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A DATASHEET

The following is the datasheet (Gebru et al., 2021) for Off-the-Grid Multi-Agent Reinforcement
Learning (OG-MARL). The OG-MARL is openly accessible on our anonymised website:

• https://sites.google.com/view/og-marl

A.1 MOTIVATION

For what purpose was the dataset created? The datasets in OG-MARL were created to facilitate
research in offline Multi-Agent Reinforcement Learning (MARL). Offline MARL is a nascent field
of machine learning that promises to unlock real-world applications of MARL. However, progress
has been hampered by the lack of a standardised, high-quality benchmark datasets. OG-MARL was
built to fill this gap and drive progress in the field.

Who created the dataset and on behalf of which entity? OG-MARL was created by <anonymous>
on behalf of <anonymous> and the <anonymous>.

Who funded the creation of the dataset? The creation of OG-MARL was funded by <anonymous>.

A.2 COMPOSITION

What do the instances that comprise the dataset represent? The various datasets in OG-MARL
comprise of environment transitions in popular MARL benchmark environments (e.g. SMAC by
Samvelyan et al. (2019)). The transitions were generated by recording environment interactions
between policies trained using online RL.

How many instances are there in total? Each dataset in OG-MARL has approximately 1 million
transitions in it.

Does the dataset contain all possible instances or is it a sample of instances from a larger set?
Great care was taken to ensure that the dataset in OG-MARL had good coverage of the state and
action space of the environment. It is however, not possible (nor desirable) to guarantee full coverage.

What data does each instance consist of? Each instance consists of a sequence of multi-agent
transitions in the environment. A transition is composed of agent observations, actions, rewards and
next observations ({o1t , . . . , ont }, {a1t , . . . , ant }, {r1t , . . . , rnt }, {o1t+1, . . . , o

n
t+1}).

Is there a label or target associated with each instance? As we are in the reinforcement learning
paradigm, instances do not have labels. However, since each instance is a multi-agent transition, they
do each have a corresponding reward for each agent, which we use for training.

Is any information missing from individual instances? Everything is included. No data is missing.

Are relationships between individual instances made explicit? Transitions that belong to the same
episode can be retrieved together, if desired.

Are there recommended data splits? In offline RL one does not need to split data like in supervised
learning. All data can be used for training.

Are there any errors, sources of noise, or redundancies in the dataset? None.

Is the dataset self-contained, or does it link to or otherwise rely on external resources? OG-
MARL is completely self-contained. The datasets are stored in a binary format but can be loaded into
a dataset loader with the utilities provided in the OG-MARL code.

Does the dataset contain data that might be considered confidential? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

Does the dataset identify any subpopulations? No.

Is it possible to identify individuals, either directly or indirectly from the dataset? No.

Does the dataset contain data that might be considered sensitive in any way? No.
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A.3 COLLECTION PROCESS

How was the data associated with each instance acquired? To generate the datasets for OG-MARL
we trained online MARL algorithms on a variety of popular MARL benchmark environments and
recorded the environment transitions.

What mechanisms or procedures were used to collect the data? We trained our online MARL
algorithms on a PC with a GPU (Nvidia RTX 3070) and recorded experiences with a python utility
we designed and subsequently open-sourced to the community.

If the dataset is a sample from a larger set, what was the sampling strategy? The different
datasets in OG-MARL have different data compositions. We grouped transitions into Good, Medium
and Poor according to the return of episode that the transition belonged to.

Who was involved in the data collection process? <Anonymous> and <anonymous>.

Over what timeframe was the data collected? The datasets in the current version of OG-MARL
were collected over a period of about 3 months.

Were any ethical review processes conducted? No, since it is believed that none was required.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources No.

Were the individuals in question notified about the data collection? Not applicable.

Did the individuals in question consent to the collection and use of their data? Not applicable.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? Not applicable.

Has an analysis of the potential impact of the dataset and its use on data subjects been con-
ducted? Not applicable.

A.4 PREPROCESSING/CLEANING/LABELING

Was any preprocessing/cleaning/labeling of the data done? Transitions were grouped into short
continuous sequences to allow for training recurrent policies.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data? Individual
transitions can be loaded instead of sequences.

Is the software that was used to preprocess/clean/label the data available? Yes, in the OG-MARL
repository.

A.5 USES

Has the dataset been used for any tasks already? Yes. Zhu et al. (2023) and Formanek et al. (2023)
both used OG-MARL.

Is there a repository that links to any or all papers or systems that use the dataset? There is a
repository hosted by <anonymous> linked above.

