart rate between 30-240 bpm,
and <90-minute discrepancy between total sleep time
and sum of stages to confirm valid sleep architecture.
Wearable records were aligned by defining the first
valid day as the first with both valid sleep and heart
rate, and the last valid day accordingly. Participants
were retained only if >50% of days between these
bounds were valid and the difference between the first
and last valid days were at least 180 valid days.

A positive outcome was defined as evidence of
the target disease via OMOP concept IDs, disease-
specific prescriptions, or ICD-to-PheCode-mapped
codes. To capture incident rather than pre-existing
disease, we followed the practice of Master et al.
(2022) and required the first evidence to occur >180
days after wearable tracking start, creating a tem-
poral buffer to separate new-onset from prior condi-
tions and ensuring sufficient wearable data. In this
work, we focus on 10 disease outcomes that are well-
represented in the All of Us dataset, per suggestion
by Master et al. (2022).

All participants—positive and negative—needed
healthcare engagement before wearable monitoring
(to verify absence of prior disease indicators for pos-
itives and establish baseline activity) and after the
observation period (to confirm continued engagement
and follow-up). For incident cases, prediction time
was anchored to one day before the first disease
evidence (diagnostic PheCode, SNOMED, or drug
code). For negatives, prediction time was one day
before their last EHR record.

To ensure feature quality, we excluded participants
with EHR data with invalid visit occurrence ids, or
with insufficient or problematic sensor data. To pre-
vent data leakage, we implemented train-test splitting
that restricted held-out test sets to participants not
present in CEHR model training data set. See Ap-
pendix A and Supplementary Figure 1 for detailed
example using major depressive disorder as an ex-
emplar outcome. See Appendix C for demographics
break down for the final dataset used for each of the
10 outcomes.

2.2. Feature Extraction

We employed two representation methods for EHR
data and two methods for wearable data that
are aligned to each participant’s pre-index window.
For EHR, we have (i) OMOP binary indicators,
(ii) a structured-EHR, foundation model embedding
(CEHR-GPT). For wearable data, we have (i) hand-
engineered wearable summaries, and (ii) wearable
time-series foundation embeddings (MOMENT). All
features were computed only from data occurring be-
fore the index. All fusion variants applied the same
scaler and feature-selection indices.

2.2.1. EHR Data Representation

(i) OMOP binary indicators (inspectOMOP)

Using the inspectOMOP Python package, we con-
structed sparse, interpretable features indicating
whether each OMOP concept (e.g., “37003436” for
COVID vaccine, “200219” for abdominal pain) ap-
peared at least once pre-index:

1 if count(concept j) > 0
TOMOP,j = in [start, index)

0 otherwise.

This yields a high-dimensional (> 10%) binary vec-
tor xgpr-omop aligned to the pre-defined observa-
tion window. The concept IDs are drawn from the
OMOP Common Data Model standardized vocabu-
lary, which can be explored and referenced through
the Athena concept database at Athena.OHDSI.

(i) Structured-EHR foundation embedding
(CEHR-GPT)

We encoded each participant’s longitudinal pre-
index EHRs into a fixed-length embedding using
a structured-EHR foundation model, CEHR-GPT
(Pang et al., 2024). It uses a novel patient represen-
tation that encodes complete visit timelines with de-
mographic prompts, visit-type tokens, discharge in-
formation, and artificial time tokens, enabling trans-
former models to preserve temporal dependencies
across heterogeneous OMOP domains when generat-
ing dense EHR embeddings Xgur.cear € R7%2.

2.2.2. Wearable Data Representation

(i) Wearable statistical summaries (221-dim)
From daily Fitbit’s physical activity, heart rate (in-
cluding daily resting heart rate), and sleep (total du-
ration and stage minutes: light, deep, REM), we com-
puted per-channel summary statistics over an 180-
day pre-index window with the most valid days (up
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Table 1: Summary of fusion approaches combining EHR and wearable data representations.

