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Figure 10: The evolution of failure mode probabilities over training: (left) Missteps (right)
Planning failure. It can be seen that the model first learns to produce correct edges (effectively
bigram statistics) and then learns the global objective of producing a path that ends at the cued goal
node. Accuracy curves averaged over 3 trained models with different random seed.

7 APPENDIX

7.1 TRAINING DYNAMICS IN THE SINGLE GRAPH SCENARIO

Here we show the training dynamics of a single graph model. We choose to highlight the two types of
failures identified in the main text: (1) the probability of taking a correct step (i.e. 1�Pr(misstep))
and (2) the probability of ending at the cued target node (i.e. 1 � Pr(planning failure)). These are
shown in Fig. 10

7.2 SETUP AND CONSTRUCTION OF GRAPH AND MODEL

Here we describe the properties of the DAGs we use, the training setup, model architecture and
hyperparameters.

We use 2 DAG structures, hierarchical and random (Fig. 11). Random DAGs are constructed by
randomly generating an upper-triangular matrix where each entry has probability p of existing. Hi-
erarchical DAGs are generated by predefining L sets of nodes and drawing an edge between a node
nl in layer l and nl+1 in layer l + 1 with probability p. Lastly, we ensure that the graph is con-
nected. These lead to different path diversity and path length distributions, which affect the efficacy
of stepwise inference, as shown in our results.

For training, we tokenize every node and we use next-token prediction with a cross entropy loss:

L(xn, target n) = � log
⇣ exp(�xn, target n)P#tokens

t=0 exp(�xn,t)

⌘
= � log

⇣
softmax(�xn)target n| {z }

prob(target n)

⌘
(1)

For model architecture, we use a GPT based decode-only transformer with a causal self-attention
mask. Our implementation is based on the popular nanoGPT repository1.

Hyperparameter Value
learning rate 10�4

Batch size 64
Context length 32
Optimizer Adam
Momentum 0.9, 0.99
Activation function GeLU
Number of blocks 2
Embedding dimension 64

Table 1: Hyperparameters of the transformer

1available at https://github.com/karpathy/nanoGPT

13

https://github.com/karpathy/nanoGPT


Under review as a conference paper at ICLR 2024

Hierarchical graph

x9 x11 x4

x1 x3 x8

x6 x10 x5

x7 x2 x12

Layer 1

Layer 2

Layer 3

Layer 4

Directed Acyclic Graph (DAG) Structures

x3

x5

x6

x1

x2

x7
x4

Random graph

source

sink

Path Diversity Distribution

Path Length Distribution

Path LengthPath Length

Path Diversity Path Diversity

Co
un

t
Co

un
t

Figure 11: Construction and properties of Hierarchical and Random DAGs.
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