What (other) tasks could the dataset be used for? OG-MARL could be used for any kind of
sequential decision-making research.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? Loading entire episodes of transitions
needs to be made easier in future releases.

Are there tasks for which the dataset should not be used? The data in OG-MARL was generated
on simplified environments and does not necessarily generalise to the real world.

15



Under review as a conference paper at ICLR 2023

A.6 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity on behalf of which the
dataset was created? Yes, OG-MARL is publicly available on the internet.

How will the dataset will be distributed? OG-MARL datasets are hosted in an S3 bucket but can
easily be accessed via our publicly open website or by running the download scripts in the OG-MARL
code.

When will the dataset be distributed? The datasets were released in February of 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? We have applied the CC BY-NC-SA dataset licence to
OG-MARL.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

A.7 MAINTENANCE

Who will be supporting/hosting/maintaining the dataset? <anonymous> will be responsible for
maintaining the datasets on behalf of <anonymous>, who will also be financially supporting the
hosting of the datasets.

How can the owner/curator/manager of the dataset be contacted? Via email, <anonymous>.

Is there an erratum? Versioning and changes are tracked on the OG-MARL repository.

Will the dataset be updated? OG-MARL is a growing collection of offline MARL datasets. The
creator and the wider community will be adding new datasets over time.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances? Not applicable.

Will older versions of the dataset continue to be supported/hosted/maintained? Yes.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes, please open a pull request on the OG-MARL repository.
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B ADDITIONAL ENVIRONMENT INFORMATION

In this section we provide additional information of all of the environments supported in OG-MARL.
In Table B.1 we provide an overview of salient environment characteristics, in addition to the
algorithm which was used to generate the behaviour policies. In Table B.2 we provide links to the
source of the environments for the reader to refer to for additional information about the environments.

Table B.1: All supported environments and scenarios in OG-MARL and some of their characteristics.

Environment Scenario Agents Actions Observations Reward Agent Types Behaviour Online Perf.

SMAC 3m 3

Discrete Vector Dense

Homog

QMIX

16.1
8m 8 Homog 16.2

2s3z 5 Heterog 18.2
5m_vs_6m 5 Homog 16.6

27m_vs_30m 27 Homog 16.0
3s5z_vs_3s6z 8 Heterog 17.0
2c_vs_64zg 2 Homog 18.0

MAMuJoCo
2-HalfCheetah 2

Continuous Vector Dense
Heterog

MATD3
6924

2-Ant 2 Homog 2621
4-Ant 4 Homog 2769

PettingZoo

Pursuit 8 Discrete
Pixels Dense

Homog QMIX 79.5
Co-op Pong 2 Discrete Heterog IDQN 65.1
Pistonball 15 Continuous Homog MATD3 84.6

KAZ 2 Discrete Hetrog Human 6.1

Flatland 3 Trains 3 Discrete Vector Dense Homog IDQN -5.1
5 Trains 5 -5.9

SMAC v2 terran_5_vs_5 5
Discrete Vector Dense Hetrog QMIX

17.0
zerg_5_vs_5 5 15.2

terran_10_vs_10 10 16.9
CityLearn 2022_all_phases 17 Continuous Vector Dense Homog ITD3 -6421

Voltage Control case33_3min_final 6 Continuous Vector Dense Homog ITD3 -12.3

Table B.2: All environments with links to their sources.

Environment Website
SMAC v1 https://github.com/oxwhirl/smac
SMAC v2 https://github.com/oxwhirl/smacv2
PettingZoo https://pettingzoo.farama.org/
Flatland https://flatland.aicrowd.com/intro.html
MAMuJoCo https://github.com/schroederdewitt/multiagent_mujoco
CityLearn https://github.com/intelligent-environments-lab/CityLearn
Voltage Control https://github.com/Future-Power-Networks/MAPDN
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C ADDITIONAL INFORMATION ON DATASETS

In this section, we provide additional information about the datasets in OG-MARL. In Table C.1 we
give the mean episode return with standard deviation for all datasets in OG-MARL.

Table C.1: Table of the mean episode return with the standard deviation for all datasets in OG-MARL.