EHR ‘Wearable Fusion Feature Fusion Strategy Overall Method

Source Source Strategy

OMOP Summary Top-Features Univariate screening: top 50% wearable features + equal number  [XEHR-OMOP; Xwear-sum] (Concat)
Features Concatenation of OMOP indicators, then concatenation
Time-Series  Top-Features Univariate screening: top OMOP indicators + top 50% (count =  [XEHR-OMOP; Xwear-ts] (Concat)
Embedding  Concatenation 512) time-series dimensions, then concatenation

CEHR-GPT  Summary Concatenation Replace 221 least-informative CEHR dimensions with 221 wearable [XEHR-CEHR; Xwear-sum] (Concat)

Features with Substitution

features based on linear classifier coefficients

Weighted
C()n(:atcnati()n

Weighted concatenation Xgysed = [0XEHR-CEHR|BXwear-sum] with
(v, B) optimized on 70/30 dev split

[XEHR-CEHR, Xwear-sum] (Weighted)

Time-Series  Direct Direct concatenation of CEHR (768-dim) with time-series embed-  [XEHR-CEHR, Xwear-ts] (Concat)
Embedding  Concatenation ding (1024-dim)
Weighted Weighted concatenation with (a,3) in [@XEHR-CEHR|BXwear-sum]  [XEHR-CEHR, Xwear-ts| (Weighted)

Concatenation

optimized on 70/30 dev split

Notes: All features were z-score standardized on the training set prior to fusion. Univariate screening based on AUROC

performance.

to 1 year before prediction time): mean, standard de-
viation, minimum, maximum, and an ordinary-least-
squares linear trend (slope over day index). Con-
catenating across primitives produced 221 features
per participant: Xwear-sum € R??!. For each partic-
ipant, wearable summaries were computed using an
optimal 180-day window selected through a system-
atic search process: starting from the index date and
moving backward in 7-day increments up to 365 days
pre-index, all windows meeting the > 50% valid days
threshold were evaluated, and the window with the
largest number of valid days was selected for feature
computation. No forward/backward filling was per-
formed at the day level.

(ii) Wearable time-series foundation embed-
dings (MOMENT-1-large)

To capture temporal structure beyond summaries,
we employed the time-series foundation model
MOMENT-1-large (Goswami et al., 2024) to gener-
ate embeddings of wearable data. MOMENT-1-large
is pretrained with a masked time-series modeling ob-
jective in a self-supervised manner and learns general
representations from large-scale, multi-domain time-
series data. In this study, we treated each partici-
pant’s multivariate daily sequences as a matrix input
(same data window as the statistical summary fea-
ture Xyear-sum ), with variables as channels and time
as the sequence dimension. The model outputs a
fixed-length sequence-level embedding of dimension
Xwearts € R19%4 which is used as the representation
for downstream analysis.

2.3. Feature Fusion Approaches

We evaluated six late- and feature-level fusion
strategies combining EHR (OMOP or CEHR) and

wearable (summary or time-series) representations.
When using OMOP representations for EHR, since
xXear-.omop has over 104 dimensions, we conducted
top feature selection for both EHR and wearable
embeddings before concatenating them (see top two
rows in Table 1). When using CEHR representations,
we experimented with wearable embedding concate-
nation (xgpr.cear € R'“** and Xyearts € R768
have similar length), concatenation with substitution
(XEHR-CEHR 18 significantly longer than Xyear-sum €
R?21), and weighting (applicable for both Xyear-sum
and Xyear-ts), as indicated in the bottom four rows
in Table 1. All constituent features were standard-
ized (z-score) on the training set prior to fusion; the
learned scaler was reused on test.

2.4. Evaluation

After feature fusion across the two data sources, clas-
sification used fo-regularized logistic regression. The
inverse regularization strength C was selected by in-
ternal cross-validation on the training set and then
fixed for test evaluation. After standardization, any
remaining NaNs were set to zero.

For each health outcome, all model selection or
finetuning used the training set only. The held-
out test set for each outcome, disjoint from external
CEHR training, was used once for final evaluation.
To obtain robust paired comparisons when evaluat-
ing a model trained on the test set, we generated 100
bootstrap resamples of the test set by sampling par-
ticipants with replacement to the original test size.
Resamples were prevalence-constrained to reflect the
true positive rate with stratified sampling, requiring
at least two positive samples. The same resampled
indices were applied across all methods in each boot-
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strap round for a paired t-test. AUROC was the pri-
mary endpoint, and we report both mean and stan-
dard deviations of the AUROC scores. For each out-
come, we compared the best of the EHR~only base-
lines (CEHR~only, OMOP-only) and the best of the
fusion models.

