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1 Dataset Design

1.1 Dataset Specifications

Following the protocols elaborated in the Section 3.3, we collected a large-scale dataset, dubbed
the CogPhys dataset. We recruited 37 participants for our study, and the dataset was collected
in compliance with an Institutional Review Board (IRB). Our protocol was approved by the Rice
University Institutional Review Board under the study: IRB-FY2025-59.

Across the dataset, we have six 2 min recordings from each participant, barring two participants,
from whom we have five recordings. This yielded to a total of 220 recordings, which totals to
440 mins of video and radar recordings. Furthermore, the raw recordings for each task were
∼ 42.5 GBs, summing up to ∼ 255 GBs per participant. Due to the size of the dataset, we resize,
crop, and compress the data (losslessly) to approximately 2 − 2.5GB per task. We elaborate on
the preprocessing and compression steps in the next section. Due to the size of the raw dataset
(> 9 TBs), we will be releasing the preprocessed and compressed dataset ∼ 600 GBs. In
addition to the contact and remote sensor recordings, we also collect demographic data from the
participants. These include the use of glasses/contacts, use of cosmetics, age, gender, self-reported
Fitzpatrick skin tone values, and height.

For all our experiments, we partition the dataset into 3 sets - train, test, and validation sets. We split
the dataset according to participants (a split corresponding to 25/10/2 for train/test/val), ensuring
there is no overlap between the train, test, and validation sets. All metrics and results reported in this
paper are derived from the test set. We have included a pickle file with the train, test, and validation
split in the codebase accompanying the paper.

1.2 Demographic Distribution and Bias Effects

A summary of the dataset demographics and specifications has been listed in Table 1. Given our
participant size of 37 and distribution statistics, our dataset has limited representation across all
demographic groups. As such, algorithms trained on this dataset would reflect the bias present in
our demographic distribution. Furthermore, rPPG is known to be biased against demographics with
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Table 1: Summary of Dataset Statistics
Statistic Value/Count
Total Participants 37
Gender (Male) 23
Gender (Female) 14
Mean Age 24.09
Median Age 25
Age Range 18 − 31
Lens/Contacts (Y) 19
Lens/Contacts (C) 7
Lens/Contacts (N) 11
Uses Cosmetics 6
Does Not Use Cosmetics 31
Skin Tone (fp2) 10
Skin Tone (fp3) 11
Skin Tone (fp4) 10
Skin Tone (fp5) 5
Missing Skin Tone 1
Mean Height 5′6 2

3

′′

Median Height 5′6′′

Height Range 5′0′′ − 6′3′′

darker skin tones [44, 34] on an imaging level. We present our analysis of the same in Section 6.6 of
this supplement. De-biasing is an important topic within remote physiological sensing. While the
main goal our paper was to explore remote cognitive load estimation, future works can dive deeper
into the demographic effects and algorithms to debias the same.

1.3 Data Preprocessing

The radar, NIR, and RGB cameras are set to a sampling rate of 30 Hz, while the thermal cameras
and pulse oximeter are operated at their default sampling rate of 60 Hz. The respiratory band, on the
other hand, samples the respiratory signals at 18 Hz and the electrocardiography (ECG) signal at
100 Hz. The accumulated data packets are transmitted to the computer at 1 Hz. We store the raw
pulse oximeter and ECG recordings (when available). The respiratory signal is upsampled to 30 Hz
prior to consolidation.

The data from the NIR and thermal cameras is captured with 16-bit integer depth. The raw in-phase
quadrature (IQ) data from the radar is captured with all 3 transmitters and 4 receivers active, and
with each data frame containing 8 chirps. The only pre-processing step performed for the radar
is to rearrange the captured raw data into a radar matrix. Mathematical details for remote photo-
plethysmography (rPPG) signal formation and radar matrix acquisition can be found in [45] and [44],
respectively. A detailed list of camera and radar parameters and data shapes is provided in the
supplement.

In contrast, the raw video recordings are cropped to the face and compressed. We use Google’s
mediapipe [26] library to crop the faces from the camera-based modalities. We find that mediapipe’s
facial landmarks detection function can be used on all 3 camera modalities - RGB, NIR, and thermal
(placed above the cockpit). Due to the complexity of the tasks and the nature of the thermal videos,
we only estimate the landmarks for frames where the landmark detector can estimate the keypoints.
We pool the estimated landmarks to draw a single bounding box around the face, such that the
participant’s face is within this box across all valid frames. Due to the extreme viewing angle of
the thermal camera placed below the cockpit, we implement a hand-crafted adaptive thresholding
algorithm to iteratively threshold the video. The final thresholded output from the iterative process is
used to draw the facial bounding box. The cropped frames from all 4 cameras are then resized to a
constant size: 256× 256.

Further down, these frames can be downsized for the processing algorithms, as in our case where
the frames were downsampled to 128x128 to train the models. All sensing processes were started
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concurrently via multiprocessing, and per-sample receive timestamps were logged on the acquisition
laptop for alignment post hoc. Further details are provided in the dataset.
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Figure 1: Correlation heatmap between the six NASA-TLX dimensions, showing strong positive
correlations between Mental Demand, Temporal Demand and frustration (r ≈ 0.7), while Performance
shows negative correlations with all other dimensions, suggesting that higher perceived workload
corresponds to lower self-rated performance.

