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A PROOFS

A.1 PROOF OF LEMMA 1

It stems directly from the trajectory balance that, for any trajectory τ⋆ ∈ T :

Z
∏

s→s′∈τ⋆

pF (s→ s′) = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s) (11)

⇐⇒ Z = R(x)
∏

s→s′∈τ⋆

pB(s
′ → s)

pF (s→ s′)
(12)

Therefore, applying this identity to τ and τ ′ and equating the right-hand-sides (RHSs) yields Equa-
tion 9. We are left with the task of proving the converse. Note we can rewrite Equation 9 as:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= R(x′)

∏
s→s′∈τ ′

pB(s
′ → s)

pF (s→ s′)
. (13)

If Equation 9 holds for any pair (τ, τ ′), we can vary τ ′ freely for a fixed τ — which implies the RHS
of the above equation must be a constant with respect to τ ′. Say this constant is c, then:

R(x)
∏

s→s′∈τ

pB(s
′ → s)

pF (s→ s′)
= c (14)

⇐⇒ R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∏

s→s′∈τ
pF (s→ s′), (15)

and summing the above equation over all τ ∈ T yields:∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c
∑
τ∈T

∏
s→s′∈τ

pF (s→ s′) (16)

=⇒
∑
τ∈T

R(x)
∏

s→s′∈τ
pB(s

′ → s) = c (17)

Furthermore, note that: ∑
x∈X

R(x)
∑

τ∈T (x)

∏
s→s′∈τ

pB(s
′ → s) = c (18)

=⇒
∑
x∈X

R(x) = c (19)

=⇒ Z = c (20)

Plugging Z = c into Equation 14 yields the trajectory balance condition.

A.2 PROOF OF THEOREM 1

The proof is based on the following reasoning. We first show that, given the satisfiability of the
federated balance condition, the marginal distribution over the terminating states is proportional to

Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 , (21)

as stated in Remark 1. Then, we verify that this distribution is the same as

pT (x) ∝
∏

1≤i≤N

Ri(x) (22)

if the local balance conditions are satisfied. This proves the sufficiency of the federated balance
condition for building a model that samples from the correct product distribution. The necessity
follows from Proposition 16 of Bengio et al. (2023) and from the observation that the local balance
conditions are equivalent to p

(i)
F (τ)/p(i)B (τ |x) = Ri(x) for each i = 1, . . . , N .
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Next, we provide a more detailed discussion about this proof. Similarly to subsection A.1, notice
that the contrastive nature of the federated balance condition implies that, if

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)
(∏

s→s′∈τ ′
p
(i)
F (s,s′)

p
(i)
B (s′,s)

) =

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) , (23)

then

pF (τ) = c

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (24)

for a constant c > 0 that does not depend either on x or on τ . Hence, the marginal distribution over
a terminating state x ∈ X is

pT (x) :=
∑
τ⇝x

∏
s→s′∈τ

pF (s→ s′) (25)

= c
∑
τ⇝x

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 pB(τ |x) (26)

= cEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 . (27)

Correspondingly, p(i)F (τ)/p(i)B (τ |x) ∝ Ri(x) for every i = 1, . . . , N and every τ leading to x due to
the satisfiability of the local balance conditions. Thus,

pT (x) ∝ Eτ∼pB(·|x)

 ∏
1≤i≤N

Ri(x)

 =
∏

1≤i≤N

Ri(x), (28)

which attests the sufficiency of the federated balance condition for the distributional correctness of
the global model.