2.5. Pipeline Extensibility

Our pipeline is disease-agnostic: to study new health
conditions, researchers need only specify relevant
phenotyping codes (e.g., SNOMED, PheCodes, or
medications) to define incident cases, after which the
same cohort construction, feature extraction, and fu-
sion steps can be applied directly. Our pipeline code
was open-sourced at GITHUB/AoU_Wearable, and
the All of Us dataset we used in this study can be ac-
cessed via institutional permission after ethics train-
ing and registration.

3. Results

3.1. Wearable Integration Leads to
Consistent Performance Gain

Figure 2 illustrates that for each of the 10 diseases,
the best fusion model achieves a higher AUROC than
the strongest EHR-only baseline, with gains ranging
from modest improvements in Heart Failure (1.9%)
to substantial increases for metabolic and psychi-
atric outcomes such as Type II Diabetes (12.6%),
Hyperlipidemia (9.8%), and Major Depressive Dis-
order (6.8%). All improvements demonstrated sta-
tistical significance with p < 0.001. This universal
improvement in performance underscores the comple-
mentary value of wearable-derived signals when com-
bined with EHR data, which provide additional phys-
iological and behavioral information not captured in
clinical records.

In addition to the aggregated advantage, we fur-
ther compare each pair of the multimodal model and
the EHR baseline across all encoding methods and
fusion strategies. As illustrated in Figure 3.1, nearly
every data point lies above the diagonal line of equal-
ity, indicating universal improvements when wearable
features are incorporated into EHR-based predic-
tion models. Comparing each outcome’s best EHR-
wearable fusion model against its strongest EHR-
only baseline yielded a mean AUROC improvement
of +8.5% over 100 paired bootstrap resamples.

For additional details on the exact performances of
each fusion strategy for each health outcome, please

AUROC Improvement: Best Fusion vs Best Baseline

Atrial Fibrillation 14.6%

GERD 13.0%

Type2 Diabetes 12.6%
Hyperlipidemia
Hypertension
MDD

Obesity

Health Outcomes

Sleep Apnea
GAD

Heart Failure 1.9%

T T T T T T
6.0% 8.0% 10.0% 12.0% 14.0% 16.0%
AUROC Delta

F T T
0.0% 2.0% 4.0%

Figure 2: Performance gain of EHR-wearable multi-
modal models over the best EHR baseline.
Error bars represent 95% confidence inter-
vals.

refer to Supplementary Table 1 and Supplementary
Table 2.

3.2. EHR Foundation Model Improves
EHR-only Performance but Shows Less
Benefit with Wearable Data

We further compare the traditional feature
engineering-based and modern foundation model-
based encoding methods on EHR data. Our analysis
reveals distinct patterns in encoding effectiveness
across different clinical contexts, as shown in
Supplementary Table 2.

The EHR foundation model embeddings
XEHR-CEHR outperformed traditional OMOP encod-
ing xgur-omop in most EHR~only predictions (6 out
of 10 health outcomes, with an overall mean AUROC
improvement of +5.2%), and its advantage became
more consistent when integrated with wearable data
(9 out of 10 outcomes, with an average improvement
of +4.7% over OMOP-based fusion methods).

These results suggest that the rich, chronologi-
cal patient representations learned by the foundation
model provide effective substrates for fusion with con-
tinuous physiological signals from wearable devices.

3.3. Manual Wearable Features Outperform
the Time-series Foundation Model

We follow a similar process to compare the two en-
coding methods for the wearable data. Interest-
ingly, across all 10 health outcomes, embeddings
Xwear-ts Using the MOMENT time-series founda-
tion model consistently underperform the summary
features Xwear-sum, i1 both wearable-alone (average
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AAUROC —4.4%) and multimodal setups (average
AAUROC —3.8%). These results show that sim-
ple summary-level wearable features provide more
meaningful information for health outcome predic-
tion tasks, compared to the more sophisticated foun-
dational model. Our analysis suggests that such
domain-agnostic time-series embedding methods are
not ready to be applied directly for health-related
tasks. We have more discussion about these insights
in Sec. 4.2.