Environment Scenario Dataset Mean Episode Return (± Std) Number of Sequences

SMAC

3m
Good 16.0±6.1 120569
Medium 10.0±6.0 120004
Poor 4.8±2.3 118447

8m
Good 16.3±4.4 111873
Medium 10.3±3.4 120845
Poor 5.3±0.6 109515

5m_vs_6m
Good 16.6±4.7 112779
Medium 12.8±5.1 117594
Poor 7.7±1.5 110031

2s3z
Good 18.2±2.9 107900
Medium 12.8±3.1 107640
Poor 6.8±2.1 101197

3s5z_vs3s6z
Good 17.0±3.3 101335
Medium 11.0±1.7 107873
Poor 5.7±2.3 107475

2c_vs_64zg
Good 18.0±2.2 108270
Medium 13.1±2.0 111199
Poor 9.9±1.6 115370

27m_vs_30m
Good 16.0±2.1 110271
Medium 10.5±1.2 113737
Poor 5.7±2.5 110845

MAMuJoCo

2-HalfCheetah
Good 6924±1270 100000
Medium 1484±469 100000
Poor 400±333 100000

2-Ant
Good 2621±493 100041
Medium 1099±264 100109
Poor 437±164 99804

4-Ant
Good 2769±270 100170
Medium 1546±389 100215
Poor 542±216 100224

PettingZoo

Pursuit
Good 79.5±10.8 101249
Medium 22.7±12.4 100087
Poor -27.3±14.0 100000

Co-op Pong
Good 65.1±35.6 100687
Medium 35.6±29.9 101490
Poor 14.4±18.7 102277

Pistonball
Good 84.6±17.9 208518
Medium 34.1±25.6 200142
Poor 12.0±22.6 200000

KAZ Human 6.1±6.2 3000

Flatland

3 Trains
Good -5.2±8.0 23000
Medium -16.1±11.8 19800
Poor -28.8±11.8 19200

5 Trains
Good -5.9±8.0 20600
Medium -16.3±10.2 18000
Poor -25.5±10.5 17600

SMAC v2
terran_5_vs_5 Replay 10.4±5.9 97795
zerg_5_vs_5 Replay 7.5±3.6 137776
terran_10_vs_10 Replay 11.4±5.6 75355

CityLearn 2022_all_phases Replay -6820.7±458.4 169068
Voltage Control case33_3min_final Replay -25.1±22.3 40541
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C.1 VIOLIN PLOTS

In addition to the table with mean episode returns, we also provide violin plots for all datasets in
OG-MARL in order to visualise the distribution of episode returns induced by the behaviour policies.

(a) SMAC 3m (b) SMAC 8m (c) SMAC 2s3z

(d) SMAC 5m_vs_6m (e) SMAC 3s5z_vs_3s6z (f) SMAC 2c_vs_64zg

(g) SMAC 27m_vs_30m (h) PettingZoo Pursuit (i) PettingZoo Cooperative Pong

(j) Flatland 3-trains (k) Flatland 5-trains (l) SMAC v2 terran_5_vs_5

(m) SMAC v2 zerg_5_vs_5 (n) SMAC v2 terran_10_vs_10 (o) PettingZoo KAZ

Figure C.1: Violin plots of all datasets with discrete actions.
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(a) MAMuJoCo 2-halfcheetah (b) MAMuJoCo 2-ant (c) MAMuJoCo 4-ant

(d) PettingZoo Pistonball (e) CityLearn (f) Voltage Control

Figure C.2: Violin plots of all datasets with continuous actions.

C.2 QUALITATIVE ANALYSIS OF DATASETS

Fitting policies (trajectories) into predefined buckets is challenging since different tasks have vastly
different reward functions which usually do not increase linearly: once a policy “unlocks” a new skill,
a sudden jump in return is often observed. Additionally, adding the same amount of exploration noise
to policies results in vastly different responses within different environments.

We, therefore, curated Poor, Medium & Good datasets based on empirical observations of what
skills different policies had learnt and associated these skills with a range of numerical returns.
Visually analysing the recordings of rollouts from different policies acts as a proxy for understanding
the reward landscape of a task.

This level of analysis, we believe, is important: in previous work, it is common for authors to state that
they “early-stopped training” or “used a partially-trained policy” (Fu et al., 2020) to define a medium
dataset, but it is not explicitly stated when training was terminated or whether there were specific
characteristics in the trajectories that were present at that point. Researchers are also less strict in
defining each specific dataset category since their experiments are often run on mixed datasets (Yang
et al., 2021). To this end, we encourage users of OG-MARL to contribute baseline results and
experiment with any combination of mixed datasets created from our collection.

SMAC We curated SMAC datasets by using the performance categories from Yang et al. (2021),
where policies with a mean episode return between 0 and 10 are considered Poor, between 10 and
15 Medium and between 15 and 20 Good. We validated the choice of these boundaries by visually
analysing the behaviour of agents within these categories. In general, we found that agents in Poor
datasets seldomly engaged the opponent and were quickly overwhelmed. Medium agents began to
show signs of coordination but sometimes attempted to flee the battlefield. Finally, Good agents
tended to coordinate their attacks and always engaged the opponent.