A.3 PROOF OF THEOREM 2

Initially, recall that the Jeffrey divergence, known as the symmetrized KL divergence, is defined as

DJ(p, q) = DKL[p||q] +DKL[q||p] (29)

for any pair p and q of equally supported distributions. Then, let

π̂(x) = Ẑ Eτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (30)
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be the marginal distribution over the terminating states of a GFlowNet satisfying the federated bal-
ance condition (see Remark 1 and subsection A.2). On the one hand, notice that

DKL[π||π̂] = Ex∼π
[
log

π(x)

π̂(x)

]
(31)

= Ex∼π

log π(x)− logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

 (32)

= −Ex∼π

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

− log Ẑ + logZ (33)

≤ −Ex∼π

log ∏
1≤i≤N

(1− αi)

− log Ẑ + logZ (34)

= log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
, (35)

in which Z :=
(∑

x∈X
∏

1≤i≤N πi(x)
)−1

is π’s normalization constant. On the other hand,

DKL[π||π̂] = Ex∼π̂
[
log

π̂(x)

π(x)

]
(36)

= Ex∼π̂

logZEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)

− log π(x)

 (37)

= Ex∼π̂

logEτ∼pB(·|x)

 ∏
1≤i≤N

p
(i)
F (τ)

p
(i)
B (τ |x)πi(x)

+ log Ẑ − logZ (38)

≤ Ex∼π̂

log ∏
1≤i≤N

(1 + βi)

+ log Ẑ − logZ (39)

= log
Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) . (40)

Thus, the Jeffrey divergence between the targeted product distribution π and the effectively learned
distribution π̂ is

DJ(π, π̂) = DKL[π||π̂] +DKL[π̂||π] (41)

≤ log
Z

Ẑ
+

∑
1≤i≤N

log

(
1

1− αi

)
+ log

Ẑ

Z
+

∑
1≤i≤N

log (1 + βi) (42)

=
∑

1≤i≤N

log

(
1 + βi
1− αi

)
. (43)

A.4 PROOF OF THEOREM 3

We firstly recall the construction of the unbiased REINFORCE gradient estimator (Williams 1992),
which was originally designed as a method to implement gradient-ascent algorithms to tackle asso-
ciative tasks involving stochastic rewards in reinforcement learning. Let pθ be a probability density
(or mass function) differentiably parametrized by θ and fθ : X → R be a real-value function over X
possibly dependent on θ. Our goal is to estimate the gradient

∇θEx∼pθ [fθ(x)], (44)
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which is not readily computable due to the dependence of pθ on θ. However, since

∇θEx∼pθ [fθ(x)] = ∇θ
∫
x∈X

fθ(x)pθ(x)dx (45)

=

∫
x∈X

((∇θfθ(x))pθ(x)) dx+

∫
x∈X

((∇θpθ(x))fθ(x)) dx (46)

= Ex∼pθ [∇θfθ(x) + fθ(x)∇θ log pθ(x)] , (47)

the gradient of fθ’s expected value under pθ may be unbiasedly estimated by averaging the quantity
∇θfθ(x)+fθ(x)∇θ log pθ(x) over samples of pθ. We use this identity to compute the KL divergence
between the forward and backward policies of a GFlowNet. In this sense, notice that

∇θDKL[pF ||pB ] = ∇θEτ∼pF
[
log

pF (τ)

pB(τ)

]
(48)

= Eτ∼pF
[
∇θ log pF (τ) +

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
(49)

= Eτ∼pF
[(

log
pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
, (50)

as Eτ∼pF [∇θ log pF (τ)] = ∇θEτ∼pF [1] = 0. In contrast, the gradient of the contrastive balance
loss with respect to θ is

∇θLCB(τ, τ ′, θ) = ∇θ
(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)2

(51)

= 2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′)) , (52)

whose expectation under the outer product distribution pF ⊗ pF equals the quantity
4∇θDKL[pF ||pB ] in Equation 48. Indeed, as

Eτ∼pF
[(

log
pF (τ

′)

pB(τ ′)

)
∇θ log pF (τ)

]
= 0, (53)

with an equivalent identity obtained by interchanging τ and τ ′,

E
(τ,τ ′)∼pF⊗pF

[∇θLCB(τ, τ ′, θ)] = (54)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)
− log

pF (τ
′)

pB(τ ′)

)
(∇θ log pF (τ)−∇θ log pF (τ ′))

]
= (55)

E
(τ,τ ′)∼pF⊗pF

[
2

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ) + 2

(
log

pF (τ
′)

pB(τ ′)

)
∇θ log pF (τ ′)

]
= (56)

E
τ∼pF

[
4

(
log

pF (τ)

pB(τ)

)
∇θ log pF (τ)

]
= 4∇θDKL[pF ||pB ]. (57)

Thus, the on-policy gradient of the contrastive balance loss equals in expectation the gradient of the
KL divergence between the forward and backward policies of a GFlowNet.