4. Discussion

4.1. The Complementary Value of Wearable
Data across Health Outcomes

The integration of wearable data consistently ele-
vated prediction performance across a diverse set
of diseases. The particularly strong performance of
summary-level wearable features suggests that day-
level aggregations of activity, heart rate, and sleep
patterns provide stable and interpretable augmenta-
tion to clinical records. The success across such di-
verse conditions—from metabolic disorders like dia-
betes and obesity to mental health conditions like de-
pression and anxiety—indicates that basic physiolog-
ical monitoring captures fundamental health signals
relevant to multiple disease processes.

Meanwhile, we also observe that the magnitude of
this benefit varied by conditions. More specifically,
for heart failure, the addition of wearable data showed
only modest improvements (AAUROC +1.9%). This
can come from several potential reasons. Other than
the fact that it already began with a strong base-
line performance (AUROC 0.886) with less room for
improvement, heart failure, as an acute health condi-
tion, may show fewer signals captured through daily
wearable devices.

Our comprehensive and systematic evaluation pro-
vides the first nuanced picture of the predictive value
of wearable data for diverse health outcomes.

4.2. Towards Multimodal Foundation Models
with EHR and Wearables for Health

Our findings offer new insights into the current ca-
pabilities and limitations of foundation models for
health prediction. The EHR foundation model,
CEHR-GPT, showed an advantage in EHR-only set-
tings, and this advantage was not only maintained
but became more consistent when combined with
wearable features. The superior performance of

CEHR-based multimodal models indicates that foun-
dation model embeddings capture complementary in-
formation that synergizes well with wearable data,
even when using relatively simple fusion methods like
concatenation and weighted averaging.

Conversely, the general-purpose time-series foun-
dation model, MOMENT, consistently underper-
formed compared to domain-specific feature engineer-
ing on wearable data. This performance gap is likely
attributable to a domain mismatch; a model pre-
trained on generic time-series data may not generate
embeddings that capture the specific physiological
patterns most relevant to long-term health outcomes,
a phenomenon that is supported by some recent work
in other domains (Tan et al., 2024; Gu et al., 2025).
Manually engineered features, such as average resting
heart rate or daily step counts, are grounded in clin-
ical knowledge and effectively act as powerful, low-
noise summaries of behavior, which proves more effec-
tive for this specific predictive task than the abstract
representations from a generalist model.

These results highlight that the development of
EHR and wearable foundation models, especially
when developed for health applications, should not
proceed in isolation. The path forward lies in creating
multimodal foundation models that are pre-trained
on integrated EHR and wearable data. Recent re-
search on multimodal foundation models (e.g., imag-
ing with clinical notes (Zhang et al., 2025a), imaging
with EHR (Liu et al., 2025a)) has started to explore
this direction. Such models could learn a unified pa-
tient representation and move beyond simply combin-
ing outputs from single-modality models and toward
a holistic, dynamic understanding of patient health
by including longitudinal and supplementary infor-
mation between clinical visits.

4.3. Limitations

Our study has several limitations that open av-
enues for future research. First, our fusion strate-
gies were limited to straightforward approaches; fu-
ture work should investigate more sophisticated tech-
niques, such as attention-based mechanisms or cross-
modal transformers, to better model the interactions
between EHR and wearable data streams. Second,
our analysis of foundation models was not exhaus-
tive. A broader evaluation including other emerg-
ing EHR models (e.g., MOTOR (Steinberg et al.,
2023)) and wearable-specific time-series models (e.g.,
WBM (Erturk et al., 2025), LSM (Xu et al., 2025),
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SensorLM (Zhang et al., 2025b)) is a critical next
step, contingent on their availability as open-source
resources. Furthermore, the generalizability of our
findings may be constrained by our specific study
population and wearable device types, which, be-
ing composed of research volunteers, may exhibit
a “healthy user” bias and not fully represent the
broader, higher-risk patient population. Real-world
deployment would also need to address irregular data
patterns and varying patient compliance. Finally, the
180-day washout period used to define incident dis-
ease was selected based on precedent in existing liter-
ature and was not empirically examined or optimized
for each of the ten distinct conditions. We aim to
address these limitations through continued research
and future publications.