Generating three datasets for each task brought unique challenges: for example, it was often found
that on easier maps such as “3m” and “8m”, the episodic returns would dramatically jump during
training, resulting in Good policies having many episodes with maximum returns, further making
selecting a Medium policy challenging, while agents in “2c_vs_64zg” always received episodic
returns ≥ 10, even when behaving randomly. These issues are symptomatic of the reward function
used in SMAC (Sun et al., 2021) and were addressed by adding a larger amount of exploration noise
ϵ to the policies generating the datasets.

Multi-Agent MuJoCo. MAMuJoCo scenarios have different reward functions and termination
conditions (Duan et al., 2016) and hence the return landscape of each scenario needed to be analysed
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separately. This essential step highlighted that episode returns should not be taken at face value
and that dataset boundaries cannot be arbitrarily chosen: it was often observed that certain policies
had learnt to game the system, for example, receiving misleadingly high rewards by learning to
stop moving (and hence avoiding episode termination). These trajectories did not form part of our
offline datasets and we, therefore, needed to add higher levels of exploration noise to ensure that the
agents moved around, particularly for the Poor datasets. We also noticed that HalfCheetah agents
often learnt to game the system by walking upside-down, before ultimately learning to maximise
rewards by remaining upright in order to move faster. This behaviour can be attributed to the fact
that HalfCheetah does not have a termination condition, unlike other scenarios such as Ant, where
an episode terminates if the agents’ orientation crosses a pre-defined threshold i.e. it falls over. We
decided to include these upside-down trajectories in the Poor HalfCheetah dataset since we wished
to investigate whether meaningful learning is possible, i.e. whether it is possible to learn how to walk
upright from trajectories that are upside-down.

In general, Poor MAMuJoCo datasets consist of trajectories wherein the robot wandered around
its starting position with an abnormal gait. The Medium datasets contain a mix of successes and
failures i.e. struggling to make forward progress, hobbling, or walking in the correct direction, albeit
at a slower pace. The Good datasets contain examples of the robot running quickly in the correct
direction.

PettingZoo. When viewing the agents in the PettingZoo environments, we discovered peculiarities in
their reward landscapes. For example, in Pursuit, agents that had already learnt to complete the task
received significantly lower returns than expected (when compared to the “expert-level”/maximum
episode return). This points towards the importance of agent coordination to solve the task since
four pursuer agents are needed to capture each evader agent, and completing the task quickly i.e.
catching all evader agents in the shortest possible time, requires synchronisation from the start of
the episode. Therefore, the Poor dataset contained trajectories wherein agents had not learnt to
coordinate (and hence were unable to capture evader agents), while the Good dataset contained the
opposite i.e. agents that are highly coordinated and hence able to capture all evader agents efficiently.
Similarly, in Coop Pong and Pistonball, the different categories of datasets contained varying levels
of coordination (and hence different numbers of successes).

Additionally, we found that unrolling a policy resulted in a large variance in the episodic returns,
particularly in Coop Pong and, hence, opted to generate datasets by using different epsilon values on
the same policies.

Flatland. Analysing the episode return in Flatland is challenging because the maximum possible
episode return changes between episodes, since a new train track layout (and timetable) is randomly
generated at the start of each episode. We, therefore, curated datasets based on the number of
successful episodes, generated by a policy i.e. trains arrive on time > 80% of the time in the Good
datasets, ≈ 50% of the time in the Medium datasets and < 20% of the time in the Poor datasets.
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D ADDITIONAL BASELINE INFORMATION

In this section, we provide additional implementation details for each of the baseline algorithms
implemented in OG-MARL as well as the hyper-parameters used for the experiments and additional
results.

D.1 BACKGROUND: SINGLE AGENT OFFLINE RL ALGORITHMS

As mentioned in the main text, the primary challenge algorithms need to address during offline
training is data distribution mismatch between the behaviour (offline) data and the induced online
data. For example, the state visitation frequency induced by the behaviour policy is typically different
to that of the learnt policy. While state distribution mismatch can cause failure when the algorithm
is deployed, it does not generally cause any issues during training, and can easily be mitigated by
expanding the breadth and diversity of the dataset (Agarwal et al., 2019). On the other hand, the most
common and difficult-to-address type of distribution mismatch in offline RL is out-of-distribution
(OOD) actions. An offline RL algorithm may assign a high value to an OOD action during training
due to the extrapolation done by the neural network (Fujimoto et al., 2019). These errors then tend
to propagate to other state-action pairs, as Q-learning and related algorithms use bootstrapping to
compute Bellman targets (Kumar et al., 2019). The propagation of extrapolation error then manifests
itself as a kind of “unlearning”, where the performance of the offline RL algorithm rapidly starts to
degrade with further training. Most of the remedies proposed in the literature to address OOD actions
can be grouped into one of two categories.

