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ABSTRACT

Communication lays the foundation for cooperation in human society and in
multi-agent reinforcement learning (MARL). Humans also desire to maintain
their privacy when communicating with others, yet such privacy concern has not
been considered in existing works in MARL. We propose the differentially pri-
vate multi-agent communication (DPMAC) algorithm, which protects the sensi-
tive information of individual agents by equipping each agent with a local mes-
sage sender with rigorous (ϵ, δ)-differential privacy (DP) guarantee. In contrast to
directly perturbing the messages with predefined DP noise as commonly done in
privacy-preserving scenarios, we adopt a stochastic message sender for each agent
respectively and incorporate the DP requirement into the sender, which automati-
cally adjusts the learned message distribution to alleviate the instability caused by
DP noise. Further, we prove the existence of a Nash equilibrium in cooperative
MARL with privacy-preserving communication, which suggests that this prob-
lem is game-theoretically learnable. Extensive experiments demonstrate a clear
advantage of DPMAC over baseline methods in privacy-preserving scenarios.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has shown remarkable achievements in many real-
world applications such as sensor networks (Zhang & Lesser, 2011), autonomous driving (Shalev-
Shwartz et al., 2016b), and traffic control (Wei et al., 2019). To mitigate non-stationarity when
training the multi-agent system, centralized training and decentralized execution (CTDE) paradigm
is proposed. The CTDE paradigm yet faces the hardness to enable complex cooperation and coordi-
nation for agents during execution due to the inherent partial observability in multi-agent scenarios
(Wang et al., 2020b). To make agents cooperate more efficiently in complex partial observable
environments, communication between agents has been considered. Numerous works proposed dif-
ferentiable communication methods between agents, which can be trained in an end-to-end manner,
for more efficient cooperation among agents (Foerster et al., 2016; Jiang & Lu, 2018; Das et al.,
2019; Ding et al., 2020; Kim et al., 2021; Wang et al., 2020b). The communication can be either
broadcast (Das et al., 2019; Jiang & Lu, 2018; Wang et al., 2020b), where the connection between
agents can be modeled as a complete graph, or one-to-one as a general graph (Ding et al., 2020).

However, the advantages of communication, resulting from full information sharing, come with the
possible privacy leakage of individual agents for both broadcasted and one-to-one messages. There-
fore, in practice, one agent may be unwilling to fully share its private information with other agents
even though in cooperative scenarios. For instance, if we train and deploy an MARL-based au-
tonomous driving system, each autonomous vehicle involved in this system could be regarded as an
agent and all vehicles work together to improve the safety and efficiency of the system. Hence, this
can be regarded as a cooperative MARL scenario (Shalev-Shwartz et al., 2016a; Yang et al., 2020).
However, owners of autonomous vehicles may not allow their vehicles to send private information
to other vehicles without any desensitization since this may divulge their private information such
as their personal life routines (Hassan et al., 2020). Hence, a natural question arises:

Can the MARL algorithm with communication under the CTDE framework be endowed with both
the rigorous privacy guarantee and the empirical efficiency?
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To answer this question, we start with a simple motivating example called single round binary
sums, where several players attempt to guess the bits possessed by others and they can share their
own information by communication. In Section 4, we show that a local message sender using
the randomized response mechanism allows an analytical receiver to correctly calculate the binary
sum in a privacy-preserving way. From the example we gain two insights: 1) The information is
not supposed to be aggregated likewise in previous communication methods in MARL (Das et al.,
2019; Ding et al., 2020), as a trusted data curator is not available in general. On the contrary,
privacy is supposed to be achieved locally for every agent; 2) Once the agents know a priori, that
certain privacy constraint exists, they could adjust their inference on the noised message. These two
insights indicate the principles of our privacy-preserving communication structure that we desire a
privacy-preserving local sender and a privacy-aware analytical receiver.

Our algorithm, differentially private multi-agent communication (DPMAC), instantiates the de-
scribed principles. More specifically, for the sender part, each agent is equipped with a local sender
which ensures differential privacy (DP) (Dwork, 2006) by performing an additive Gaussian noise.
The message sender in DPMAC is local in the sense that each agent is equipped with its own message
sender, which is only used to send its own messages. Equipped with this local sender, DPMAC is
able to not only protect the privacy of communications between agents but also satisfy different pri-
vacy levels required from different agents. In addition, the sender adopt the Gaussian distribution to
represent the message space and sample the stochastic message from the learned distribution. How-
ever, it is known that the DP noise may impede the original learning process (Dwork et al., 2014;
Alvim et al., 2011), resulting in unstable or even divergent algorithms, especially for deep-learning-
based methods (Abadi et al., 2016; Chen et al., 2020). To cope with this issue, we incorporate the
noise variance into the representation of the message distribution, so that the agents could learn to
adjust the message distribution automatically according to varying noise scales. For the receiver
part, because of the gradient chain between the sender and the receiver, our receiver naturally uti-
lizes the privacy-relevant information hidden in the gradients. This implements the privacy-aware
analytical receiver described in the motivating example.

When protecting the privacy in communication is required in a cooperative game, the game is not
purely cooperative anymore since each player involved will face a trade-off between the team utility
and its personal privacy. To analyze the convergence of cooperative games with privacy-preserving
communication, we first define a single-step game, namely the collaborative game with privacy
(CGP). We prove that under some mild assumptions of the players’ value functions, CGP could
be transformed into a potential game (Monderer & Shapley, 1996), subsequently leading to the
existence of a Nash equilibrium (NE). With this property, NE could also be proved to exist in the
single round binary sums game. Furthermore, we extend the single round binary sums into a multi-
step game called multiple round sums using the notion of Markov potential game (MPG) (Leonardos
et al., 2021). Inspired by Macua et al. (2018) and modeling the privacy-preserving communication
as part of the agent action, we prove the existence of NE, which indicates that the multi-step game
with privacy-preserving communication could be learnable.

To validate the effectiveness of DPMAC, extensive experiments are conducted in multi-agent parti-
cle environment (MPE) (Lowe et al., 2017), including cooperative navigation, cooperative commu-
nication and navigation, and predator-prey. Specifically, in privacy-preserving scenarios, DPMAC
significantly outperforms baselines. Moreover, even without any privacy constraints, DPMAC could
gain competitive performance against baselines.

To sum up, the contributions of this work are threefold:

• To the best of our knowledge, we make the first attempt to develop a framework for private com-
munication in MARL, named DPMAC, with the theoretical guarantee of (ϵ, δ)-DP.

• We prove the existence of the Nash equilibrium for the cooperative games with privacy-preserving
communication, which shows that these games are learnable.

• Experiments on the MPE show that DPMAC clearly outperforms other algorithms in privacy-
preserving scenarios and gains competitive performance in non-private scenarios.
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2 RELATED WORK

Learning to communicate in MARL Learning communication protocols in MARL by backprop-
agation and end-to-end training has achieved great advances in recent years (Sukhbaatar et al., 2016;
Foerster et al., 2016; Jiang & Lu, 2018; Das et al., 2019; Wang et al., 2020b; Ding et al., 2020; Kim
et al., 2021; Rangwala & Williams, 2020; Zhang et al., 2019; Singh et al., 2019; Zhang et al., 2020;
2021; Lin et al., 2021; Peng et al., 2017). Amongst these works, Sukhbaatar et al. (2016) propose
CommNet as the first differentiable communication framework for MARL. Further, TarMAC (Das
et al., 2019) and ATOC (Jiang & Lu, 2018) utilize the attention mechanism to extract useful informa-
tion as messages. I2C (Ding et al., 2020) makes the first attempt to enable agents to learn one-to-one
communication via causal inference. Wang et al. (2020b) propose NDQ, which learns nearly decom-
posable value functions to reduce the communication overhead. Kim et al. (2021) consider sharing
an imagined trajectory as an intention for effectiveness. Besides, to communicate in the scenarios
with limited bandwidth, some works consider learning to send compact and informative messages
in MARL via minimizing the entropy of messages between agents using information bottleneck
methods (Wang et al., 2020a; Tucker et al., 2022; Tian et al., 2021; Li et al., 2021). While learn-
ing effective communication in MARL has been extensively investigated, existing communication
algorithms potentially leave the privacy of each agent vulnerable to information attacks.