2 Extended Literature Review

This section provides an extended review of the literature that complements the concise related
work presented in the main manuscript. We cover the evolution of remote physiological sensing
technologies, multimodal fusion approaches, and cognitive state estimation methodologies that form
the foundation of our work.

2.1 Remote Unimodal Vital Sensing

Heart rate (HR), heart rate variability (HRV), and respiratory rate (RR) sensing with cameras and
radars have gained great popularity [46, 35, 7]. This has led to an uptick in large-scale datasets
for training and testing the various algorithms for rPPG and remote respiration research. These
datasets span a range of modalities and conditions, including lab environments (e.g., UBFC [6],
MR-NIRP [32]), driving [33], and synthetic settings (e.g., SCAMPS [29], UCLA-rPPG [46]). These
datasets have led to the development of various model-based approaches entailing spatial signal to
noise ratio (SNR) maps [23, 7], sparse spectral methods for NIR imaging [33, 32], light transport-
based methods [10, 45], and motion-based methods [4]. Unlike model-based approaches, deep
learning (DL) adopts a data-driven approach to estimate the rPPG signal. Advanced architecture such
as transforms [52, 51], mamba [27, 56] and contrastive network [40, 41] have pushed the frontier of
high performing rPPG algorithms. Parallelly, there have also been strides in research into respiratory
signals estimation from sensors such as thermal cameras and radio-frequency (RF) sensors such as
radars [8]. [54] and [44] implement novel data augmentation techniques for ultra-wideband (UWB)
and frequency modulated continuous wave (FMCW) radars for RR and HR estimation, respectively.

2.2 Remote Multimodal Vital Sensing

Using a single modality for remote sensing of vitals can prove disadvantageous, leading to systems
not being robust to lighting changes and being inaccurate. It could also cause inequitable outcomes in
estimation errors. The usage of more than one modality has been explored in a few works. Multimodal
datasets, such as MMSE [53], EquiPleth [44], iBVP [19] and MR-NIRP [32, 33] have opened the
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Table 2: Existing datasets for cognitive load estimation using physiological signals. Our CogPhys
dataset uniquely combines multiple remote sensing modalities with contact-based ground truth for
cognitive load assessment.

Dataset Year Subjects Sensing Approach Modalities Cognitive Tasks Duration Remote Sensing
Driver Workload [39] 2013 10 Contact ECG, BTemp, SCR Driving videos, Real driving Variable No
MMOD-COG [30] 2019 40 Contact ECG, EDA, Speech Arithmetic, Reading Variable No
CLAS [28] 2019 62 Contact ECG, PPG, EDA Math, Logic, Stroop test Variable No
CogLoad [15] 2020 23 Contact HR, IBI, EDA, ST, ACC n-back tasks, Visual cues Variable No
Snake [15] 2020 23 Contact HR, IBI, EDA, ST, ACC Snake game Variable No
Kalatzis et al. [20] 2021 26 Contact ECG, RR MATB-II Variable No
COLET [22] 2022 30 Hybrid Eye-tracking, EEG, ECG Reading, Math 45 min Partial
MOCAS [17] 2024 40 Hybrid Video, EEG, ECG, EDA Multiple cognitive tasks 60 min Partial
CL-Drive [2] 2024 21 Hybrid EEG, ECG, EDA, Gaze Simulated driving Variable Partial
CLARE [5] 2024 25 Hybrid Video, EEG, ECG, EDA Reading, Math, Memory 90 min Partial

CogPhys (Ours) 2025 37 Multimodal Remote RGB, NIR, Thermal, Radar, PPG, ECG, Resp Reading, Memory, Math 12 min Each Yes

doors to remote multimodal vital sensing. This has led to various advanced algorithms that have been
benchmarked on both unimodal as well as multimodal data streams [41, 47]. rPPG-based methods are
sensitive to face motions, and [25] attempted to reduce motion corruption by adaptively filtering the
ballistocardiography (BCG) signal and rPPG signals. With a similar undertone, [3] has extended the
system’s capabilities to include the fusion of remote ballistocardiography (rBCG signals in addition
to the non-contact rPPG and contact-based BCG.

2.3 Cognitive State Estimation

The estimation of cognitive workload, a critical aspect of human-computer interaction, increasingly
leverages machine learning (ML) to interpret physiological and behavioral signals. Established
contact-based methods often rely on electroencephalography (EEG) to directly measure brain ac-
tivity [48, 49], or utilize wearable sensors for signals like ECG, electrodermal activity (EDA),
and photoplethysmography (PPG), from which cognitive states are inferred using features such
as HRV [16, 17]. Non-contact approaches primarily employ cameras for eye-tracking to analyze
gaze and pupil dynamics [22], or to assess facial expressions and head movements as behavioral
indicators of cognitive load [17]. While remote sensing with radar has shown promise for vital signs
(as discussed in Sec. 2.1), its direct application to robust cognitive state estimation is comparatively
less explored.

To overcome the limitations of individual modalities, a significant trend is the adoption of multimodal
approaches, fusing data from diverse sensors [17, 5]. The development and standardized validation
of such complex models, often involving sophisticated feature integration or DL techniques, have
been significantly advanced by benchmark datasets like COLET and MOCAS [22, 17, 2]. However,
advancing robust remote cognitive load estimation, particularly with more diverse sensor inputs
and task contexts, highlights an ongoing need for comprehensive public datasets and standardized
evaluation methods. Despite overall progress, achieving generalizable, real-time estimation in less
constrained environments remains a key challenge due to factors like ground truth ambiguity and
individual differences [21]. Our work directly addresses this by introducing a novel, extensive dataset
and associated benchmarks tailored for multimodal remote cognitive load estimation, aiming to fill
an important gap in current research. In our participants’ responses to the NASA-TLX questionnaire,
itemized scores show strong positive correlations between Mental Demand, Temporal Demand and
frustration, shown in Figure 1.