B EXPONENTIALLY WEIGHTED DISTRIBUTIONS

This section extends our theoretical results and shows how to train a FC-GFlowNet to sample from
a logarithmic pool of locally trained GFlowNets. Henceforth, let R1, . . . , RN : X → R+ be non-
negative functions over X and assume that each client n = 1, . . . , N trains a GFlowNet to sample
proportionally toRn. The next propositions show how to train a GFlowNet to sample proportionally
to an exponentially weighted distribution

∏N
n=1Rn(x)

ωn for non-negative weights ω1, . . . , ωN . We
omit the proofs since they are essentially identical to the ones presented in Appendix A.

Firstly, Theorem 1′ below proposes a modified balance condition for the global GFlowNet and shows
that the satisfiability of this condition leads to a generative model that samples proportionally to the
exponentially weighted distribution.
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Algorithm 1 Training of Federated GFlowNets

Require:
(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)
clients’ policies, R1, . . . , RK clients’ rewards, (pF , pB)

parameterized global policies, E number of epochs for training, uF uniform policy
Ensure: p⊺(x) ∝ R(x) :=∏1≤k≤K Rk(x)

parfor k ∈ {1, . . . ,K} do ▷ Train the clients’ models in parallel
train the policies

(
p
(k)
F , p

(k)
B

)
to sample proportionally to Rk

end parfor
for e ∈ {1, . . . , E} do ▷ Train the global model
B ← {(τ, τ ′) : τ, τ ′ ∼ 1/2 · pF + 1/2 · uF } ▷ Sample a batch of trajectories
L← 1

|B|
∑
τ,τ ′∈B LFB

(
τ, τ ′;

{(
p
(1)
F , p

(1)
B

)
, . . . ,

(
p
(K)
F , p

(K)
B

)})
Update the parameters of pF and pB through gradient descent on L

end for

Theorem 1′ (Federated balance condition). Let
(
p
(1)
F , p

(1)
F

)
, . . . ,

(
p
(N)
F , p

(N)
F

)
: V 2 → R+ be

pairs of forward and backward policies from N GFlowNets sampling respectively proportional to
R1, . . . , RN : X → R+. Then, another GFlowNet with forward and backward policies pF , pB ∈
V 2 → R+ samples proportionally to R(x) :=

∏N
n=1R(x)

ωn if and only if the following condition
holds for any terminal trajectories τ, τ ′ ∈ T :

∏
1≤i≤N

(∏
s→s′∈τ

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi

(∏
s→s′∈τ ′

p
(i)
F (s,s′)

p
(i)
B (s′,s)

)ωi
=

(∏
s→s′∈τ

pF (s,s′)
pB(s′,s)

)
(∏

s→s′∈τ ′
pF (s,s′)
pB(s′,s)

) . (58)

Secondly, Theorem 2′ provides an upper bound on the discrepancy between the targeted and the
learned global distributions under controlled local errors — when the local distributions are hetero-
geneously pooled. Notably, it suggests that the effect of the local failures over the global approxi-
mation may be mitigated by reducing the weights associated with improperly trained local models.

Theorem 2′ (Influence of local failures). Let πn := Rn/Zn and p(n)F and p(n)B be the forward and
backward policies of the nth client. We use τ ⇝ x to indicate that τ ∈ T is finished by x → sf .
Suppose that the local balance conditions are lower- and upper-bounded ∀n = 1, . . . , N as per

1− αn ≤ min
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ max
x∈X ,τ⇝x

p
(n)
F (τ)

p
(n)
B (τ |x)πn(x)

≤ 1 + βn (59)

where αn ∈ (0, 1) and βn > 0. The Jeffrey divergence DJ between the global model π̂(x) that
fulfills the federated balance condition in Equation 4 and π(x) ∝∏N

n=1 πn(x)
ωn then satisfies

DJ(π, π̂) ≤
N∑
n=1

ωn log

(
1 + βn
1− αn

)
. (60)

Interestingly, one could train a conditional GFlowNet (Bengio et al., 2021) to build an amortized
generative model able to sample proportionally to

∏N
n=1Rn(x)

ωn for any non-negative weights
(ω1, . . . , ωN ) within a prescribed set. This is a promising venue for future research.

C ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

This section is organized as follows. First, Appendix C.1 describes the experimental setup under-
lying the empirical evaluation of FC-GFlowNets in section 4. Second, Appendix C.2 exhibits the
details of the variational approximations to the combined distributions used as baselines in Table 1.
Third, Appendix C.3 specifies our settings for comparing the training convergence speed of different
optimization objectives. Algorithm 1 illustrates the training procedure of Federated GFlowNets. Reviewer: wWFS
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Figure 7: An illustration of the generative process for phylogenetic trees’ topologies. We itera-
tively select two trees to join their roots. The final state corresponds to a single, connected graph.

C.1 EXPERIMENTAL SETUP

In the following, we applied the same optimization settings for each environment. For the stochas-
tic optimization, we minimized the contrastive balance objective using the AdamW optimizer
(Loshchilov and Hutter, 2019) for both local and global GFlowNets. We trained the models for
5000 epochs (20000 for the grid world) with a learning rate equal to 3 · 10−3 with a batch size de-
pendent upon the environment. Correspondingly, we define the L1 error between the distributions π
and π̂ as two times the total variation distance between them, ∥π− π̂∥1 :=

∑
x∈X |π(x)− π̂(x)|. For

the grid world and design of sequences setups, all intermediate GFlowNet states are also terminal,
since they lie on the path from the initial state to another terminal state. For the remaining setups,
the intersection between terminal and intermediate states is empty. Reviewer: rsSg

Grid world. We considered a two-dimensional grid with length size 12 as the environment for the
results of both Table 1 and Figure 2. To parametrize the forward policy, we used an MLP with two
64-dimensional layers and a LeakyReLU activation function between them (Maas et al., 2013). For
inference, we simulated 106 environments to (i) compute the L1 error between the targeted and the
learned distributions. and (ii) select the 800 most rewarding samples. We utilized a batch size equal
to 1024 during both the training and inference phases.

Design of sequences. We trained the GFlowNets to generate sequences of size up to 6 with elements
selected from a set of size 6. We parametrized the forward policies with a single 64-dimensional
layer bidirectional LSTM network followed by an MLP with two 64-dimensional layers (Graves and
Graves, 2012). For training, we used a batch size of 512. For inference, we increased the batch size
to 1024 and we sampled 106 sequences to estimate the quantities reported in Table 1 and Figure 4.

Multiset generation. We designed the GFlowNet to generate multisets of size 8 by iteratively se-
lecting elements from a set U of size 10. Moreover, we endowed each element within U with a
learnable and randomly initialized 10-dimensional embedding. To estimate the transition proba-
bilities at a given state s, we applied an MLP with two 64-dimensional layers to the sum of the
embeddings of the elements in s. During training, we used a batch size of 512 to parallely gener-
ate multiple multisets and reduce the noiseness of the backpropagated gradients. During inference,
we increased the batch size to 1024 and generated 106 samples to generate the results reported in
Table 1 and Figure 3.

Bayesian phylogenetic inference. We devised a GFlowNet to learn a posterior distribution over the
space of rooted phylogenetic trees with 7 leaves and fixed branch lengths. Each state is represented
as a forest. Initially, each leaf belongs to a different singleton tree. An action consists of picking
two trees and joining their roots to a newly added node. The generative process is finished when all
nodes are connected in a single tree (see Figure 7).To estimate the policies at the (possibly partially Reviewer: Xj4h
built) tree t, we used a graph isomorphism network (GIN; Xu et al., 2019) with two 64-dimensional
layers to generate node-level representations for t and then used an MLP to project the sum of these
representations to a probability distribution over the viable transitions at t. We used a tempered
version of the likelihood to increase the sparsity of the targeted posterior. Importantly, we selected
a batch size of 512 for training and of 1024 for inference. Results for Table 1 and Figure 5 are
estimates based on 105 trees drawn from the learned distributions.