Privacy preserving in RL With wide attention on reinforcement learning (RL) algorithms and
applications in recent years, so have concerns about their privacy. Sakuma et al. (2008) consider
privacy in the distributed RL problem and utilize cryptographic tools to protect the private state-
action-state triples. Algorithmically, Balle et al. (2016) make the first attempt to establish a policy
evaluation algorithm with differential privacy (DP) guarantee, where the Monte-Carlo estimates
are perturbed with Gaussian noise. Wang & Hegde (2019) generalize the results to Q-learning,
where functional noise is added to protect the reward function. Theoretically, Garcelon et al. (2021)
analyze the regret bound of finite-horizon MDPs in the tabular case. In a large or continuous state
space where function approximation is required, Zhou (2022) subsequently takes the first step to
establish the sublinear regret in linear mixture Markov decision processes (MDPs). Zhao et al.
(2022) propose the differentially private version of the temporal difference learning with nonlinear
function approximation. Meanwhile, a large number of works focus on preserving privacy in multi-
armed bandits (Tao et al., 2022; Tenenbaum et al., 2021; Dubey, 2021; Zheng et al., 2020; Dubey &
Pentland, 2020; Tossou & Dimitrakakis, 2017).

Privacy is also studied in recent literature on MARL and multi-agent system. Ye et al. (2020) study
differential advising for value-based agents, which share action values as the advice, largely differing
in both the communication framework and the CTDE framework. Dong et al. (2020) propose an
average consensus algorithm with a DP guarantee in the multi-agent system.

3 PRELIMINARIES

We consider a fully cooperative MARL problem where N agents work collaboratively to maximize
the joint rewards. The underlying environment can be captured by a decentralized partially observ-
able Markov decision process (Dec-POMDP), denoted by the tuple ⟨S,A,O,P,R, γ⟩. Specifically,
S is the global state space, A =

∏N
i=1 Ai is the joint action space, O =

∏N
i=1 Oi is the joint ob-

servation space, P (s′ | s,a) := S × A × S → [0, 1] determines the state transition dynamics,
R(s,a) : S × A → R is the reward function, and γ ∈ [0, 1) is the discount factor. Given a joint
policy π = {πi}Ni=1, the joint action-value function at time t is Qπ (st,at) = E [Gt | st,at,π],
where Gt =

∑∞
i=0 γ

iRt+i is the cumulative reward, and at = {ati}Ni=1 is the joint action. The
ultimate goal of the agents is to find an optimal policy π∗ which maximizes Qπ (st,at).

Under the aforementioned cooperative setting, we study the case where agents are allowed to com-
municate with a joint message space M =

∏N
i=1 Mi. When the communication is unrestricted, the

problem is reduced to a single-agent RL problem, which effectively solves the challenge posed by
partially observable states, but puts the individual agent’s privacy at risk. To overcome the challenges
of privacy and partial observable states simultaneously, we investigate algorithms that maximize the
cumulative rewards while satisfying differential privacy (DP), given in Definition 3.1.
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Definition 3.1 ((ϵ, δ)-DP, Dwork (2006)). A randomized mechanism f : D → R satisfies (ϵ, δ)-
differential privacy if for any neighbouring datasets D,D′ ∈D and S ⊂ R, it holds that Pr[f(D) ∈
S] ≤ eϵ Pr [f (D′) ∈ S] + δ.

DP offers a mathematically rigorous way to quantify the privacy of an algorithm (Dwork, 2006). An
algorithm is said to be “privatized” under the DP model if it is statistically hard to infer the presence
of an individual data point in the dataset by observing the output of the algorithm. More intuitively,
an algorithm satisfies DP if it provides nearly the same outputs given the neighbouring input datasets
(i.e., Pr[f(D) ∈ S] ≈ Pr [f (D′) ∈ S]), which hence protects the sensitive information from the
curious attacker.

With DP, each agent i is assigned with a privacy budget ϵi, which is negatively correlated to the
level of privacy protection. Then we have ϵ = {ϵi}Ni=1 as the set of all privacy budgets. In addition
to maximizing the joint rewards as usually required in cooperative MARL, the messages sent from
agent i are also required to satisfy the privacy budget ϵi with probability at least 1− δ.

4 MOTIVATING EXAMPLE

Before introducing our communication framework, we first investigate a motivating example, which
is a cooperative game and inspires the design principles of private communication mechanisms
in MARL. The motivating example is a simple yet interesting game, called single round binary
sums. The game is extended from the example provided in Cheu (2021) for analyzing the shuffle
model, while we illustrate the game from the perspective of multi-agent systems. We note that
though this game is one-step, which is different from the sequential decision process like MDP, it
is illustrative enough to show how the communication protocol works as a tool to achieve a better
trade-off between privacy and utility.

Assume that there are N agents involved in this game. Each agent i ∈ [N ] has a bit bi ∈ [0, 1] and
can tell other agents the information about its bit by communication. The objective of the game is
for every agent to guess

∑
i bi, the sum of the bits of all agents. Namely, each agent i makes a guess

gi and the utility of the agent is to maximize ri = −|
∑

j bj − E[gi]|. The (global) reward of this
game is the sum of the utility over all agents, i.e.,

∑
i ri.

Without loss of generality, we write the guess gi into gi =
∑

j ̸=i yij + bi, where yij is the guessed
bit of agent j by agent i. If all agents share their bits without covering up, the guessed bit yij will
obviously be equal to bj and all agents attain an optimal return. Hence this game is fully cooperative
under no privacy constraints. However, the optimal strategy is under the assumption that everyone
is altruistic to share their own bits.

To preserve the privacy in communication, the message (i.e., the sent bit) could be randomized using
randomized response, which perturbs the bit bi with probability p, as shown below:

xi = RRR (bi) :=

{
Ber(1/2) with probability p

bi otherwise ,

where xi is the random message and Ber indicates the Bernoulli distribution. Under our context,
RRR is a privacy-preserving message sender, whose privacy guarantee is shown in Proposition 4.1.

Proposition 4.1 (Beimel et al. (2008)). Setting p = 2
eϵ+1 in RRR suffices for (ϵ, 0)-differential

privacy.

When each agent is equipped with such a privacy-preserving sender RRR while adhering to the
originally optimal strategy (i.e., believing what others tell and doing the guess), all agents would
make an inaccurate guess. The bias of the guess denoted as erri caused by RRR is then

erri = E[gi]−
∑
i

bi =
∑
j ̸=i

E[xj − bj ] = p
∑
j ̸=i

(
1

2
− bj) =

p(N − 1)

2
− p

∑
j ̸=i

bj .

Without any priori knowledge, the bias could not be reduced for (ϵ, 0)-DP algorithms. However, if
the probability p of perturbation is set as a prior common knowledge for all agents before the game

4



Under review as a conference paper at ICLR 2023

starts, the story will be different. One could transform the biased guess into

gAi = ARR(x⃗−i) :=
1

1− p

∑
j ̸=i

xj − (N − 1)p/2

 ,

where x⃗−i = [x1, . . . , xi−1, xi+1, . . . , xN ]⊤ denote the messages received by agent i. Then the
estimate will be unbiased as

E
[
gAi

]
=

1

1− p

E

∑
j ̸=i

xj

− p(N − 1)

2

+ bi =
∑
i

bi .