5. Conclusion

In this work, we conducted the first large-scale, sys-
tematic evaluation of integrating consumer wearable
data with EHRs for predicting ten diverse health out-
comes. Our comprehensive benchmark demonstrates
that augmenting episodic clinical data with continu-
ous, real-world data from wearables yields substantial
and consistent improvements in predictive accuracy,
with an average AUROC increase of +8.5%. Our
analysis of different encoding strategies further re-
vealed that while foundation models hold promise,
domain-specific feature engineering remains highly ef-
fective for wearable data, and the utility of current
single-modality EHR foundation models can be at-
tenuated in a multimodal context. By providing ro-
bust evidence of the complementary value of wearable
data and open-sourcing our pipeline, this study paves
the way for developing more holistic and personalized
predictive models in future Al health research.
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Appendix A. Cohort Definition
Example

We conducted a retrospective cohort study in the
All of Us Registered Tier, restricting to participants
with both OMOP-standardized EHRs and connected
Fitbit data. All time references are anchored to a
participant-specific prediction (“index”) time defined
below. In this section we show an example process of
cohort definition with specific numbers.

A.1. Source population and phenotyping

From 8,477 All of Us participants with valid Fit-
bit and EHR linkage, we identified 2,148 partici-
pants with any evidence of major depressive disorder
(MDD) using the union of (i) OMOP concept IDs
for MDD, (ii) PheCode mappings for depressive dis-
orders, and (iii) depression-specific medications. Phe-
notyping was performed strictly prior to index.

A.2. Incident case definition and index time

Incident cases required the first MDD evidence to oc-
cur at least 180 days after Fitbit tracking began, and
evidence of EHR activity both before and after Fit-
bit start. For positives, the index time was set to one
day prior to the first MDD flag, yielding 300 incident
cases. For negatives, the index time was set to one
day prior to the last observed EHR record.

A.3. Control pool and analytic cohort

The control pool comprised participants with (i) no
MDD evidence at any time, (ii) >180 days of valid
Fitbit data, and (iii) EHR activity both before and
after Fitbit start, producing 2,701 negatives. These
criteria formed an initial analytic cohort of 3,001 par-
ticipants (11.4% positives).

A.4. Wearable/EHR quality filters and final
dataset

We applied pre-specified quality control (QC) on
wearable data density/regularity and device sanity
checks, and excluded participants failing minimal
EHR coverage around index. After QC, 2,391 par-
ticipants remained (12.6% positives).

A.5. Holdout protocol and leakage safeguards

To avoid leakage when comparing to an external
CEHR model trained on other AoU participants, we

12

restricted the held-out test set to participants not
present in CEHR training (477 participants; 13.0%
positives) and used the remainder for model develop-
ment (1,914; 10.8% positives). All feature extraction
windows (EHR and wearable) were strictly pre-index
(no look-ahead).

Summary of counts. 8,477 — 3,001 (phenotyping
and design constraints) — 2,391 (data quality con-
trol) split into 1,914 development and 477 held-out
test participants.

8477
subjects with both EHR
and valid fitbit

!

2148
subjects with
Major Depressive Disorder (MDD)

:

300 positive cases
- MDD onset after fitbit start + 180 days
- Prediction time = first MDD flag date - 1
- Require EHR records before and after fitbit start

2701 negative cases
- Mo MDD at all at any time
- Has >= 180 days of valid fitbit data
- Prediction time = last EHR record date - 1
- Require EHR records before and after fitbit start

,

3001

Final available cohort
Positive rate = 11.4%

!

2391
Data Quality Control
Positive rate = 12.6%

\ ¥
) 477 test set
1914 train set (20%)
(80'%) Not seen during CEHR
Positive rate = 10.8% training
Positive rate = 13.0%

Supplementary Figure 1: Example cohort definition
steps and numbers for Ma-
jor Depressive Disorder
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Appendix B. Detailed Results

Abbreviations used in the tables: To optimize space utilization in the performance comparison tables, we
employ standardized abbreviations for health outcomes and methodological components. Health outcomes
are abbreviated as follows: HLD (Hyperlipidemia), HTN (Hypertension), GERD (Gastroesophageal Reflux
Disease), GAD (Generalized Anxiety Disorder), MDD (Major Depressive Disorder), OB (Obesity), SA (Sleep
Apnea), T2D (Type 2 Diabetes), HF (Heart Failure), and AF (Atrial Fibrillation). Methodological abbre-
viations include CEHR (Clinical Element-based Health Records), OMOP (Observational Medical Outcomes
Partnership), and TS Embed (Time Series Embedding). These abbreviations enable comprehensive presen-
tation of performance metrics across all outcomes and fusion approaches while maintaining table readability
and fitting within standard page constraints.