2.4 Existing Datasets for Cognitive Load Estimation

The development of robust cognitive load estimation systems has been significantly advanced by the
availability of benchmark datasets that provide synchronized physiological data and associated ground
truth labels. Table 2 summarizes the key datasets in the literature that study cognitive load using
physiological signals, highlighting the evolution from primarily contact-based sensing to emerging
multimodal approaches.

Early datasets in this domain, such as Driver Workload [39] and MMOD-COG [30], focused primarily
on contact-based physiological sensing using traditional wearable sensors. These datasets established
the foundation for understanding the relationship between physiological responses and cognitive load
but were limited by the intrusive nature of contact sensing and relatively small participant pools.
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More recent datasets have begun incorporating hybrid approaches that combine contact physiological
sensors with non-contact behavioral tracking. COLET [22] and MOCAS [17] represent significant
advances by including eye-tracking and video analysis alongside traditional physiological measure-
ments. However, these datasets still rely heavily on contact sensors for the primary physiological
signals and have limited exploration of fully remote sensing capabilities.

Our CogPhys dataset addresses a critical gap in the literature by providing the first large-scale dataset
specifically designed for multimodal remote cognitive load estimation. Unlike previous datasets that
primarily rely on contact sensing or include only limited remote modalities, CogPhys incorporates
five distinct remote sensing modalities (RGB cameras, NIR cameras, thermal cameras, and radar)
alongside contact-based ground truth measurements. This unique combination enables systematic
evaluation of remote sensing approaches while maintaining high-quality reference standards for
validation.

The diversity of cognitive tasks across datasets reflects different research objectives and application
domains. While some datasets focus on specific scenarios like driving [2] or gaming [15], others
adopt more general cognitive load paradigms using established psychological tasks such as n-back
tests [15] or mathematical problems [28]. Our dataset employs a balanced approach with reading,
memorization, and arithmetic tasks that span different cognitive domains while remaining practical
for real-world applications.

3 Experimental Design and Sample Retention Criteria

3.1 Design Rationale

Our task design was motivated by established cognitive load research. The protocol incorporates
validated approaches from prior work [12, 14, 31, 1, 11] that induce varying cognitive load through:

• Binary grid memorization (4×4 patterns) [14, 31]

• Digit memorization (8-digit sequences) [1, 11]

• Simultaneous dual-task paradigms (memorization + arithmetic) [12]

Crucially, we allowed adequate time for both memorization and problem-solving phases to avoid
inducing time pressure stress. Participants were not rushed, ensuring the tasks primarily elicited
cognitive demand rather than temporal stress.

3.2 Participant Engagement Criteria

While we did not establish performance-based exclusion criteria (e.g., requiring 80% correct re-
sponses), we implemented engagement-based quality control. As documented in prior dual-task cog-
nitive load studies [12, 37], performance on secondary tasks (our multiplication questions) naturally
decreases with higher cognitive loads. Excluding low-performing participants would systematically
remove those experiencing the highest cognitive load—precisely the most valuable data.

Our exclusion criteria focused on verifying genuine engagement:

• Participants who failed to attempt math problems

• Impossibly fast responses suggesting disengagement

• Clear misunderstanding of instructions (recording restarted after re-explanation)

All participants engaged genuinely with the tasks and answered validation questions correctly (e.g.,
simple problems like 10× 6 = 60). No recordings were excluded based on engagement criteria.

4 Estimating Remote Physiological Signals from a Sensor Stack

Here we provide a brief summary of the methods used to extract the vital signs from the sensors
stack. Our codebase is built on top of the rPPG-Toolbox [24] and Contrast-Phys+ [41] repositories,
with one important modification. We include the SNR Loss from [44] as an additional loss function to
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all the methods in the previously mentioned repositories. Additionally, we box-filter the estimated
and ground truth waveforms prior to the Pearson loss. Filters of sizes 7and 15 were used for the
rPPG and respiratory waveform regression, respectively. We find these modifications add necessary
priors, drastically improving the performance on HR estimation. Additional details regarding these
modifications can be found in the accompanying codebase.

4.1 Estimating rPPG and Computing HR and HRV

As a precursor to the algorithmic methods - namely Green, ICA, CHROM, and POS - we spatially
average the RGB video to obtain a temporal signal of shape T × 3. This is done via facial detection
and segmentation using a bounding box constructed using the landmarks from the mediapipe [26]
library. The algorithmic methods are based on exploiting the signals’ redundancy across the 3
channels of the RGB videos.

Green [43]: The 1st channel, i.e., the signal from the green channel, is chosen as the desired rPPG
signal. This is equivalent to spatially averaging the green channel of the RGB video.

ICA [36]: Here, authors assume the rPPG signals and noise/motion signals are from independent
sources. Following this assumption, they employ an independent component analysis algorithm on
the 3 color channels to extract the rPPG signal.

CHROM [10]: The spatially averaged video is projected onto a chrominance space through a linear
combination of the RGB channels. Following this, the chrominance signals are filtered, and the
3 color channels are combined to yield the rPPG estimate.