Policy constraints. Several methods try to resitrict the degree to which the learnt policy can become
off-policy with respect to the behavioural policy. These methods tend to incorporate some form of
behaviour cloning (BC) into RL algorithms to force the learnt policy to remain relatively online with
respect to the behaviour dataset. Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019) and
Twin Delayed DDPG + behaviour cloning (TD3 + BC) (Fujimoto & Gu, 2021) are two popular
algorithms in this class.

Conservative value regularisation. The second approach mitigates extrapolation error by regularis-
ing the learnt value function to avoid overestimating values for OOD actions. An example of this
approach, called conservative Q-learning (CQL), has been successfully applied to Q-learning and
actor-critic methods by Kumar et al. (2020) in single-agent offline RL.

D.2 MULTI-AGENT OFFLINE MARL ALGORITHMS

At the time of writing, there are only a handful of cooperative offline MARL algorithms available in
the literature and we endeavoured to implement as many of them as possible in OG-MARL. However,
several algorithms proposed in the literature do not have open-source implementations online and
were therefore challenging to re-implement. In Table D.1 we give an overview of all the algorithms
in the literature and whether we re-implemented them in OG-MARL.

D.3 IMPLEMENTATION DETAILS

In this section, we highlight the most important implementation details for the algorithms in OG-
MARL and refer the reader to our open-source code for finer details.

IQL. Our independent Q-Learning (IQL) implementation consists of a system of independent Deep
Recurrent Q-Network (DRQN) (Hausknecht & Stone, 2015) agents.

IQL+BCQ. We add discrete BCQ (Fujimoto et al., 2019) to our IQL implementation by additionally
training a behaviour cloning policy which we use to evaluate how likely each action is to be taken by
the behaviour policy given the dataset. If the likelihood is below some threshold, we mask out that
action during Q-learning.

QMIX. Our QMIX implementation is very similar to the original (Rashid et al., 2018). We use a
single shared Q-network for all agents and concatenate agent IDs to the agent observations so that the
network can distinguish between different agents. As in the original QMIX paper, our Q-network is
a recurrent network that takes independent agent observations as input, while the mixing network
conditions on global state information. To improve the performance of our QMIX implementation,
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Table D.1: An overview of cooperative offline MARL algorithms from the literature grouped by
the work that proposed them as a novel algorithm or baseline. In the second column, we indicate
if the code for the algorithm was originally made available online (open-sourced) and in the third
column we indicate if the algorithm is implemented in OG-MARL. Algorithms in bold were the main
contribution of the respective work while the rest are baselines used in the work. QMIX+CQL and
QMIX+BCQ are novel baselines proposed in this work.

Algorithm Name Open-Sourced OG-MARL
MABCQ ✗ ✗
MAICQ ✓ ✓

DOP+CQL ✗ ✗
DOP+BCQ ✗ ✗

OMAR ✓ ✓
ITD3+CQL ✓ ✓
ITD3+BC ✗ ✓

MATD3+CQL ✗ ✓
MATD3+BC ✗ ✓
QMIX+CQL n/a ✓
QMIX+BCQ n/a ✓
IQL+BCQ ✗ ✓

we adopt the recommendation from Hu et al. (2021) to use Q-lambda (Sutton & Barto, 2018) to
compute target Q-values.

QMIX+CQL. We add conservative Q-learning (Kumar et al., 2020) to QMIX by uniformly sampling
a number of joint-actions from the joint-action space and using those to select Q-values before passing
them through the mixing network and using the resulting mixed Q-values to calculate the CQL-loss
term.

QMIX+BCQ. We add discrete BCQ (Fujimoto et al., 2019) to QMIX by additionally training a
behaviour cloning policy which we use to evaluate how likely each action is to be taken by the
behaviour policy given the dataset. If the likelihood is below some threshold, we mask out that action
during Q-learning in QMIX.

MAICQ. Our MAICQ implementation is as close as possible to the original by Yang et al. (2021).

ITD3 and MATD3. Our ITD3 and MATD3 use a shared policy network and shared Q-network, and
concatenate agent IDs to agent observations. The policy is a recurrent neural network with a single
GRU layer while the critic is a feedforward neural network that takes the global state as input instead
of the observations.