Supplementary Table 1: Performance (AUROC) of best feature fusion between EHR and wearable data
across health outcomes against EHR baselines.

HLD HTN GERD GAD MDD OB SA T2D HF AF
OMOP 0.643+10.034 0.66640010 0.65810032 0.707+0036 0.67040037 0.72140.035 0.57610010 0.72810.060 0.642:0074 0.65610.074
CEHR 0.687+0.037 0.72140034  0.65840.030 0.791:0031 0.74110033 0.639:0046 0.74410037  0.71240067 0.886+0033 0.60810.054

Feature Fusion |0.785) 155 0.814%) ¢ 0.789%) . 0.8431) . 0.809%) ., 0.7851) .o 0.804%) ., 0.854%) . 0.905%) .. 0.802%) .,

Signiﬁcance ok ok *kokk Kok Kok *kok ok kokk Kok Kok

Notes: The baseline uses two types of EHR encodings: OMOP and CEHR. Significance levels: ***
p<0.001, ** p<0.01, * p<0.05. Best fusion methods for each outcome: (1) [XEHR-OMOPs Xwear-sum] (Con-

Cat); (3) [XEHR—CEHR7 Xwear—sum] (Concat); (4) [XEHR—CEHRa Xwear—ts] (Weighted); (5) [XEHR—CEHR7 Xwear—sum]
(Concat). See next table.

Supplementary Table 2: Performance comparison across all baseline models and feature fusion methods.

Encoding & Fusion Methods ‘ HLD HTN GERD GAD MDD OB SA T2D HF AF

XEHR-OMOP 0,6431“.“34 O*GGGt(MHU 0~658t0.[i32 0*707il].036 0-67010.037 0-72111].035 0*5761().040 0*728i('.1]0‘] O~642t0.[b74 O*GSGiU.(Wél
XEHR-CEHR 0.68740037  0.72110034  0.65810030 0.79140031  0.741:0033 0.63910016 0.74440037  0.71210067  0.88610033 0.6080.051
Xwear-sum 0.80440020 0.80710031  0.76710033 0.83340028 0.7970026 0.7621003s 0.74110036  0.790r0.058  0.77840050 0.7910.053
Xyear-ts 0.753400310  0.81210026  0.79240020 0.74540030 0.6710034  0.695:000 0.687100a6 0.77410062  0.74210068  0.7640.058

[XEHR-OMOP, Xwear-sum] (Concat) | 0.75440036 0.78140020 0.77320028 0.811:0020 0.74320.027  0.779:0038  0.688100a1  0.77210065 0.786+0.064 0.802+0.050
[XEHR-OMOP, Xyearts] (Concat) 0.7124002s  0.74310020  0.77610027  0.76040035 0.70010030 0.71640035 0.56710032  0.61210058 0.576100s1  0.57520.099
[XEHR-CEHR; Xwearsum] (Concat) | 0.783.40033 0.81410.028 0.781:0031 0.84310.030 0.807:0025 0.785.40.039 0.80440.034 0.799:006s 0.90410036 0.7740.045
[XEHR-CEHR, Xwear-sum] (Weighted)|0.78540.033 0.80640020 0.78210031 0.841:0030 0.80940.027 0.75440041  0.79310034 0.85440.062 0.90540.035 0.773:0.045
[XEHR-(‘EHR~ X\venr-rs] (CUHCHt) 0.77940.032  0.80810.027 0-789i0.030 0.791:0033 0.75610.035 0.7060042  0.77210031  0.81810070 0.84540051  0.72610.055
[XEHR-CEHR: Xwear-ts) (Weighted) | 0.77940032  0.80810.027  0.789:0030 0.791:0033 0.741:0033 0.705:0042  0.77210031  0.81810070 0.845:0051  0.7260.055

5

6

)
2)
®3)
4)
)
(6)