This example inspires that a communication algorithm could be both privacy-preserving and effi-
cient. From the perspective of privacy, by the post-processing lemma of DP, any post-processing
does not affect the original privacy level. From the perspective of utility, we could eliminate the bias
erri if the agent is equipped with the receiver ARR and the prior knowledge p is given.

In general, our motivating example gives two principles for designing privacy-preserving communi-
cation frameworks. First, to prevent the sensitive information from being inferred by other curious
agents, we equip each agent with a local message sender with certain privacy constraints. Second,
given a priori knowledge about the privacy requirement of other agents, the receiver could strategi-
cally analyze the received noisy messages to statistically reduce error due to the noisy communica-
tion. These two design principles correspond to two parts of our DPMAC framework respectively,
i.e., a privacy-preserving local sender and a privacy-aware receiver.

5 METHODOLOGY

Based on our design principles, we now introduce our DPMAC framework, as shown in Figure 1.
Our framework is general and flexible, which makes it compatible with any CTDE method.

5.1 PRIVACY-PRESERVING LOCAL SENDER WITH STOCHASTIC GAUSSIAN MESSAGES

In this section, we present the sender’s perspective on the privacy guarantee. At time t, for agent
i, a message function fs

i is used to generate a message for communication. fs
i takes a subset of

transitions in local trajectory τ ti as input, where the subset is sampled uniformly without replacement
from τ ti (denote the sampling rate as γ1). This message is perturbed by the Gaussian mechanism
with variance σ2

i (Dwork, 2006). Agent i then samples a subset of other agents to share this message
(denote the sampling rate as γ2). The following theorem guarantees differential privacy.
Theorem 5.1 (Privacy guarantee for DPMAC). Let γ1, γ2 ∈ (0, 1), and C be the ℓ2 norm of the
message functions. For any δ > 0 and privacy budget ϵi, the communication of agent i satisfies
(ϵi, δ)-DP when σ2

i =
14γ2γ

2
1NC2α
βϵi

, if we have α = log δ−1

ϵi(1−β)+1 ≤ 2σ′2 log
(
1/γ1α

(
1 + σ′2)) /3+1

with β ∈ (0, 1) and σ′2 = σ2
i /(4C

2) ≥ 0.7 .

With Theorem 5.1, one can directly translate a non-private MARL with a communication algorithm
into a private one. However, as we shall see in our experiment section, directly injecting the pri-
vacy noise into existing MARL with communication algorithms may lead to serious performance
degradation. In fact, the injected noise might jeopardize the useful information incorporated in the
messages, or even leads to meaningless messages. To alleviate the negative impacts of the injected
privacy noise on the cooperation between agents, we adopt a stochastic message sender in the sense
that the messages sent by our sender are sampled from a learned message distribution. This makes
DPMAC different from existing works in MARL that communicate through deterministic messages
(Sukhbaatar et al., 2016; Foerster et al., 2016; Jiang & Lu, 2018; Das et al., 2019; Ding et al., 2020;
Kim et al., 2021).

In the following, we drop the dependency of parameters on t when it is clear from the context.
Without loss of generality, let the message distribution be multivariate Gaussian and let pi be the
message sampled from the message distribution N (µi,Σi), where µi = fµ

i (oi, ai; θ
µ
i ) and Σi =

fσ
i (oi, ai; θ

σ
i ) are the mean vector and covariance matrix learned by the sender, and θµi and θσi are the
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Figure 1: The overall structure of DPMAC. The message receiver of agent i integrates other agents’
messages {mji,mki,mli} with the self-attention mechanism and the integrated message is fed into
the policy πi together with the observation oi. Agent i interacts with the environment by taking
action ai. Then oi and ai are concatenated and encoded by a privacy-preserving message sender and
sent to other agents.

parameters of the sender’s neural networks. Then θµ⊤i and θσ⊤i will be optimized towards making
all the agents to send more effective messages to encourage better team cooperation and gain higher
team rewards. For notational convenience, let θsi = [θµ⊤i , θσ⊤i ]⊤. Then the sent privatized message
mi = pi+ui where ui ∼ N (0, σ2

i Id) is an additional noise. It is clear that mi ∼ N (µi,Σi+σ2
i Id)

since pi is independent from ui. Counterfactually, let m′
i ∼ N (µ′

i,Σ
′
i), where µ′

i = fµ
i (oi, ai; θ

µ′
i )

and Σ′
i = fσ

i (oi, ai; θ
σ′
i ) is the sent message when it was not under any privacy constraint.

Let the optimal message distribution be N (µ∗
i ,Σ

∗
i ). We are interested to characterize θs

′

i and θsi . By
the optimality of µ∗

i ,Σ
∗
i ,

θs
′

i = argmin
θ

DKL(N (µ′
i,Σ

′
i)∥N (µ∗

i ,Σ
∗
i ))

= argmin
θ

log
|Σ∗

i |
|Σ′

i|
+ tr{Σ∗−1

i Σ′
i}+ ∥µ′

i − µ∗
i ∥2Σ∗−1

i

. (1)

Then under the privacy constraints, the stochastic sender will learn θsi such that

θsi = argmin
θ

DKL(N (µi,Σi + σ2
i Id)∥N (µ∗

i ,Σ
∗
i ))

= argmin
θ

log
|Σ∗

i |
|Σi + σ2

i Id|
+ tr{Σ∗−1

i (Σi + σ2
i Id)}+ ∥µi − µ∗

i ∥2Σ∗−1
i

. (2)

Through Equation (2), it is possible to directly incorporate the distribution of privacy noise
into the optimization process of the sender to help to learn θsi such that DKL(N (µi,Σi +
σ2
i Id)∥N (µ∗

i ,Σ
∗
i )) ≤ DKL(N (µ′

i,Σ
′
i)∥N (µ∗

i ,Σ
∗
i )), which means that the sender could learn to

send private message mi = pi+ui that is at least as effective as the non-private message m′
i. In this

manner, the performance degradation is expected to be well alleviated.

5.2 PRIVACY-AWARE MESSAGE RECEIVER

As shown in our motivating example, the message receiver with knowledge a priori could statisti-
cally reduce the communication error in privacy-preserving scenarios. In the practical design, this
motivation could be naturally instantiated with the gradient flow between the message sender and
the message receiver.

Specifically, agent i first concatenates all the received privatized messages as m(−i)i :=

{mji}Nj=1,j ̸=i and then encodes m(−i)i into an aggregated message qi = fr
i (m(−i)i | θri ) with

the decoding function fr
i parameterized by θri . Then a similar argument to the policy gradient theo-

rem (Sutton et al., 1999) states that the gradient of the receiver is

∇θr
i
J (θri ) = Eτ ,o,a

[
Eπi

[∇θr
i
fr
i

(
qi | m(−i)i

)
∇qi log πi (ai | oi, qi)Qπ(a,o)]

]
,
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where J (θri ) = E[G1 | π] is the cumulative discounted reward from the starting state. In this way,
the receiver could utilize the prior knowledge σi of the privacy-preserving sender encoded in the
gradient during the optimization process. Please refer to Appendix D for the detailed optimization
process of the message senders and receivers.

6 PRIVACY-PRESERVING EQUILIBRIUM ANALYSIS

Many cooperative multi-agent games enjoy the existence of a unique NE, which ensures the con-
vergence of iterative algorithms. Under the privacy constraints, however, the existence of a unique
Nash equilibrium can no longer be guaranteed even if the original game admits a unique equilib-
rium. As the convergence of MARL algorithms could depend on the existence of an equilibrium,
we investigate such existence in single-step games and extend the result to multi-step games.