POS [45]: The temporal signal is projected onto a plane that is orthogonal to the skin tone. This
plane is derived based on the physiological and diffuse optical properties of skin and blood flow. This
essential equates to a fixed matrix projection.

The DL baselines were trained to estimate the rPPG signals through a 1-D signal regression. We
supply the raw 128 × 128 × 3 video frames as the input, as opposed to the default option of
normalized difference frames. For the NIR video, we duplicate the channel thrice to ensure the
models are identical for the RGB and NIR modalities. We add the SNR loss to all the models.

PhysNet [50]: A 3-D convolutional neural network (CNN) designed to perform a 1-D signal
regression on the PPG signal. The model is trained using the negative Pearson loss function, as
opposed to a traditional MSE loss.

PhysFormer [52]: A video-transformer-based architecture designed to adaptively aggregate both
local and global spatio-temporal features to better represent and estimate the rPPG signal. Through a
temporal-difference guided attention, they enhance the quasi-periodic features of the rPPG signal.
In addition to the negative person loss function, they added a frequency domain cross-entropy loss
on the frequency spectrum to classify HR values. They also added an additional label distribution
term on the HR values to improve frequency domain supervision. Through curriculum learning, the
frequency domain losses were emphasized towards the later epochs.

RythmFormer [55]: The authors theorize that temporal attention for periodic signals is sparse. In
doing so, they introduce a periodic sparse attention mechanism to leverage this property. By filtering
out redundant component pre-attention, more fine-grained features can be extracted. They use a
negative Person loss and frequency domain cross-entropy loss function to train the model.

FactorizePhys [18]: A 3-D CNN architecture that incorporates matrix factorization to perform
multidimensional attention from voxel embeddings. Specifically, they use NMF (nonnegative matrix
factorization) to collectively compute attention across the spatial, temporal, and channel dimensions.

PhysMamba [27]: A mamba-based architecture for rPPG estimation. By leveraging the ability
of state space models to efficiently model long-term dependencies, PhysMamba performs a 1-D
regression to yield the rPPG signal.
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Figure 2: The Contrast-Phys+ model and its Siamese variant are trained for unimodal and multimodal
vital sign estimation. The NIR and Fusion models are not trained from scratch. They use the
pretrained weights from the RGB and NIR models, respectively. In essence, the Fusion method is the
resultant model from 2 sequential pertaining stages.

Contrast-Phys+ [41]: A 3D CNN model (like PhysNet) is trained using contrastive losses on the
frequency spectrum of estimated and ground truth signals1. The model outputs a spatio-temporal grid
(S × S × T ) representing multiple potential rPPG estimates. The models are trained contrastively to
output similar estimates across this grid. Further, we operate the CNN with full supervision to obtain
the best-performing model.

Due to the Contrast-Phys+ being the backbone of the fusion network, we make modifications to
improve its overall performance. We carry this out by adding 2 loss functions to the final rPPG
estimate - the spatially average of the S × S × T grid. Following suit with the previous method, we
add the SNR and negative Pearson loss functions to improve the overall performance. Additionally,
we use the pre-trained weights from the RGB model as a starting point to train the NIR model as
shown in Figure 2.

Fusion Network: We employ a Siamese network with the Contrast-Phys+ backbone. That is, we
share the weights of the first 2 convolutional blocks across the RGB and NIR videos, after which the

1In addition to an MSE loss on the normalized frequency spectrum, we also include a KL divergence loss
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deep features are added and passed through the remaining layers. Due to the SNR difference between
the RGB and NIR, we initialize the fusion networks using the weights of the pretrained NIR model.
This gives the model a head start and improves the overall performance. Here, we notice that training
the model for significant epochs can cause the RGB signals to dominate. A detailed illustration of the
model architecture can be found in Figure 2.

4.2 Estimating Respiratory Signal and Computing RR

While algorithmic implementations to extract RR from thermal videos exist, they rely on facial
landmarks and handcrafted features that only work well with frontal views without head rotations.
Due to the complexity and chosen angles in our dataset, we rely on DL baselines to evaluate respiratory
signals estimation from thermal cameras

DL (Thermal): Owing to the similarity between rPPG and remote respiratory signal sensing, we
repurpose the deep-learning baselines from the previous sub-section to be compatible with respiratory
signal estimation. This entails downsampling the thermal frames to 128× 128 pixels and changing
the frequency bands for the SNR and contrastive losses. Additionally, we downsample the input
videos and ground truth signals to 15 Hz to accommodate longer window lengths. These longer
windows are necessitated by the lower frequencies of breathing signals in contrast with PPG signals.

DL (Radar): Our 1-D CNN and its training routine have been adapted from the [44]. Given
our task of RR estimation, we port the loss functions, while keeping the architecture the same.
Additionally, we beamform the raw matrix data to strengthen the signal SNR at 0◦. We only perform
the azimuth beamforming and hence make use of 2 transmitters and 4 receivers from the whole
recordings. The 3rd transmitter is primarily used for elevation beamforming and not the azimuth.
Taking inspiration from the data augmentation scheme employed by [54, 44], we augment the radar
data in a similar fashion. However, we train the radar model on both the unsegmented and augmented
data simultaneously, and further with an MSE loss to ensure the data augmentation produces the
exact same waveform as the unsegmented data.