ITD3+BC and MATD3+BC. We incorporate behaviour cloning into ITD3 and MATD3 by adding a
behaviour cloning term to the policy learning step as in Fujimoto & Gu (2021)

ITD3+CQL and MATD3+CQL. We incorporate conservative Q-learning into ITD3 and MATD3 in
a very similar way to how it was done by Pan et al. (2022).

OMAR We tried to keep our implementation of OMAR as close to the original (Pan et al., 2022) as
possible. The main difference in our implementation is that the policy is a recurrent network, while
in the original, they used a feedforward network. We could not make OMAR perform well on our
tasks. We are unsure if this is because these algorithms perform poorly on our specific tasks, or if our
implementations are missing an important detail. But since our results closely resemble the results
reported by Barde et al. (2023), an independent work to the original OMAR paper, we decided to
include them.

D.4 HYPER-PARAMETERS

In this section, we highlight the values we used for the most important hyper-parameters in our
benchmark experiments. For additional details about the hyper-parameters we used, we refer to
the experiments directory in our open-source code. In Table D.2 and Table D.3 we give the
hyper-parameters for SMAC and MAMuJoCo experiments respectively. In order to keep the online
evaluation budget fixed (Kurenkov & Kolesnikov, 2022) we tuned hyperparameters on 3m and
2-Agent HalfCheetah for SMAC and MAMuJoCo respectively.
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Table D.2: Hyper-Parameters for Discrete Action Algorithms.

Algorithm Hyper-Parameter Name Value

All

Batch Size 32
Optimiser Adam
Learning Rate 1e-3
Hidden Activation Function ReLu
Q-Lambda 0.6

BC Policy Linear Layer Dimension 64
Policy GRU Layer Dimension 64

QMIX

Q-Network Linear Layer Dimension 64
Q-Network Linear Layers Dimension 64
Hyper-Network Dimension 64
Mixing Embedding Dimension 32
Soft Target Update Rate 1e-2

QMIX+BCQ

QMIX Hyper-Parameters Same as above.
Behaviour Network Linear Layer Dimension 64
Behaviour Network GRU Layer Dimension 64
Behaviour Threshold 0.4

QMIX+CQL
QMIX Hyper-Parameters Same as above.
CQL Alpha 2.0
Number of Sampled Actions 20

MAICQ

Policy Network Linear Layer Dimension 64
Policy Network GRU Layer Dimension 64
Critic Network First Linear Layer Dimension 64
Critic Network Second Linear Layer Dimension 64
Mixing Hyper-Network Dimension 64
Mixing Embedding Dimension 64
MAICQ Epsilon 0.5
MAICQ Advantages Beta 0.1
MAICQ Target Q-Taken Beta 1000

Table D.3: Hyper-Parameters for Continuous Action Algorithms.

Algorithm Hyper-Parameter Name Value

All

Batch Size 32
Optimiser Adam
Learning Rate 5e-4
Hidden Activation Function ReLu
Policy Linear Layer Dimension 128
Policy GRU Layer Dimension 128

ITD3
Critic Linear Layer Dimension 128
Critic Linear Layers Dimension 128
Target Update Rate 0.01

ITD3+BC Behaviour Cloning Alpha 2.5

ITD3+CQL CQL Alpha 10.0
Number of OOD Actions 10

OMAR

CQL Parameters Same as above.
OMAR Iterations 3
OMAR Number of Samples 20
OMAR Number of Elites 5
OMAR Sigma 2.0
OMAR Coefficient 0.7
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D.5 BASELINE RESULTS

In this section, we provide additional baseline results on datasets in OG-MARL.

Discrete Actions. In Table D.4 we give the baseline results on datasets with discrete actions. In
Figure D.1 we provide the aggregated performance profiles for SMAC.

Table D.4: Baseline results on datasets with discrete actions. The mean episode return with one
standard deviation across all seeds is given. The best mean episode return in each row is given in
bold.