6.1 SINGLE-STEP GAMES

We study a class of two-player collaborative games, denoted as collaborative game with privacy
(CGP). The game involves two agents, each equipped with a privacy parameter pn, n ∈ {1, 2}. The
value of pn represents the importance of privacy to agent n, with the larger value referring to greater
importance. Let M be some message mechanism. We denote the privacy loss by cM(pn), which
measures the quantity of the potential privacy leakage and is formally defined in Definition B.2.
Besides, let b

(
Vn, V

M
n (p1, p2)

)
be the utility gained by measuring the gap between private value

function V M
n (p1, p2) and non-private value function Vn. Then the trade-off between the utility and

the privacy is depicted by the total utility function un(p1, p2) in Equation (3). The formal definition
of CGP is given in Definition 6.1. See more details in Appendix B.1.
Definition 6.1 (Collaborative game with privacy (CGP)). The collaborative game with privacy is
denoted by a tuple ⟨N ,Σ,U⟩, where N = {1, 2} is the the set of players, Σ = {p1, p2} is the action
set with p1, p2 ∈ [0, 1] representing the privacy level, and U = {u1, u2} is the set of utility functions
satisfying ∀n ∈ N ,

un (p1, p2) = Bn · b
(
Vn, V

M
n (p1, p2)

)
− CM

n · cM (pn) . (3)

Then the following theorem shows that if changes in the value function of each player can be ex-
pressed as a change in their own privacy parameter, then CGP is a potential game and a pure NE
thereafter exists. The proof is deferred to Appendix B.1.
Theorem 6.1 (CGP’s NE guarantee). The collaborative game with privacy has at least one non-
trivial pure-strategy Nash equilibrium if ∂i

p1
V1 = ∂i

p2
V2, ∀i ∈ {1, 2}.

Equilibrium in single round binary sums Let us revisit our motivating example. Armed with the
CGP framework, it is immediate that the single round binary sums game guarantees the existence of
a NE. This result is formalized in Theorem B.2 in Appendix B.1.

6.2 MULTI-STEP GAMES

We now consider an extended version of single round binary sums named multiple round sums.
Consider an N -player game where player i owns a saving xi,t. Rather than sending a binary bit,
the agent can choose to give out bi,t at round t. Meanwhile, each player i selects privacy level pi,t
and sends messages to each other with a sender fs

i encoding the information of bi,t with the privacy
level pi,t. The reward of the agent is designed to find a good trade-off between privacy and utility.
The setting of the game is thus similar to the empirical implementation of DPMAC.

We first transform this game into a Markov potential game (MPG), with the reward of each agent
transformed into a combination of the team reward and the individual reward. Then with existing
theoretical results from Macua et al. (2018), we present the following result while deferring its proof
to Appendix B.2.
Theorem 6.2 (NE guarantee in multiple round sums). If Assumptions 1, 2, 3, 4 (see Appendix B.2)
are satisfied, our MPG has a NE with potential function J defined as,

J(xt, π(xt)) =
∑
j∈[N ]

((1− pj,t)bj,t + αxj,t + βpi,t) . (4)
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(b) Learning curves of different algorithms under the privacy budget ϵ = 0.10. MADDPG (non-private) is also
displayed for comparison.

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

260

240

220

200

180

160

140

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

ds

Cooperative Navigation

DPMAC( = 1.00)
I2C( = 1.00)
MADDPG
Tar( = 1.00)

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

40

35

30

25

20

15

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

ds

Cooperative Communication & Navigation

DPMAC( = 1.00)
I2C( = 1.00)
MADDPG
Tar( = 1.00)

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

80

70

60

50

40

30

20

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

ds

Predator-Prey

DPMAC( = 1.00)
I2C( = 1.00)
MADDPG
Tar( = 1.00)

(c) Learning curves of different algorithms under the privacy budget ϵ = 1.0. MADDPG (non-private) is also
displayed for comparison.
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Figure 2: Learning curves of DPMAC and baseline algorithms. The curves are averaged over 5
seeds. Shaded areas denote 1 standard deviation.
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7 EXPERIMENTS

In this section, we present the experiment results and corresponding experiment analyses. Please
see Appendix G for more detailed analyses of experiment results.

Baselines We implement our DPMAC and evaluate it against TarMAC (Das et al., 2019), I2C
(Ding et al., 2020), and MADDPG (Lowe et al., 2017). All Algorithms are tested with and without
the privacy requirement except for MADDPG, which involves no communication among agents.
Since TarMAC and I2C do not have a local sender and have no DP guarantee, we add Gaussian
noise to their receiver according to the noise variance specified in Theorem 5.1 for a fair comparison.
Please see Appendix D for more training details. We remark that the code will be made publicly
available once this manuscript is accepted.

Environments We evaluate the algorithms on the multi-agent particle environment (MPE) (Mor-
datch & Abbeel, 2017), which is with continuous observation and discrete action space. This en-
vironment is commonly used among existing literature (Lowe et al., 2017; Jiang & Lu, 2018; Ding
et al., 2020; Kim et al., 2021). We evaluate a wide range of tasks in MPE, including cooperative
navigation (CN), cooperative communication and navigation (CCN), and predator prey (PP). More
details on the environmental settings are given in Appendix E.

Experiment results without privacy DPMAC is first compared with TarMAC, I2C, and MAD-
DPG on three MPE tasks without the privacy requirement, as shown in Figure 2a. DPMAC outper-
forms baselines on CCN & PP and has competitive performance on CN. Note that for the PP task
we pick DPMAC with ϵ = 0.10 due to even better performance over its non-private variant. The
comparison between DPMAC (non-private) and baselines is provided in Appendix F.

Experiment results with privacy We further add the privacy constraint on the communication
algorithms. We set δ = 10−4 on all tasks. Figure 2b and Figure 2c show the performance under
the privacy budget ϵ = 0.10, ϵ = 1.0 and both with δ = 10−4. We include MADDPG as a
non-communication baseline method. We observe that DPMAC with the privacy requirement could
still maintain a good result compared to MADDPG, while the performance of TarMAC and I2C
drops greatly. Figure 2d further gives the comparison between the performance of DPMAC under
different privacy budgets. When ϵ = 0.01, DPMAC still gains remarkable performance, while other
baselines’ performance degraded greatly, as shown in Figure 2b.

Variance adjustment of DPMAC Experiments with privacy also support our claim that DPMAC
could automatically adjust the variance of our stochastic message sender so that it learns a noise-
robust representation. As shown in Figure 2d, DPMAC gains very close performance when ϵ = 0.1
and ϵ = 1.0, though the privacy requirements of ϵ = 0.1 and ϵ = 1.0 differ by one order of
magnitude. However, one can see large gaps for the same baseline algorithms under different ϵ from
Figure 2b and Figure 2c. Please see Figure 4 and Figure 5 for direct presentations of these gaps.

8 CONCLUSION

In this paper, we study the privacy-preserving communication in MARL. Motivated by a simple yet
effective example of the binary sums game, we propose DPMAC, a new efficient communicating
MARL algorithm that preserves agents’ privacy through differential privacy. Our algorithm is justi-
fied both theoretically and empirically. Besides, to show that the privacy-preserving communication
problem is learnable, we analyze the single-step game and the multi-step game via the notion of
Markov potential games (MPG) and show the existence of the Nash equilibrium. This existence
further implies the learnability of several instances of MPG under privacy constraints. Extensive ex-
periments are conducted on MPE and show the effectiveness of DPMAC when compared to baseline
methods on multiple tasks both with and without the privacy constraints.