Fusion Network: The fusion is conducted in 2 steps. First, we mimic the rPPG-fusion network to
fuse the 2 thermal cameras. However, the thermal-fusion network is trained from scratch without
pretraining. Following the thermal-fusion, we adopt a late fusion strategy to fuse the radar waveforms
with the thermal-fusion waveforms. For this waveform fusion network, a 1-D CNN is trained on both
remote respiratory waveforms concatenated along the channel dimension. This approach accounts
for the fundamental similarities between camera modalities and the differences between cameras
and radar. Hence, mid-fusion networks for cameras and late-fusion for camera+radar modalities are
followed.

4.3 Data Loading and Processing

Preprocessing Details:

• Video spatial resolution: The 256× 256 frames are downsized to 128× 128 for the model
• Downsampling: cardiac-related modalities are downsampled to 30 Hz, while respiratory-

related to 15 Hz.
• NIR and thermal videos: channels duplicated 3× to match RGB input shape

Window Lengths by Task:

• Waveform regression training: 10 sec (rPPG) / 20 sec (respiratory)
• Vital sign calculation: 30 sec windows (HR) / 40 sec windows (RR)
• Cognitive load feature extraction: Full 2 min recordings

4.4 Resources and Hyperparameters

Here we provide a brief summary of the hyperparameters used. Due to the number of
baselines and methods we ran, the hyperparameter tuning was very brief. An exhaustive

8



grid search would yield models with errors lower than those tabulated in the main paper.
Here, we consolidate the important hyperparameters used for each model in the table be-
low. Detailed values for each model can be found in the config files in our repository:
https://github.com/AnirudhBHarish/CogPhys/tree/main/configs/train_configs.

Table 3: Comparison of Methods and Hyperparameters. The rPPG models and resp models were
trained for a different number of epochs. Hence, we represent it as rppg-epochs/resp-epochs. The
input length here is represented in samples. These correspond to 10-second and 20-second windows
for rPPG and remote resp, respectively.

Method Hyperparameters
LR Epochs Opt Batch In Len Loss

PhysNet 1e-5 50/100 Adam 2 300 NegPearson + SNR
RhythmFormer 9e-3 30/30 AdamW 1 300 RhythmFormer Loss
PhysFormer 1e-4 50/100 Adam 2 300 PhysFormer Loss
FactorizePhys 1e-5 50/100 Adam 2 300 Smooth NegPearson2 +

SNR
PhysMamba 1e-5 50/100 Adam 2 300 Smooth NegPearson2 +

SNR
Contrast-Phys+ 1e-5 50/100 AdamW 2 300 ConstrastLoss + Smooth

NegPearson2 + SNR
Fusion Contrast-Phys+ 1e-5 10/100 AdamW 2 300 ConstrastLoss + Smooth

NegPearson2 + SNR
RF-Net 1e-3 10 AdamW 2 300 ConstrastLoss + Smooth

NegPearson + SNR +
MSE

Waveform Fusion 1e-3 50 AdamW 32 300 ConstrastLoss + Smooth
NegPearson2 + SNR

In reference to Table 3, we note the following:

• Since the rPPG fusion model is pre-trained, we only train it for 10 epochs.

• RhythmFormer has very different hyperparameters compared to the rest of the models due
to its significantly long computation time.

• Refer to the original ContrastPhys+ [41], PhysFormer [52], and RhythmFormer [55] papers
for additional information regarding ContrastLoss, PhysFormer Loss, and RhythmFormer
Loss, respectively.

The following adjustments were made to the loss functions:

• Contrastive Loss was modified. The error/distance metric was swapped from mean squared
error (MSE) to a combined loss: MSE + Kullback–Leibler (KL) divergence

• The SNRLoss [44], i.e., a frequency loss was included in training of the convolutional
models.

• We create a variant of the NegPerson loss called the Smooth NegPearson2 loss. The smooth
here refers to an additional smoothing operator (box-flter) applied to the signals before
computing the loss. The 2 refers to the expotent term to which we loss is taken. That is

Smooth NegPearson = NegPearson(w ⊛ pred, w ⊛ gt), (1)

Smooth NegPearson2 = (NegPearson(w ⊛ pred, w ⊛ gt))2. (2)

Hyperparmeter tuning was to primarily decide the addition of the extra loss functions and pre-
processing techniques. That is, the rppg-toolbox paper and codebase include frame-differencing as a
preprocessing step. Our early stage hyperparameter tuning did not yield favorable results with this
preprocessing step. Hence, we dropped the same in our subsequent iterations. The model weights
have been released for reproducibility
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Figure 3: Example of vital signs waveforms recorded by contact sensors

All our remote-vitals sign estimation models were trained on servers with NVIDIA GeForce RTX
2080 GPUs. Each GPU has 12 GB of compute memory. All the unimodal methods and waveform
fusion methods were trained with a single GPU, while the camera-fusion method was trained with 2
of the GPUs listed above. The dataset was also hosted on the server and occupied ∼ 611 GBs of
memory. Upon preprocessing the data, the chunked data occupies ∼ 270 GBs.

5 Estimating Cognitive Load

5.1 ML Framework for Cognitive Load Classification

We developed a benchmarking framework to evaluate cognitive load classification using physiological
signals from multiple modalities. Our approach encompasses both traditional ML classifiers operating
on engineered features and DL architectures that learn representations directly from raw signals. The
feature extraction pipeline incorporates both time-domain and frequency-domain analyses following
established methods in physiological signal processing. An example of raw signal waveforms from
the contact sensors is showcased in Figure 3.