Environment Scenario Dataset BC QMIX QMIX+BCQ QMIX+CQL MAICQ

SMAC

3m
Good 16.0±1.0 13.8±4.5 16.3±1.5 19.6±0.3 18.8±0.6
Medium 8.2±0.8 17.3±0.9 18.3±1.2 18.9±1.2 18.1±0.7
Poor 4.4±0.1 10.0±2.9 12.4±2.3 5.8±0.4 14.4±1.2

8m
Good 16.7±0.4 4.6±2.8 12.7±6.3 11.3±6.1 19.6±0.3
Medium 10.7±05 13.9±1.6 16.0±1.4 16.8±3.1 18.6±0.5
Poor 5.3±0.1 6.0±1.3 5.8±1.4 4.6±2.4 10.8±0.8

5m_vs_6m
Good 16.6±0.6 8.0±0.5 8.3±0.9 13.8±3.9 16.3±0.9
Medium 12.4±0.9 11.9±1.1 12.1±1.3 16.9±1.2 15.3±0.7
Poor 7.5±0.2 10.7±0.9 11.0±0.9 10.4±1.0 9.4±0.4

27m_vs_30m
Good 15.7±0.3 3.2±1.4 10.2±1.4 6.0±3.3 16.1±1.8
Medium 10.3±0.4 6.2±2.1 9.8±1.2 8.0±1.7 12.9±0.5
Poor 6.0±1.5 2.1±1.7 10.3±0.7 3.7±2.7 10.1±0.8

2s3z
Good 18.2±0.4 5.9±3.4 16.6±1.2 19.0±0.8 19.6±0.3
Medium 12.3±0.7 5.2±0.9 13.6±1.5 14.3±2.0 17.2±0.6
Poor 6.7±0.3 3.8±1.2 11.5±1.0 10.1±0.7 12.1±0.4

3s5z_vs_3s6z
Good 15.0±0.6 3.1±1.3 8.4±0.7 7.3±1.9 16.2±0.7
Medium 10.6±0.2 3.0±1.0 10.5±0.8 8.1±3.1 12.3±0.3
Poor 6.1±0.3 2.8±1.0 8.2±0.9 2.9±0.9 8.4±0.2

2c_vs_64zg
Good 17.5±0.4 10.9±4.0 18.7±0.8 18.1±0.8 19.3±0.3
Medium 12.5±0.3 16.8±1.6 18.4±0.5 14.9±0.7 14.6±0.6
Poor 9.7±0.2 11.6±2.2 14.3±0.8 12.1±0.4 12.5±0.4

PettingZoo

Co-op Pong
Good 31.2±3.5 0.6±3.5 1.9±1.1 90.0±4.7 75.4±3.9
Medium 21.6±4.8 10.6±17.6 20.3±12.2 64.9±15.0 84.6±0.9
Poor 1.0±0.9 14.4±16.0 30.2±20.7 52.7±8.5 74.8±7.8

Pursuit
Good 78.3±1.8 6.7±19.0 66.9±14.0 54.4±6.3 92.7±3.7
Medium 15.0±1.6 -24.4±20.2 16.6±10.7 20.6±10.3 35.3±3.0
Poor -18.5±1.6 -43.7±5.6 -0.7±4.0 -19.6±3.3 -4.1±0.7

Flatland

3 Trains
Good -5.6±2.4 -3.6±0.4 -3.5±2.8 -2.1±0.4 -25.3±0.2
Medium -4.5±2.5 -12.5±1.0 -7.1±2.7 -4.6±0.5 -25.2±0.2
Poor -11.4±3.8 -27.9±0.8 -17.3±4.1 -24.9±0.4 -25.9±0.9

5 Trains
Good -28.1±1.4 -6.4±0.6 -8.1±4.9 -3.2±0.5 -25.6±0.5
Medium -9.7±5.7 -17.9±1.0 -10.6±8.4 -3.7±0.3 -25.9±0.5
Poor -9.9±3.8 -24.7±1.9 -9.5±6.6 -11.1±4.0 -25.6±0.4

SMACv2
terran_5_vs_5 Replay 7.3±1.0 13.7±2.7 13.8±4.4 11.8±0.9 13.7±1.7
zerg_5_vs_5 Replay 6.8±0.6 10.2±2.4 10.3±1.2 10.3±3.4 10.6±0.7
terran_10_vs_10 Replay 7.4±0.5 10.4±2.5 12.7±2.0 11.8±2.0 14.4±0.7

(a) SMAC Good (b) SMAC Medium (c) SMAC Poor

Figure D.1: Aggregated performance profiles (Agarwal et al., 2021) for SMAC. Shaded regions show
pointwise 95% confidence bands based on percentile bootstrap with stratified sampling. Results were
aggregated across all scenarios and seeds.
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Continuous Actions. In Table D.5 we give the baseline results on datasets with continuous actions.
In Figure D.2 we provide the aggregated performance profiles for MAMuJoCo.

Table D.5: Baseline results on datasets with continuous actions. The mean episode return with one
standard deviation across all seeds is given. The best mean episode return in each row is given in
bold.