Though we make the first step to establish an efficient MARL algorithm with differential private
communication, some interesting questions remain open. The first question is that it is still unclear
for us whether there exists the Nash equilibrium in private competitive games. Besides, on the em-
pirical side, investigating the performance of DPMAC in competitive games with privacy-preserving
communication might also be interesting and valuable.
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A PRIVACY ANALYSIS

In this section, we first present the proof of Theorem 5.1, which guarantees the (ϵi, δ)-DP for com-
munication at each step. Then we give Corollary A.1, which provides episode-level (ϵi, δ)-DP
guarantee for communication, together with its proof.

A.1 PROOF OF THEOREM 5.1

We first present some necessary definitions and lemmas. We start by introducing Rényi differential
privacy (RDP) and ℓ2-sensitivity.
Definition A.1 (Rényi differential privacy, Mironov (2017)). For α > 1 and ρ > 0, a random-
ized mechanism f : D → R is said to have ρ-Rényi differential privacy of order α, or (α, ρ)-
RDP for short, if for any neighbouring datasets D,D′ ∈ D differing by one element, it holds that
Dα (f(D)∥f (D′)) := logE (f(D)/f (D′))

α
/(α− 1) ≤ ρ.

Definition A.2 (ℓ2-sensitivity, Dwork et al. (2014)). The ℓ2-sensitivity ∆(q) of a function q is defined
as ∆(q) = supD,D′ ∥q(D)− q (D′)∥2, for any two neighbouring datasets D,D′ ∈ D differing by
one element.

With the properly added Gaussian noise, Lemma A.1 shows that the Gaussian mechanism could
satisfy RDP.
Lemma A.1 (Lemma 3.7, Wang et al. (2019)). For function q : Sn → R, the Gaussian mech-
anism M = q(S) + u with u ∼ N

(
0, σ2I

)
satisfies

(
α, α∆2(q)/

(
2σ2

))
-RDP. Additionally, if

M is applied to a subset of all the samples which are uniformly sampled from the whole datasets
without replacement using sampling rate γ, then M satisfies

(
α, 3.5γ2∆2(q)α/σ2

)
-RDP with

σ′2 = σ2/∆2(q) ≥ 0.7 and α ≤ 2σ′2 log
(
1/γα

(
1 + σ′2)) /3 + 1.

We now present the following two propositions regarding RDP. The first proposition shows that a
composition of k mechanisms satisfying RDP is also a mechanism that satisfies RDP.
Proposition A.1 (Proposition 1, Mironov (2017)). If k randomized mechanisms fi : D → R for all
i ∈ [k], satisfy (α, ρi)-RDP, then their composition (f1(D), . . . , fk(D)) satisfies (α,

∑k
i=1 ρi)-RDP.

The second proposition provides the transformation from a RDP guarantee to a corresponding DP
guarantee.
Proposition A.2 (Proposition 3, Mironov (2017)). If a randomized mechanism f : D → R satisfies
(α, ρ)-RDP, then f satisfies ((ρ+ log(1/δ)/(α− 1), δ))-DP for all δ ∈ (0, 1).

We are now ready to give the formal proof of Theorem 5.1. Recall pi = fs
i (oi, ai; θ

s
i ) ∼ N (µi,Σi)

is the generated stochastic message before injecting privacy noise ui ∼ N
(
0, σ2

i Id
)
, and mi =

pi+ui is the privatized message to be sent by agent i. Here we drop the dependency of the subscript
of message on the index of the target agent (i.e., we abbreviate the message mi,j sent from agent
i to agent j as mi) when it is clear from the context. We slightly abuse the notation by writing
fs
i = fs

i (oi, ai; θ
s
i ). To bound the sensitivity of fs

i , one can perform the norm clipping to restrict the
ℓ2 norm of fs

i by replacing fs
i with fs

i /max(1, ∥fs
i ∥2/C), which ensures that ∥fs

i ∥2 ≤ C. At each
time t, for agent i, each message function fs

i is applied to a subset of transitions in local trajectory τi
of agent i using uniform sampling without replacement with sampling rate γ1, and agent i samples
a subset of target agents to send messages by sampling without replacement with sampling rate γ2.

Proof of Theorem 5.1. Due to the norm clipping of fs
i and the triangle inequality, the ℓ2-sensitivity

of fs
i could be bounded as

∆2(f
s
i ) = sup

D,D′
∥fs

i (D)− fs
i (D

′)∥2

≤ 2C , (5)

where D,D′ ∈ D are any two neighbouring datasets differing by one element. By Equation (5)
and Lemma A.1, the privatized message mi satisfies

(
α, 14γ2

1C
2α/σ2

)
-RDP. Since agent i samples

γ2N target agents to communicate, all the messages sent by agent i at time t are actually sent by
a composite message function Mi = {mi,kj

}γ2N
j=1 , which satisfies (α, 14γ2γ

2
1NC2α/σ2)-RDP by
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Proposition A.1. Substituting σ2
i =

14γ2γ
2
1NC2α
βϵi

=
14γ2γ

2
1NC2α

ϵi+
log δ
α−1

shows that Mi satisfies (α, ϵi +

log δ
α−1 )-RDP. Applying Proposition A.2 shows that Mi satisfies (ϵi, δ)-DP, which concludes the proof.

A.2 ANALYSIS OF EPISODE-LEVEL (ϵi, δ)-DP

We would like to emphasize that Theorem 5.1 also provides an episode-level privacy guarantee. To
see this, consider a multi-step game with finite episode length of T . Since Theorem 5.1 guarantees
the (ϵi, δ)-DP for the communication mechanism M t

i in each step t, the communication mechanism
of the whole episode Mi = {M t

i }Tt=1 satisfies (Tϵi + (T − 1) log δ
α−1 , δ)-DP based on Proposition A.1

and Proposition A.2. Further, we can attain the (ϵi, δ)-DP of the communication of DPMAC in the
whole episode by adjusting the noise variance in Theorem 5.1, detailed in the following corollary.

Corollary A.1 (Episode-level (ϵi, δ)-DP guarantee for DPMAC). Consider an episode with finite
length T . Let γ1, γ2 ∈ (0, 1) having the same definitions as in Theorem 5.1, and let C be the
sensitivity of the message functions. For any δ > 0 and privacy budget ϵi, the communication
of agent i in the whole episode satisfies (ϵi, δ)-DP when σ2

i =
14γ2γ

2
1NC2αT
βϵi

, if we have α =
log δ−1

ϵi(1−β) + 1 ≤ 2σ′2 log
(
1/γ1α

(
1 + σ′2)) /3 + 1 with β ∈ (0, 1) and σ′2 = σ2

i /(4C
2) ≥ 0.7.

Proof. Analogous to the proof of Theorem 5.1, by Equation (5) and Lemma A.1, the privatized mes-
sage mt

i at time t satisfies
(
α, 14γ2

1C
2αT/σ2

)
-RDP. Similarly, since agent i samples γ2N target

agents to communicate, all the messages sent by agent i at time t are through a composite message
function Mt

i = {mt
i,kj

}γ2N
j=1 . By Proposition A.1, Mt

i satisfies (α, 14γ2γ2
1NC2αT/σ2)-RDP. Sub-

stituting σ2
i =

14γ2γ
2
1NC2αT
βϵi

=
14γ2γ

2
1NC2αT

ϵi+
log δ
α−1

, we have Mt
i satisfies (α, (ϵi + log δ

α−1 )/T )-RDP. Then

applying Proposition A.1 again shows that the composite message mechanism Mi = {Mt
i}Tt=1 is

(α, ϵi +
log δ
α−1 )-RDP. As all the messages sent by agent i in the whole episode are through message

mechanism Mi, the privacy of these messages is strictly protected. Lastly, the proof is completed
by applying Proposition A.2 to translate (α, ϵi +

log δ
α−1 )-RDP to (ϵi, δ)-DP for mechanism Mi.