Our implementations were based on PyTorch (Paszke et al., 2019) and on PyTorch
Geometric (Fey and Lenssen, 2019).
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C.2 PARALLEL CATEGORICAL VARIATIONAL INFERENCE

As a simplistic approach to combining the locally learned distributions over compositional objects,
we variationally approximate them as the product of categorical distributions over the objects’ com-
ponents. For this, we select the parameters that minimize the reverse Kullback-Leibler divergence
between the GFlowNet’s distribution pT and the variational family Q,

q̂ = argmin
q∈Q

KL[pT ||q] = argmin
q∈Q

−Ex∼pT [log q(x)], (61)

which, in asymptotic terms, is equivalent to choosing the parameters that maximize the likelihood of
the GFlowNet’s samples under the variational model. Then, we use a logarithmic pool of these local
variational approximations as a proxy for the global model. In the next paragraphs, we present the
specific instantiations of this method for the domains we considered throughout our experiments.
We used the same experimental setup of subsection C.1 to train the local GFlowNets.

Grid world. An object in this domain is composed of its two coordinates in the grid. For a grid of
width W and height H , we consider the variational family

Q = {(ϕ, ψ) ∈ ∆W+1 ×∆H+1 : qϕ,ψ(x, y) = Cat(x|ϕ)Cat(y|ψ)}, (62)

in which ∆d is the d-dimensional simplex and Cat(ϕ) (Cat(ψ)) is a categorical distribution over
{0, . . . ,W} ({0, . . . ,H}) parametrized by ϕ (ψ). Then, given the N variational approxima-
tions

(
qϕ(1),ψ(1)

)
, . . . ,

(
qϕ(N),ψ(N)

)
individually adjusted to the distributions learned by the local

GFlowNets, we estimate the unnormalized parameters ϕ̃ and ψ̃ of the variational approximation to
the global distribution over the positions within the grid as

ϕ̃ =
⊙

1≤i≤N

ϕ(i) and ψ̃ =
⊙

1≤i≤N

ψ(i). (63)

Then, we let ϕ = ϕu/ϕ⊺
u1W+1 and ψ = ψu/ψ⊺

u1H+1, with 1d as the d-dimensional vector of 1s, be the
parameters of the global model.

Design of sequences. We represent sequences of size up to T over a dictionary V as a tuple
(S, (x1, . . . , xS)) denoting its size S and the particular arrangement of its elements (x1, . . . , xS).
This is inherently modeled as a hierarchical model of categorical distributions,

S ∼ Cat(θ), (64)
xi ∼ Cat(ϕi,S |S) for i ∈ {1, . . . , S}, (65)

which is parametrized by θ ∈ ∆T and ϕ·,S ∈ RS×|V | for S ∈ {1, . . . , T}. We define our family
of variational approximations as the collection of all such hierarchical models and estimate the
parameters θ and ϕ accordingly to Equation 61. In this case, let

(
θ(1), ϕ(1)

)
, . . . ,

(
θ(N), ϕ(N)

)
be the parameters associated with the variational approximations to each of the N locally trained
GFlowNets. The unnormalized parameters θ̃ and ϕ̃ of the combined model that approximates the
global distribution over the space of sequences are then

θ̃ =
⊙

1≤i≤N

θ(i) and ϕ̃·,S =
⊙

1≤i≤N

ϕ
(i)
·,S for S ∈ {1, . . . , T}, (66)

whereas the normalized ones are θ = θ̃/θ̃⊺1T and ϕ·,S = diag(ϕ̃·,S1|V |)
−1ϕ̃·,S .