As shown in Supplementary Table 1, the integration of wearable data produced strong improvements for
chronic cardiovascular and metabolic conditions. For hyperlipidemia, the [Xgar-cEHR, Xwear-sum] (Weighted)
approach achieved an AUROC of 0.785, representing a +0.098 improvement over the CEHR~only baseline
of 0.687 (p = 1.4 x 10761). Similarly, hypertension prediction improved from a CEHR baseline of 0.721 to
0.814 using [XEHR-CEHR, Xwear-sum] (Concat), yielding a +0.093 improvement (p = 2.4 x 10753). Obesity
prediction demonstrated remarkable improvement through [Xgur-cEHR, Xwear-sum] (Concat), rising from an
OMOP baseline of 0.721 to 0.785 (+0.063, p = 8.7 x 10723). Type II diabetes achieved the highest final
AUROC of 0.854 through [XgHR-CEHR; Xwear-sum] (Weighted), improving from an OMOP baseline of 0.728
(+0.126, p = 4.6 x 10~2%).
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Gastroesophageal reflux disease showed substantial improvement as well, with [Xgar-cEHR, Xwear-ts] (Con-
cat) increasing performance from a baseline OMOP AUROC of 0.658 to 0.789, representing a +0.131 gain
(p=2.1x10748).

Mental health conditions also benefited significantly from wearable integration. Generalized anxiety dis-
order prediction improved from a strong CEHR baseline of 0.791 to 0.843 using [XEHR-CEHR, Xwear-sum)
(Concat), achieving a 4+0.052 improvement (p = 6.0 x 10~4%), while major depressive disorder showed simi-
lar gains from 0.741 to 0.809 with [XEHR-CEHR, Xwear-sum] (Weighted) (4+0.068, p = 2.7 x 107°%).

Sleep apnea showed consistent improvement, rising from a CEHR baseline of 0.744 to 0.804 using
[XEHR—CEHR7 xwear—sum] (COHC&t) (+0059, p=1.0x 10_49).

Even outcomes with already strong baseline performance showed meaningful improvements. Heart fail-
ure, which had the highest baseline CEHR performance at 0.886, still achieved a statistically significant
improvement to 0.905 using [XEHR-CEHR, Xwear-sum] (Weighted) (+0.019, p = 1.1 x 10712). Atrial fibrillation
demonstrated substantial improvement, rising from an OMOP baseline of 0.656 to 0.802 with [Xgar-oMmOP,
Xyear-sum] (Concat), representing a +0.146 gain (p = 2.1 x 10729).

Appendix C. Demographics

Supplementary Table 3: Age and sex distribution across disease cohorts. Values shown as mean + SD for
age and percentages for sex. Cases indicate positive disease outcomes; Controls
indicate negative outcomes.

‘ HLD HTN GERD GAD MDD OB SA T2D HF AF

Sample Size

Cases 385 296 324 329 269 269 257 106 94 68

Controls 1412 1,659 1,874 2,080 2,122 2,040 2,300 2,539 2,762 2,827
Age (years)

Cases 55.61129  57.81128  55.71142  49.1i150 4881158 HL.5i143 5551139 5791120  64.1i113 6564115

Controls 51.74150 5344151  57.1a152  60.5+4142  59.9+144 5834152 5744153  57.4ii52  57.64148  57.8+148
Female (%)

Cases 73.5 65.5 68.8 76.6 75.1 75.5 64.6 65.1 60.6 54.4

Controls 75.6 74.7 68.6 65.2 66.1 68.8 72.1 70.7 69.6 69.6
Male (%)

Cases 24.7 33.1 29.9 20.7 21.9 22.3 33.5 32.1 38.3 44.1

Controls 21.2 22.2 28.9 33.3 32.3 28.9 25.7 26.9 28.0 27.9

Supplementary Table 4: Race and ethnicity distribution across disease cohorts. Values shown as percentages
of overall cohort (cases + controls combined).

| HLD HTN GERD GAD MDD OB SA T2D HF AF

Race (%)
White 84.9 86.2 85.3 85.9 86.1 86.3 85.8 86.5 85.7 85.6
Black/African American 3.5 2.3 3.2 3.7 3.5 2.7 3.4 3.1 3.5 3.6
Asian 2.6 3.2 3.1 2.8 3.0 2.9 2.6 2.4 2.7 2.7
Multiple/Other 9.0 8.3 8.4 7.6 74 8.1 8.2 8.0 8.1 8.1
Ethnicity (%)
Not Hispanic/Latino 93.0 93.1 93.6 93.4 93.5 93.2 93.4 93.4 93.5 93.5
Hispanic/Latino 5.6 5.5 4.6 5.0 4.8 5.1 5.0 4.8 4.8 4.7
Prefer not to answer /Skip 1.4 1.4 1.8 1.6 1.7 1.7 1.6 1.8 1.7 1.8