B EQUILIBRIUM ANALYSIS

B.1 SINGLE-STEP GAME

In this section, we give the detailed analysis of our single-step game. We first give the notion of the
potential game (PG) as follows.

Definition B.1 (Potential game, Monderer & Shapley (1996)). A two-player game G is a potential
game if the mixed second order partial derivative of the utility functions are equal:

∂p1
∂p2

u1 = ∂p1
∂p2

u2 .

The intuition behind the PG is that it tracks the changes in the payoff when some player deviates,
without taking into account which one. Thus the PG usually helps with the analysis of the coopera-
tive game, where the players might have the similar potential to act. To analyze the games involving
multi-agent coordination with state dependence, the Markov potential game (MPG) is recently stud-
ied (Macua et al., 2018; Leonardos et al., 2021), where the action potential of all agents is described
by a potential function. The solution concept of the PG relies on Nash equilibrium (NE) (Nash et al.,
1950), the existence of which guarantees that all the agents could act in the best response to others.

We present the definition of the privacy loss function cM(pn) in Definition B.2. Recall M is the
privacy preserving mechanism used in the game.

Definition B.2 (Privacy loss function, Pejo et al. (2019)). The privacy loss function c : [0, 1] → [0, 1]
is a continuous and twice differentiable function with c(0) = 1, c(1) = 0 and ∂pn

c < 0.

15



Under review as a conference paper at ICLR 2023

Then the benefit function b
(
Vn, V

M
n (p1, p2)

)
is given in Definition B.3. Pejo et al. (2019) consider

the negative training error as the benefit while ours is different, as introduced here. Vn is the value
that agent n receives when agent n acts alone without any cooperation. Vn(p1, p2) is the value that
agent n receives when agent n acts cooperatively under the privacy mechanism M and the actions p1
and p2. Intuitively, we want that the benefit function portrays the benefit of the cooperative actions
over the non-cooperative ones, thus in the meaningless case Vn ≥ V M

n , b
(
Vn, V

M
n (p1, p2)

)
= 0.

In addition, ∂pnb ≤ 0 since the value of the benefit function should decrease as the level of privacy
protection increases.

Definition B.3 (Benefit function). The benefit function b : R+ × R+ → R+
0 is a continuous and

twice differentiable function, with ∂pn
b ≤ 0 and b

(
Vn, V

M
n (p1, p2)

)
= 0 if Vn ≥ V M

n .

Finally, we give the definition of the value function Vn and V M
n (p1, p2). Vn can be viewed as the

upper bound of V M
n (p1, p2), which intuitively means the value for the pure cooperation without

privacy protection is always larger than that with some privacy protection. Note that the value
function defined here is not the one which is commonly defined in RL literature.

Definition B.4 (Value function). Vn is the value function for agent n acting alone and without any
cooperation. V M

n : [0, 1]× [0, 1] → R+ is continuous, twice differentiable and:

• ∃m ∈ N : pm = 1 ⇒ ∀n ∈ N : V M
n (p1, p2) ≤ Vn,

• ∀n,m ∈ N : ∂pm
V M
n < 0,

• ∀n ∈ N : Vn < V M
n (0, 0).

For V M
n , the first rule ensures that if one agent protects the privacy entirely, the total value will

be no greater than the value agents act alone. The second rule constrains the value function V M
n

should be negatively monotonic wrt pm since another agent’s privacy gets stronger thus leading to
less corporation. The third rule tells that the total value without any privacy protection (i.e., pure
corporation) should be certainly larger than the value agents act alone.

The following theorem shows that the PG enjoys a good property that the NE exists. This motivates
us to translate CGP into a potential game, which will be the key to prove Theorem 6.1.

Theorem B.1 (Monderer and Shapley, Monderer & Shapley (1996)). The potential game has at
least one pure-strategy NE.

We are not ready to prove Theorem 6.1.

Proof of Theorem 6.1. Starting from the definition of the two-player potential game (Definition B.1)
and the utility function (Definition 6.1), we have

∂p1
∂p2

u1 = ∂p1
∂p2

u2 ,

⇐⇒ ∂p1∂p2b
(
V1, V

M
1 (p1, p2)

)
= ∂p1∂p2b

(
V2, V

M
2 (p1, p2)

)
,

(⋆)⇐⇒ (∂2
V M
n

b) ·
(
∂p1

V M
1 − ∂p2

V M
2

)
= (∂V M

n
b) ·

(
∂p1

∂p2
V M
2 − ∂p1

∂p2
V M
1

)
, (6)

where (⋆) comes from the chain rule.

If the value function is with the property ∂i
p1
V1 = ∂i

p2
V2, ∀i ∈ {1, 2}, CGP will satisfy Equation

6. Further, by Theorem B.3, CGP is a potential game and has at least one non-trivial pure-strategy
Nash equilibrium, thus concluding the proof.

Utilizing Theorem 6.1 and designing the necessary functions for CGP, we show that single round
binary sums could be proved with the existence of NE.

Theorem B.2 (NE guarantee in single round binary sums). For the single round binary sums game,
let N = 2 be the number of players, pn be the probability of the random, cM(pn) = 1 − pn be
the privacy loss function, Vn = − 1

2 and V M
n (p1, p2) = − 1

2p
2
1 − 1

2p
2
2 − p1p2 = − 1

2 (p1 + p2)
2

be the value function, b(Vn, V
M
n (p1, p2)) = V M

n (p1, p2) − Vn = − 1
2p

2
1 − 1

2p
2
2 − p1p2 +

1
2 be the

benefit function, un (p1, p2) = Bn · b
(
Vn, V

M
n (p1, p2)

)
−CM

n · cM (pn) be the utility function, then
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Theorem 6.1 holds, which is to say, single round binary sums can be formulated into a CGP, further
leading to the existence of one non-trivial pure-strategy NE. Further, the utility function is

un = −Bn

2
(p1 + p2)

2 + Cnpn +
Bn

2
− Cn, ∀n ∈ {1, 2} . (7)

The strategy taken by the agent is

pn = argmax
pn

un =
Cn

Bn
− p−n, ∀n ∈ {1, 2} .

B.2 MULTI-STEP GAME

In this section, we present the equilibrium analysis of the multi-step game. We start by presenting
the definition of MPG.
Definition B.5 (Markov potential game, Leonardos et al. (2021)). A Markov decision process
(MDP), M, is called a Markov Potential Game (MPG) if there exists a state-dependent function
Φs : Π → R for s ∈ S such that

Φs (πi, π−i)− Φs (π
′
i, π−i) = V i

s (πi, π−i)− V i
s (π′

i, π−i)

holds for all agents i ∈ N , all states s ∈ S and all policies πi, π
′
i ∈ Πi, π−i ∈ Π−i. By linearity

of expectation, it follows that Φρ (πi, π−i) − Φρ (π
′
i, π−i) = V i

ρ (πi, π−i) − V i
ρ (π′

i, π−i), where
Φρ(π) := Es∼ρ [Φs(π)] .

The solution concept of the PG and the MPG relies on NE (Nash et al., 1950), the existence of which
guarantees that all the agents could act best response of agent i with respect to the opponent’s policy
π−i
θ−i indicates the policy πi

∗ such that V i
(
s;πi

∗, π
−i
θ−i

)
≥ V i

(
s;πi

θi , π
−i
θ−i

)
for all feasible πi

θi .
While it is still not clear how privacy will influence the equilibrium in the MARL setting, Kumari
& Chakravarthy (2016) study the cooperative game with privacy and Pejo et al. (2019) model the
game with privacy to solve the private learning problem.