5.1.1 Feature Engineering Pipeline

Our feature extraction pipeline transforms raw physiological signals into features that capture cardio-
vascular, respiratory, and ocular dynamics associated with cognitive load. The pipeline processes
signals from multiple modalities with modality-specific preprocessing and feature extraction methods.

PPG Signal Processing and Feature Extraction Raw PPG signals undergo preprocessing with
a third-order Butterworth bandpass filter (0.8 − 3.0 Hz) to isolate the cardiac frequency range,
48− 180 beats-per-minute (BPM), while attenuating baseline wander and high-frequency noise. We
perform robust peak detection on the filtered waveform using physiological constraints: minimum
inter-peak distance of 0.5 secs and adaptive height thresholds based on signal characteristics. From
the detected peaks, we calculate inter-beat intervals (IBIs) and filter out physiologically implausible
values (< 0.3 secs or > 1.5 secs, corresponding to HR values outside 40 − 200BPM ). Figure 4
shows two examples of 30 seconds of filtered PPG signals and the extracted peaks. Figure 5 shows
the differences in average HR across tasks, potentially caused by changes in cognitive load level.

From the processed PPG signals, we extract a set of 25+ features encompassing:
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asterisks "***" denote statistical significance p<0.001 of the difference from baseline as determined
by one-sample t-tests.

• Time-domain HRV features: mean HR (BPM ), RMSSD (root mean square of successive
differences), SDNN (standard deviation of NN intervals), pNN50 (proportion of successive
intervals differing by > 50ms), and pNN20

• Poincaré plot features: SD1 (short-term variability), SD2 (long-term variability), and
SD1/SD2 ratio reflecting the balance between short- and long-term cardiac variability

• Frequency-domain features: VLF power (0.0033−0.04Hz), LF power(0.04−0.15Hz), HF
power (0.15− 0.4 Hz), and LF/HF ratio—a key indicator of sympathetic/parasympathetic
balance

• Pulse morphology features: pulse amplitude statistics (mean, standard deviation) and pulse
width metrics derived from half-amplitude measurements

• Statistical features: signal mean, standard deviation, range, and spectral characteristics in
the cardiac frequency band
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Figure 6: Eye blinking detection from normalized eye-openness 2 min waveforms derived from
camera frames. Left and right subfigures are from two participants with different blinking patterns.
Rows (1) Raw eye-openness signal. (2) Signals smoothed by Savitzky-Golay filter. (3) Blinks
detected are marked as red dots. (4) The inverted signal used for peak detection.

Respiratory Signal Processing For respiratory signals, we apply a second-order Butterworth
bandpass filter (0.05− 1.0 Hz) corresponding to 3− 60 RPM (resps per minute). We extract RR
through spectral analysis, identifying the dominant frequency in the respiratory band. Additional
features include respiratory power, spectral entropy as a measure of breathing pattern complexity,
and basic statistical descriptors of the respiratory waveform.

Blink Signal Processing Eye openness signals are processed to detect blink events by identifying
troughs (minima) in the normalized eye-openness signal, as blinks correspond to reduced eye aperture.
We apply Savitzky-Golay smoothing (window=15, polynomial order=3) and invert the normalized
signal to convert troughs to peaks for detection. Extracted features include blink rate, blink duration
statistics (mean, standard deviation), inter-blink interval variability, blink amplitude characteristics,
and blink depth measurements. Examples of detected eye blinking are shown in Figure 6.

5.1.2 Mathematical Formulations of PPG Features for ML models

The key physiological features are computed using the following mathematical formulations:

HR =
60

mean(IBI)
, RR =

60

mean(breath intervals)
(3)

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(IBIi+1 − IBIi)2, SDNN =

√√√√ 1

N

N∑
i=1

(IBIi − ¯IBI)2 (4)

S(f) =
1

N

∣∣∣∣∣
N∑
i=1

IBIie
−j2πfti

∣∣∣∣∣
2

, LF/HF =

∫ 0.15

0.04
S(f)df∫ 0.4

0.15
S(f)df

(5)

5.1.3 ML Models

We evaluated eight traditional ML classifiers, each configured with optimized hyperparameters and
class balancing strategies:

• Random Forest (RF): 200 estimators, balanced class weights, unlimited depth
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• Gradient Boosting (GB): 200 estimators, learning rate 0.05, max depth 4, subsample 0.8

• Support Vector Machine (SVM): RBF kernel, balanced class weights, probability estimates
enabled

• Logistic Regression (LR): L2 regularization, liblinear solver, balanced class weights

• Linear Discriminant Analysis (LDA): SVD solver with covariance storage

• K-Nearest Neighbors (KNN): 5 neighbors, distance weighting, Euclidean metric

• Decision Tree (DT): Gini criterion, balanced class weights, unlimited depth

• Multi-Layer Perceptron (MLP): Single hidden layer (100 units), ReLU activation, Adam
optimizer

All models operate on standardized features using StandardScaler preprocessing within scikit-learn
pipelines to ensure consistent feature scaling across modalities.

5.1.4 DL Architectures

We implemented three DL architectures that process raw physiological signals directly, eliminating
the need for manual feature engineering:

1D CNN A multi-layer 1D CNN with increasing filter sizes across convolutional blocks, batch
normalization, ReLU activations, and dropout for regularization. The architecture processes multi-
channel time series data with adaptive input channel handling.