Disease abbreviations: HLD = Hyperlipidemia; HTN = Hypertension; GERD = Gastroesophageal Reflux
Disease; GAD = Generalized Anxiety Disorder; MDD = Major Depressive Disorder; OB = Obesity; SA = Sleep
Apnea; T2D = Type 2 Diabetes; HF = Heart Failure; AF = Atrial Fibrillation.

Note: Multiple/Other race category includes individuals identifying as more than one population, other single
populations, none of the listed categories, none indicated, and those who preferred not to answer.
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Appendix D. Wearable Feature Importance

Supplementary Table 5: Most frequent wearable features appearing in top 20 predictors across 10 health
conditions. Checkmarks indicate feature appeared in top 20 for that condition.

Feature Category ‘ HLD HTN GERD GAD MDD OB SA T2D HF AF ‘ Freq.
Heart Rate - Fat Burn Zone

Min HR (mean, max, min) v v v v v v v v 10/10

Zone ratio (max, std, mean) v v v v - v v v v v 9/10

Minutes in zone (max, std, mean) v v v v v 8/10
Resting Heart Rate

HR variability - std v v - - v v v - - 5/10

Max resting HR - - v - - v - v - 4/10

Non-resting HR metrics - v - - v v v - - - 4/10
Sleep Metrics

Total sleep time (mean, max) v - v - - - v - - 4/10

Wake duration (max, std) v v 2/10

Sleep stage ratios v v v v 4/10

Time in bed (mean, max) v - v - - - - v - - 3/10
Activity & Steps

Daily steps (mean, std, min, trend) - v v v v v - - - - 5/10

Valid recording days - v v - - v v - - - 4/10

Active minutes (light/fair/very) - v - - - v v v - - 4/10
Heart Rate - Cardio Zone

Zone ratio & minutes v v v v v 5/10

Min/max HR in cardio v v v v - v - - v v 7/10

Disease abbreviations: HLD = Hyperlipidemia; HTN = Hypertension; GERD = Gastroesophageal Reflux
Disease; GAD = Generalized Anxiety Disorder; MDD = Major Depressive Disorder; OB = Obesity; SA = Sleep
Apnea; T2D = Type 2 Diabetes; HF = Heart Failure; AF = Atrial Fibrillation.

Note: Features shown are aggregated categories where similar metrics (mean, max, min, std) are grouped together.
Checkmark indicates at least one variant of the feature appeared in the top 20 most important predictors for that
condition. Frequency column shows number of conditions where the feature appeared.

The pattern of feature importance across conditions reveals clinically meaningful insights into disease-
specific physiological signatures. Most notably, fat burn zone heart rate metrics (minimum heart rate and
zone ratios) emerged as universal predictors across all 10 conditions, suggesting that cardiovascular effi-
ciency during moderate-intensity activity serves as a fundamental indicator of overall health status. In
contrast, disease-specific patterns highlighted distinct pathophysiological mechanisms: purely cardiac con-
ditions (heart failure and atrial fibrillation) were predicted exclusively by heart rate-based features with no
contribution from activity or sleep metrics, reflecting their primary dependence on cardiac function rather
than lifestyle factors. Mental health conditions (GAD and MDD) showed unique importance of sleep disrup-
tion metrics—particularly wake duration and sleep stage architecture—which were largely absent in other
conditions, aligning with established bidirectional relationships between sleep disturbances and psychiatric
disorders. Interestingly, GERD shared this sleep signature with mental health conditions, consistent with
nocturnal reflux symptoms disrupting sleep architecture. Physical activity metrics (daily steps, active min-
utes) emerged as important predictors for lifestyle-modifiable conditions (hypertension, obesity, GERD, sleep
apnea) but were notably absent in the top features for purely cardiac conditions, suggesting that wearable-
derived activity patterns may be particularly valuable for preventive screening and behavioral intervention
targeting in metabolic and lifestyle-related diseases.
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