Then we introduce the following assumptions and Theorem B.3 (Macua et al., 2018) to support the
main theorems.
Assumption 1. The state and parameter sets, Z and W, are nonempty and convex.

We slightly abuse the notation in Assumption 2 and use σk,i as a given random variable with distri-
bution pσk

(·|xi, ai) instead of the standard deviation of the noise.
Assumption 2. The reward functions rk(xi, ai, σk,i) are twice continuously differentiable in Z ×
W,∀k ∈ N .
Assumption 3. The state-transition function, f , and constraints, g, are continuously differentiable
in Z×W, and satisfy some regularity conditions (e.g., Mangasarian-Fromovitz).
Assumption 4. The reward functions rk are proper, and there exists a scalar B such that the level
sets {a0 ∈ C0, (xi, ai) ∈ Ci : E [rk (xi, ai, σk,i)] ≥ B}∞i=0 are nonempty and bounded ∀k ∈ N .
Theorem B.3 ((Macua et al., 2018)). Let Assumptions 1, 2, 3, 4 hold. Then, the game in Equation
(8) of Macua et al. (2018) is an MPG if and only if: i) the reward function of every agent can be
expressed as the sum of a term common to all agents plus another term that depends neither on its
own state-component vector, nor on its policy parameter:

rk
(
xr
k,i, πk

(
xπ
k,i, wk

)
, π−k

(
xπ
−k,i, w−k

)
, σk,i

)
=J (xi, π (xi, w) , σi) + Θk

(
xr
−k,i, π−k

(
xπ
−k,i, w−k

)
, σi

)
, ∀k ∈ N ;

(8)

and ii) the following condition on the non-common term holds:

E
[
∇x⊖

k,i
Θk

(
xr
−k,i, π−k

(
xπ
−k,i, w−k

)
,σi

)]
= 0. (9)

Moreover, if Equation (9) holds, then the common term in Equation (8), J , equals the potential
function.

To make multiple round sums one MPG, the following detailed settings including the state space,
the state transition, the action space, and the reward function are given. By such a specific design,
we could achieve Theorem B.4, which shows the existence of a NE.
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State The state xi,t ∈ R represents the remaining saving of agent i at time t (initially xi,0).

State transition The transition function is deterministic, which is xi,t+1 = xi,t − bi,t.

Action For i ∈ [N ], at time t, agent i with policy πi assigns bi,t savings according to the current
state and the message sent by other agents. Then agent i performs the randomized perturbation on
the assignment with privacy level pi,t, with the message sender protocol fs

i . After that the message
mi,t is generated and sent to other agents. Formally,

bi,t, pi,t = πb
i (xi,t,m−i,t−1), π

p
i (xi,t,m−i,t−1) ,

mi,t = fs
i (xi,t, bi,t, pi,t) .

Reward function The reward function for agent i is designed with the trade-off between privacy
and utility, as shown in Equation (10). Privacy reward is performed to praise the privacy preserving.
Formally, ∀i ∈ N ,

ri(xi,t, πi(xi,t), π−i(x−i,t)) =
∑
j∈N

(1− pj,t)bj,t + αxi,t + βpi,t . (10)

The reward function given in Equation (10) could be written in two terms respectively, where∑
j∈N (1− pj,t)bj,t represents the first term in Equation (8) and αxi,t + βpi,t represents the second

term. Theorem B.4 is thus given.
Theorem B.4 (NE guarantee in multiple round sums). For the multiple round sums game, the re-
ward function in Equation (10) will satisfy Theorem B.3 if we make the gradient chain between the
message m−i and the message function fi cut down after sending. Further, if Assumptions 1, 2, 3,
4 (see Appendix B.2) are satisfied, our MPG could find a NE with potential function J as shown
below,

J(xt, π(xt)) =
∑
j∈[N ]

((1− pj,t)bj,t + αxj,t + βpi,t) . (11)

C IMPLEMENTATION DETAILS

Agent We use recurrent neural networks (RNN) for the actors of agents to approximate policies,
which is shown with effectively in partially observable environments (Hausknecht & Stone, 2015),
and build our communication method upon MADDPG (Lowe et al., 2017). However, we note that
our communication method is general enough to be built on the top of any MARL algorithm with
the CTDE paradigm.

Communication protocol The sender utilizes the multi-layer perceptron (MLP) and the receiver
is an attention-based network (Vaswani et al., 2017). For the sender, a shared linear layer is first
applied and two linear layer follows to output the mean the logarithm of the standard deviation. For
the receiver, three linear layers corresponding to K,Q, V is directly applied with no shared layer.
One can see that the network structure of our communication protocol is simple.

Whether to encode the agent index At each time t, the messages sent from agent i to different
target agents could be sampled from different message distributions by including the index of target
agent (say agent j) into the input of fs

i as pi,j = fs
i (oi, ai, j; θ

s
i ), or just from the same message

distribution by making pi,j = fs
i (oi, ai; θ

s
i ). In our implementation, we do not include the target

agent index into the input of fs
i due to that including the target agent index into the input of fs

i may
lead to performance degeneration in some scenarios.

Reparameterization trick The stochastic message sender adopts the multivariate Gaussian dis-
tribution, which is implemented via the the reparameterization trick (Kingma & Welling, 2014).
Specifically, in our implementation, the stochastic message pi is

pi = µi + σ̃i ⊙ ξ ,

where µi and σ̃i are the outputs of two neural networks of the sender, ξ ∼ N (0, Id), and ⊙ denotes
the element-wise product.
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D TRAINING DETAILS

Optimization process of message senders and receivers The message receiver of agent i en-
codes all the received messages into the encoded messages, which together with the observation
of agent i will be fed into the actor of agent i. Hence the message receiver of agent i serves as a
component in the actor of agent i, which will be updated by backpropagating the actor loss using
policy gradient. By the chain rule, since the messages received by the receiver of agent i are sent
from the message senders of all other agents, the message senders of all other agents will then be
updated by backpropagation from the message receiver of agent i.

Parameter setting All the experiments are conducted on a server with 4 NVIDIA GeForce RTX
3090 GPUs. The hyperparameters of all algorithms are shown in Table 1. Since all the algorithms
are built on the top of MADDPG, we tune the hyperparameters such that MADDPG has the best
performance, which is also adopted in Kim et al. (2021). The hidden dimension for actor, critic, and
the message protocol is selected by grid searching in {32, 64, 128, 256}, and the message dimension
is selected by conducting grid search among values {4, 8, 16, 32}.

Table 1: Hyperparameters of all algorithms.

MADDPG TarMAC I2C DPMAC
Discount Factor 0.99 0.99 0.99 0.99
Batch Size (CCN&CC) 128 128 128 128
Batch Size (PP) 256 256 256 256
Buffer Size 1× 104 1× 104 1× 104 1× 104

Optimizer Adam Adam Adam Adam
Activation Function ReLU ReLU ReLU ReLU
Learning Rate 7× 10−4 7× 10−4 7× 10−4 7× 10−4

Hidden Dimension for Actor/Critic 128 128 128 128
Hidden Dimension for Message Protocol − 32 32 32
Message Dimension − 8 8 8

E ENVIRONMENT DETAILS

Cooperative navigation (CN) Cooperative navigation is a standard task for multi-agent systems,
introduced in Lowe et al. (2017), where agents target at reaching their own landmarks while avoiding
collision. There are in total N = 3 agents for our experiment setting.

Cooperative communication and navigation (CCN) The cooperative communication task is in-
troduced in Mordatch & Abbeel (2017), where agents’ goal is to reach their target landmark while
each agent only knows the location of the other agent’s target. The agents do not communicate with
the channels embedded in the task and only share personal information with a learned protocol.