Long Short-Term Memory (LSTM) A recurrent architecture with 2 LSTM layers (128 hidden
units each) designed to capture temporal dependencies in physiological signals. The model processes
sequential data and outputs class probabilities through a fully connected layer.

ResNet1D A 1D adaptation of the ResNet architecture incorporating residual connections to enable
training of deeper networks. Multiple residual blocks with skip connections facilitate gradient flow
and feature learning at different temporal scales.

All DL models use a learning rate of 0.0005, batch size of 16, and are trained for a maximum
of 20 epochs with early stopping (patience=10) based on validation loss. We employ robust data
preprocessing, including NaN interpolation and per-channel robust normalization using median and
interquartile range scaling.

5.1.5 Experimental Configurations

We systematically evaluated seven distinct physiological signal combinations to investigate the utility
of different sensing modalities:

1. Contact PPG Only: High-fidelity pulse oximeter data as baseline

2. rPPG Only: Camera-derived rPPG signals

3. Blink Markers Only: Eye openness and blink dynamics

4. Contact PPG + Contact Respiratory: Multimodal contact sensing

5. rPPG + Contact Respiratory: Hybrid contact-remote approach

6. rPPG + Remote Respiratory: Fully remote cardiorespiratory sensing

7. rPPG + Remote Respiratory + Blink Markers: Complete multimodal remote sensing

8. Contact PPG + Contact Respiratory + Blink Markers: Vitals from contact sensors and blink,
for comparison with 7. and to assess the remote vitals sensing quality

This experimental design enables systematic comparison of contact versus remote sensing effective-
ness, quantification of multimodal integration benefits, and assessment of the relative contributions of
different physiological indicators to cognitive load detection.
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5.1.6 Training and Evaluation Methodology

The dataset was partitioned using participant-based splits to ensure generalization to unseen individu-
als (consistent with the partitioning used in the remote sensing stage): 25 participants for training,
2 for validation, and 10 for testing. This split strategy prevents data leakage and provides realistic
performance estimates for deployment scenarios where models must work on new users without
personalized calibration.

For ML models, hyperparameter optimization was performed on the validation set, while DL models
utilized validation data for early stopping to prevent overfitting. All models were evaluated on the
held-out test set using multiple metrics: accuracy, weighted F1-score, precision, recall, and specificity.
We generated confusion matrices to analyze classification patterns and computed class-specific
performance metrics to account for potential label imbalance.

Signal preprocessing included robust handling of missing data through linear interpolation, application
of modality-specific filtering (bandpass filters for cardiac and respiratory signals, smoothing for
blink signals), and normalization strategies adapted to each signal type. For multimodal experiments,
signals were temporally aligned and combined into multi-channel arrays with consistent sampling
rates and durations (120 seconds per task).

5.1.7 Ablation Study: Mental Demand Only Labeling

To address concerns about potential confounding between stress and cognitive load in our composite
NASA-TLX score, we conducted an ablation study using only the “Mental Demand” subscale for
binary labeling. The median-split approach was applied to the Mental Demand scores alone (rather
than the composite of Mental Demand, Temporal Demand, Effort, and Frustration). The results
demonstrate remarkable consistency: the original 4-dimension approach yielded 76 Low/76 High
labels (perfectly balanced), while the Mental Demand only approach yielded 75 Low/77 High labels
(nearly identical distribution, with only 1 sample differing from 152 total). Performance evaluation
using rPPG + Remote Resp + Blink Markers with Gradient Boosting showed 86.49% accuracy (F1:
0.878) for the original approach versus 81.08% accuracy (F1: 0.837) for Mental Demand only. The
small performance difference (∼ 5%) is within the range of training variability and likely reflects the
single differing label rather than measuring fundamentally different physiological constructs. This
validates the robustness of our original multi-dimensional labeling approach while confirming that
mental demand remains the primary driver of our cognitive load classifications.

6 Remote Vital Sensing Benchmarking Extended Results

We analyze the best unimodal and multimodal networks for HR and RR estimation through Figure 7.
Here, Contrast-Phys+ was the best-performing model for the NIR, RGB, and thermal modalities.
For rPPG estimation, we see that the fusion algorithm outperforms both the RGB and NIR methods,
excelling at preserving frequency content and the morphological/shape-based properties. While the
RGB does retain frequency information, it loses morphological information of the PPG signals as
seen in the second example. For RR estimation, we can see that the radar and waveform fusion
methods reliably retained the waveform’s structure across samples, with thermal below performing
well for the sample below. Most notably, we can see that the respiratory GT signals itself is prone to
aperiodic trends, causing benchmarking of RR performance to be challenging.

6.1 Train Configuration

Both rPPG and the remote respiratory models were trained on 300-sample length signals. This equates
to 10 secs of rPPG data and 20 secs of respiratory data at 30 and 15 Hz, respectively. Furthermore,
data from the NIR and thermal cameras were duplicated along the channel dimension three times to
match the shape of the RGB videos. When using the Negative Person loss function, the waveforms
were smoothed with a box filter of sizes 7 and 15 for rPPG and respiratory signals, respectively.