Multiset generation. We model a multiset S of size S as a collection of independently sampled
elements from a warehouseW with replacement. This characterizes the variational family

Q =

{
q(·|ϕ) : q(S|ϕ) =

∏
s∈S

Cat(s|ϕ)
}
, (67)

in which ϕ is the parameter of the categorical distribution overW estimated through Equation 61.
Denote by ϕ(1), . . . , ϕ(N) the estimated parameters that disjointly approximate the distribution of
N locally trained GFlowNets. We then variationally approximate the logarithmically pooled global
distribution as q(·|ϕ) ∈ Q with ϕ = ϕ̃/ϕ̃⊺1|W|, in which

ϕ̃ =
⊙

1≤i≤N

ϕ(i). (68)
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Table 2: Quality of the federated approximation. The global model’s performance does not criti-
cally depend on the clients’ training objective; it relies only on the goodness-of-fit of their models.

Grid World Multisets Sequences
L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑ L1 ↓ Top-800 ↑

FC-GFlowNet (CB) 0.038 −6.355 0.130 27.422 0.005 −1.535
(±0.016) (±0.000) (±0.004) (±0.000) (±0.002) (±0.000)

FC-GFlowNets (TB) 0.039 −6.355 0.131 27.422 0.006 −1.535
(±0.006) (±0.000) (±0.018) (±0.000) (±0.005) (±0.000)

Notably, the best known methods for carrying out Bayesian inference over the space of phyloge-
netic trees are either based on Bayesian networks (Zhang and Matsen IV, 2018) or MCMC, neither
of which are amenable to data parallelization and decentralized distributional approximations. More
precisely, the product of Bayesian networks may not be efficiently representable as a Bayesian net-
work, and it is usually not possible to build a global Markov chain whose stationary distribution
matches the product of the stationary distributions of local Markov chains. Moreover, any categor-
ical variational approximation factorizable over the trees’ clades would not be correctly supported
on the space of complete binary trees and would lead to frequently sampled invalid graphs.

C.3 COMPARISON OF DIFFERENT TRAINING CRITERIA

Experimental setup. We considered the same environments and used the same neural network
architectures described in subsection C.1 to parametrize the transition policies of the GFlowNets.
Importantly, the implementation of the DB constraint and of the FL-GFlowNet requires the choice
of a parametrization for the state flows (Bengio et al., 2023; Pan et al., 2023a). We model them as an
neural network with an architecture that essentially mirrors that of the transition policies — with the
only difference being the output dimension, which we set to one. Moreover, we followed suggestions
in (Pan et al., 2023a; Malkin et al., 2022) and utilized a learning rate of 3 ·10−3 for all parameters of
the policy networks except for the partition function’s logarithm logZ composing the TB constraint,
for which we used a learning rate of 1 · 10−1. Noticeably, we found that this heterogeneous learning
rate scheme is crucial to enable the training convergence under the TB constraint.

Further remarks regarding Figure 6. In Figure 6, we observed that LCB and LTB per-
form similarly in the grid world and in design of sequences domains. A reasonable explanation
for this is that such criteria are identically parameterized in such domains, as LDB reduces to
R(s′)pB(s|s′)pF (sf |s) = R(s)pF (s

′|s)pF (sf |s′) in environments where every state is terminal
Deleu et al. (2022). Thus, F vanishes and hence the difficult estimation of this function is avoided.

C.4 ADDITIONAL EXPERIMENTS
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Figure 8: CB outperforms TB
for different lr’s for logZ.

Comparison between TB and CB with different learning rates.
Figure 8 shows that increasing the learning rate for logZϕZ

signifi-
cantly accelerates the training convergence for the TB objective. In
this experiment, the learning rate for the other parameters was fixed
at 10−3 — following the setup of Malkin et al. (2022, Appendix
B). However, CB leads to faster convergence relatively to TB for all
lr’s. In practice, though, note that finding an adequate learning rate
for logZϕZ

may be a very difficult and computationally exhaustive
endeavor that is completely avoided by implementing the CB loss.