Predator prey (PP) The predator prey task is a standard task and we use the same setting and the
same evaluation way as in Ding et al. (2020). Specifically, there are N = 3 predators and M = 2
preys in this task, whose initial positions are randomized initialized. Each predator is controlled by
a agent, and each prey moves in the closest predator’s opposite direction. Since the speed of preys is
higher than that of predators, cooperation is required for agents to capture a prey. The team reward
is the negative sum of physical distances from all the predators to their closet preys. Besides, the
predators will be penalized for each time any two predators collide with each other and we set the
collision penalty as rcollision = −1. Each episode has 40 timesteps in this task.
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F ADDITIONAL EXPERIMENT RESULTS
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Figure 3: Learning curves where we compare DPMAC (non-private) with other baselines.
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Figure 4: Learning curves of TarMAC with ϵ = 0.1 and ϵ = 1.0.
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Figure 5: Learning curves of I2C with ϵ = 0.1 and ϵ = 1.0.

G ADDITIONAL EXPERIMENT ANALYSES

In this section, we present the additional experiment analyses regarding Figure 2.

G.1 EXPERIMENT RESULTS WITHOUT PRIVACY

We first analyze our baseline methods, TarMAC and I2C, which are effective communication-based
algorithm and can achieve superior performance than methods without communication such as
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MADDPG. As shown in Figure 2a, TarMAC and I2C outperform MADDPG on cooperative navi-
gation (CN) and predator-prey (PP) tasks and achieve similar performance as MADDPG on coop-
erative communication and navigation (CCN) task. However, DPMAC without privacy constraint
outperforms TarMAC and I2C by a large margin on CCN task and is comparable with TarMAC and
I2C on CN task. Under the privacy constraints, DPMAC with ϵ = 0.10 outperforms TarMAC and
I2C on PP task. These results demonstrate the effectiveness of the message sender and receiver of
DPMAC, which also has competitive performance under no privacy constraints.

G.2 EXPERIMENT RESULTS WITH PRIVACY

We further investigate how the DP noise affects our DPMAC and other baseline methods. From
Figure 2b, one can observe a serious performance degradation of TarMAC and I2C with a privacy
budget of ϵ = 0.10, which makes these two methods even worse than non-communicative MAD-
DPG. In contrast, our DPMAC could still significantly outperform MADDPG on CN and PP tasks,
and is comparable with MADDPG on CCN task. From Figure 2c, which is with a privacy budget
of ϵ = 1.00 (note that ϵ = 1.00 enjoys weaker privacy guarantee than ϵ = 0.10 due to less privacy
noises injected), our DPMAC still clearly outperforms all other methods on CN and PP tasks and
is comparable with MADDPG. In sharp contrast to DPMAC, TarMAC still has clear degeneration
on all tasks and is even worse than MADDPG on PP task, and I2C fails across all three tasks under
such privacy constraints. These results demonstrate that the design principle of DPMAC that ad-
justing the learned message distribution via incorporating the distribution of privacy noise into the
optimization process of the message sender and receiver can well alleviate the negative impacts of
the privacy noises.

G.3 DPMAC UNDER DIFFERENT PRIVACY BUDGETS

In Figure 2d, we further show the performance of DPMAC under different privacy budget ϵ. On CN
task, the performance of DPMAC with different privacy budgets are very close except ϵ = 0.01,
which is a very stringent privacy level. On CCN task, DPMAC without privacy constraint achieves
the best performance, and DPMAC with different ϵ could also reach meaningful performance. On
PP task, DPMAC with ϵ = 0.10 and ϵ = 1.00 even outperform non-private DPMAC. As we have
analyzed in Section 5.1, this is because DPMAC can learn the parameter θsi of the stochastic mes-
sage sender such that DKL(N (µi,Σi +σ2

i Id)∥N (µ∗
i ,Σ

∗
i )) ≤ DKL(N (µ′

i,Σ
′
i)∥N (µ∗

i ,Σ
∗
i )), which

means that the private messages can even encourage better team cooperation to gain higher team
rewards than the non-private messages. Overall, one can see that the performance of DPMAC drops
clearly only when ϵ = 0.01 on PP task. The above results also clearly demonstrate that DPMAC can
learn to adjust the message distribution to alleviate the potential negative impacts of privacy noises,
which ensures meaningful performance even under small privacy budgets and stabilizes the learning
process.

H EXPERIMENTS WITH EPISODE-LEVEL (ϵi, δ)-DP

In this section, we present the experiment results under episode-level (ϵi, δ)-DP constraints with the
privacy noise specified in Theorem A.1 and corresponding experiment analyses.

H.1 EXPERIMENT RESULTS WITH EPISODE-LEVEL (ϵi, δ)-DP

Comparing Figure 2b and 6a, under episode-level privacy constraint of ϵ = 0.10, both the perfor-
mance of TarMAC and I2C has a further degeneration across all the tasks. However, DPMAC could
still clearly outperform MADDPG on CN task and is comparable with MADDPG on CCN task. On
PP task, DPMAC is slightly outperformed by MADDPG but still exceeds TarMAC and I2C by a
large margin. Comparing Figure 2c and 6b, I2C still fails across all tasks and TarMAC also has a
clear performance drop. Specifically, TarMAC exceeded MADDPG on CN task and was comparable
with MADDPG on CCN task in Figure 2c, but now TarMAC turns out be outperformed by MAD-
DPG on these tasks in Figure 6b. Besides, the performance gap between MADDPG and TarMAC
now also becomes larger under the episode-level privacy constraint on the PP task. However, even
though under episode-level privacy constraint of ϵ = 1.00, DPMAC still outperforms MADDPG
on CN and PP tasks and is comparable with MADDPG on the CCN task. The above results indeed
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demonstrate that it is harder to learn under the episode-level privacy constraints since larger privacy
noises are injected into the messages, but also validate the effectiveness of DPMAC, which still has
good performance under episode-level privacy constraints.

H.2 DPMAC UNDER DIFFERENT EPISODE-LEVEL PRIVACY BUDGETS

We now analyze the performance of DPMAC under different episode-level privacy constraints.
Comparing Figure 2d and 6c, the performance of DPMAC under the episode-level privacy constraint
of ϵ = 1.00 nearly remains the same as before. Under episode-level privacy constraint of ϵ = 0.10,
DPMAC still has the similar performance on CN and CCN tasks though converges slightly slower.
But on the PP task, DPMAC also has a slight performance drop. Under episode-level privacy con-
straint of ϵ = 0.01, though DPMAC still has the similar performance on CN and CCN tasks, it
nearly fails to learn on the PP task. We leave the investigation of improving the performance of
DPMAC under episode-level privacy constraint of ϵ = 0.01 as our future work. However, we note
that the privacy level of ϵ = 0.01 is a rather stringent privacy constraint requiring injecting privacy
noise with particularly large variance. Overall, the above results show that DPMAC can still learn
to adjust the message distributions to alleviate the negative impacts of privacy noises even under
episode-level privacy constraints.
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(a) Learning curves of different algorithms under the episode-level privacy budget ϵ = 0.10. MADDPG (non-
private) is also displayed for comparison.
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(b) Learning curves of different algorithms under the episode-level privacy budget ϵ = 1.0. MADDPG (non-
private) is also displayed for comparison.
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(c) Learning curves of different episode-level privacy budgets (ϵ = 0.01, 0.10, 1.00) for DPMAC.

Figure 6: Learning curves of DPMAC and baseline algorithms. The curves are averaged over 5
seeds. Shaded areas denote 1 standard deviation.
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