Environment Scenario Dataset BC ITD3 ITD3+BC ITD3+CQL OMAR

MAMuJoCo

2-HalfCheetah
Good 6846±574 -578±33 7025±439 2934±1666 1434±1903

Medium 1627±187 -87±223 2561±82 1755±283 1892±220
Poor 465±59 -392±76 736±72 739±191 384±420

2-Ant
Good 2697±267 -1274±501 2922±194 606±487 464±469

Medium 1145±126 -1416±845 744±283 716±431 799±186
Poor 954±80 741±398 1256±122 814±177 857±73

4-Ant
Good 2802±133 -1033±432 2628±971 712±672 344±631

Medium 1617±153 -1159±733 1843±494 1190±186 929±349
Poor 1033±122 703±465 1075±96 518±122 518±112

PettingZoo Pistonball
Good 94.1±1.2 0.8±10.6 93.1±2.0 -2 -
Medium 10.3±6.0 -5.5±3.2 13.7±8.9 - -
Poor 4.6±3.2 -5.8±2.3 6.1±2.5 - -

CityLearn 2022_all_phases Replay -6576±39 -6594±1 -6663±87 -6598±9 -6630±44
VoltageControl case33_3min_final Replay -9.9±2.3 -10.0±0.8 -11.1±0.7 -32.9±6.7 -26.5±9.4

(a) MAMuJoCo Good (b) MAMuJoCo Medium (c) MAMuJoCo Poor

Figure D.2: Aggregated performance profiles (Agarwal et al., 2021) for MAMuJoCo. Shaded regions
show pointwise 95% confidence bands based on percentile bootstrap with stratified sampling. Results
were aggregated across all scenarios and seeds.

2Due to the nature of the CQL and OMAR algorithms, and the large number of agents in Pistonball we have
not managed to successfully run these experiments without running out of RAM on the compute available to us.
We are working on resolving this.
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D.6 COMPETITIVE OFFLINE MARL

We generated a dataset on the competitive MPE scenario Simple Adversary3 by recording all the
experience of a online system of IQL agents. We then train systems of IQL agents, IQL+BCQ agents
and BC agents offline on the dataset.

Figure D.3: Simple Adversary baseline results. The mean across 3 seeds and the standard error is
plotted. Top: episode return for the agents navigating to the designated point. Bottom: episode
return for the adversary agent.

D.7 OFFLINE MARL FROM HUMAN GENERATED DATA

We generated a dataset on the Knights, Archers and Zombies environment4 by recording a range of
inexperienced human players learning to play the game for the first time. We then trained the discreet
action algorithm on the dataset. However, the QMIX, QMIX+BCQ, QMIX+CQL all failed because
their Q-values tended to grow unbounded. This is likely because the human-generated KAZ dataset is
significantly ( 100 times) smaller than the other datasets. This is very challenging for offline MARL
algorithms due to the larger number of out-of-distribution actions, resulting in rapidly compounding
extrapolation errors.

3https://pettingzoo.farama.org/environments/mpe/simple_adversary/
4https://pettingzoo.farama.org/environments/butterfly
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Figure D.4: Baseline results on a dataset generated from human players on the environment KAZ.
The mean across 3 seeds and the standard error is plotted.

D.8 REPRODUCING BASELINE RESULTS

Scripts for reproducing our baseline experiments are included in the open-sourced code.

D.9 BASELINE COMPUTE BUDGET

To run all of our baselines we used CPUs on an internal compute cluster. In total we used 546 days of
CPU compute time.
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E DATASET LICENCE, AUTHOR STATEMENT, HOSTING & MAINTENANCE
PLAN

E.1 DATASET LICENCE

The datasets in OG-MARL are licenced under the Common Dataset Licences, CC BY-NC-SA.5
This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or
format for noncommercial purposes only, and only so long as attribution is given to the creator. If
you remix, adapt, or build upon the material, you must license the modified material under identical
terms.

E.2 AUTHOR STATEMENT

The authors of "Off-the-Grid MARL: Datasets with Baselines for Offline Multi-Agent Reinforcement
Learning" bear all responsibility in case of any violation of rights during the collection of the data or
other work, and will take appropriate action when needed, e.g. to remove data with such issues.

E.3 HOSTING & MAINTENANCE PLAN

The OG-MARL datasets are hosted in an accessible, online storage bucket, kindly hosted by <anony-
mous>. An easy-to-use interface for downloading datasets from the bucket is provided via our
website. Datasets will continue to be maintained by the authors and dataset versions will be tracked
on the OG-MARL GitHub repository. The OG-MARL code will also be tracked on GitHub. Issues
and feature requests can be submitted on the GitHub repository.

5https://paperswithcode.com/datasets/license
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