Implementing different training objectives for the clients. Table 2 suggests that the accuracy
of FC-GFlowNet’s distributional approximation is mostly independent of whether the clients im-
plemented CB or TB as training objectives. Notably, the combination phase of our algorithm is
designedly agnostic to how the local models were trained — as long as they provide us with well-
trained backward and forward policies. This is not constraining, however, since any practically use-
ful training scheme for GFlowNets is explicitly based upon the estimation of such policies Malkin
et al. (2022); Pan et al. (2023a); Bengio et al. (2023); Zhang et al. (2023a). Reviewer: Xj4h
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D RELATED WORK

GFlowNets were originally proposed as a reinforcement learning algorithm tailored to the search
of diverse and highly valuable states within a given discrete environment (Bengio et al., 2021). Re-
cently, these algorithms were successfully applied to the discovery of biological sequences (Jain
et al., 2022), robust scheduling of operations in computation graphs (Zhang et al., 2023a), Bayesian
structure learning and causal discovery (Deleu et al., 2022; 2023; da Silva et al., 2023; Atanackovic
et al., 2023), combinatorial optimization (Zhang et al., 2023b), active learning (Hernandez-Garcia
et al., 2023), multi-objective optimization (Jain et al., 2023), and discrete probabilistic modeling
(Zhang et al., 2022a; Hu et al., 2023; Zhang et al., 2022b). Bengio et al. (2023) formulated the
theoretical foundations of GFlowNets. Correlatively, (Lahlou et al., 2023) laid out the theory of
GFlowNets defined on environments with a non-countable state space. Pan et al. (2023c) and Zhang
et al. (2023c) extended GFlowNets to environments with stochastic transitions and rewards. Con-
comitantly to these advances, there is a growing literature that aims to better understand and improve
this class of algorithms (Deleu and Bengio, 2023; Shen et al., 2023; Malkin et al., 2023), with an
emphasis on the development of effective objectives and parametrizations to accelerate training con-
vergence (Pan et al., 2023b;a; Malkin et al., 2022; Deleu et al., 2022). Notably, both Malkin et al.
(2023) and (Zhang et al., 2023a) proposed using the variance of the a TB-based estimate of the log
partition function as a training objective based on the variance reduction method of Richter et al.
(2020). It is important to note one may use stochastic rewards (see Bengio et al., 2023; Zhang et al.,
2023c) carry out federated inference, in the same fashion of, e.g., distributed stochastic-gradient
MCMC (El Mekkaoui et al., 2021; Vono et al., 2022). Notably, stochastic rewards have also been
used in the context of causal structure learning by (Deleu et al., 2022) and (Deleu et al., 2023). How-
ever, it would require many communication steps between clients and server to achieve convergence
— which is precisely the bottleneck FC-GFlowNets aim to avoid. Reviewer: Xj4h

Distributed Bayesian inference mainly concerns the task of approximating or sampling from a
posterior distribution given that data shards are spread across different machines. This comprises
both federated scenarios (El Mekkaoui et al., 2021; Vono et al., 2022) or the ones in which we
arbitrarily split data to speed up inference (Scott et al., 2016). Within this realm, there is a notable
family of algorithms under the label of embarrassingly parallel MCMC (Neiswanger et al., 2014),
which employ a divide-and-conquer strategy to assess the posterior. These methods sample from
subposteriors (defined on each user’s data) in parallel, subsequently sending results to the server
for aggregation. The usual approach is to use local samples to approximate the subposteriors with
some tractable form and then aggregate the approximations in a product. In this line, works vary
mostly in the approximations employed. For instance, Mesquita et al. (2019) apply normalizing
flows, (Nemeth and Sherlock, 2018) model the subposteriors using Gaussian processes, and (Wang
et al., 2015) use hyper-histograms. It is important to note, however, that these works are mostly
geared towards posteriors over continuous random variables.

Federated learning was originally motivated by the need to train machine learning models on
privacy-sensitive data scattered across multiple mobile devices — linked by an unreliable commu-
nication network (McMahan et al., 2017). While we are the first tackling FL of GFlowNets, there
are works on learning other generative models in federated/distributed settings, such as for gener-
ative adversarial networks (Hong et al., 2021; Chang et al., 2020; Qu et al., 2020) and variational
autoencoders (Polato, 2021).
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