Our dataset and code base include specific hardware details, such as sensor failure, flatlining, and
sample dropping due to corrupted sensor recordings.
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Figure 7: Comparison of Sample Output Waveforms for Different Modalities. For all the cameras,
we plot the waveforms from the Contrast-Phys+ models, while the RF-Net and Waveform Fusion
were chosen for the radar and respiratory fusion. The rPPG-fusion algorithm is superior to both RGB
and NIR methods for rPPG estimation. For RR estimation, the waveform fusion and radar networks
reliably preserve the waveform structure across samples.

6.2 Test Configuration

We take non-overlapping 30 secs (900 samples at 30 Hz) duration windows to calculate the HR
and HRV values for the estimated rPPG and ground truth PPG signals. Similarly, we consider
non-overlapping 40 secs (600 samples at 15 Hz) when calculating RR from remote and content
respiratory signals. Following [44], we report the mean absolute error (MAE), root mean squared
error (RMSE), mean absolute percentage error (MAPE), and the Pearson correlation coefficient (r)
for HR and RR values. For HRV, we report the MAE values for IBI.

To calculate the HR values, the extracted waveforms are normalized, detrended, and filtered with
box-filters and 6th order Butterworth filters, with cutoff frequencies at 40 and 180 BPM . A Welch-
based periodogram method is then used to calculate the HR values. Similarly, to calculate RR, we
box-filter, detrend, and filter the resultant signal with a 2nd order filter, with cutoff frequencies at 8
and 30 BPM . However, unlike HR estimation, we do not employ the Welch’s method and resort to
a simpler periodogram implementation. In addition to HR, we also calculate IBI. For this, we apply a
second box filter to the rPPG waveform, followed by the peak detection algorithm from the heartpy
library [42]. Further details can be found in the codebase.

6.3 Waveform Metrics and Clinical Significance (Main Fold only)

Here, we introduce two waveform metrics, namely SNR and Mean Absolute Cross-Correlation
(MACC). We also introduce a clinical significance metric introduced by the Association for the
Advancement of Medical Instrumentation (AAMI) for cardiac monitoring.

Note: The values in this subsection are for the main fold from the main paper. The cross-validation
values are presented in the next subsection.
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Table 4: Performance of standard rPPG algorithms on the main fold CogPhys dataset (con-
tinuation of the metrics in the main paper). e report signal-to-noise ratio (SNR), mean absolute
cross-correlation (MACC), and clinical performance according to AAMI standards. The standard
error spread for each metric has also been tabulated. Post-processing steps were used to clean the
waveforms before error calculation. The best and second-best performing numbers are shown in bold
and underline respectively.

Waveform Metrics Clinical Metric

Method SNR (dB) ↑ MACC ↑ AAMI (%) ↑

N
IR

PhysNet [50] −5.93 ± 0.18 0.17 ± 0.00 25.00
RythmFormer [55] −1.66 ± 0.49 0.51 ± 0.01 48.73
PhysFormer [52] −8.01 ± 0.81 0.33 ± 0.01 31.36
FactorizePhys [18] −3.37 ± 0.33 0.48 ± 0.01 52.12
PhysMamba [27] −1.64 ± 0.29 0.53 ± 0.01 70.34
Contrast-Phys+ [41] −1.04 ± 0.33 0.56 ± 0.01 66.10
Pretrained Contrast-Phys+ −0.59 ± 0.33 0.58 ± 0.01 72.03

R
G

B

PhysNet [50] −5.87 ± 0.16 0.15 ± 0.00 27.12
RythmFormer [55] −1.27 ± 0.52 0.42 ± 0.01 50.00
PhysFormer [52] 0.14 ± 0.68 0.43 ± 0.01 54.66
FactorizePhys [18] −0.61 ± 0.31 0.45 ± 0.01 76.27
PhysMamba [27] 0.15 ± 0.27 0.47 ± 0.01 80.51
Contrast-Phys+ [41] 0.73 ± 0.31 0.48 ± 0.01 79.66

Fusion 1.20 ± 0.29 0.49 ± 0.01 85.17

We evaluate waveform quality and clinical viability using three complementary metrics. SNR
quantifies the power ratio between the extracted physiological signal and background noise, expressed
in decibels (dB), where higher values indicate cleaner signal extraction with less contamination
from noise sources. MACC measures morphological similarity between predicted and ground-truth
waveforms by computing the average peak cross-correlation across temporal windows, ranging from
0 to 1, where values closer to 1 indicate better preservation of the cardiac or respiratory waveform
shape and timing [8]. AAMI Clinical Performance assesses clinical acceptability according to
the Association for the Advancement of Medical Instrumentation EC13:2002 standard for cardiac
monitors, which requires that HR estimates fall within the larger of ±5BPM or ±10% of the ground
truth. The metric reports the percentage of estimates meeting this criterion [13].

From Table 6.3, we observe that the Fusion delivers the strongest overall results with 85.17% AAMI
compliance and the highest SNR. When analyzing MACC on the other hand, the NIR methods
consistently dominate MACC scores—with the top three all from NIR—while RGB methods show
a clear advantage in clinical metrics, with three algorithms exceeding 75% AAMI versus NIR’s
maximum of 72%. The SNR pattern reinforces this split, as RGB produces higher values with several
methods reaching positive SNR, while all NIR results remain negative. This suggests NIR excels at
preserving temporal alignment while RGB provides cleaner signals that translate more effectively to
clinical performance. The fusion leverages both modalities’ strengths: its MACC (0.49) sits between
RGB’s ceiling (0.48) and NIR’s peak (0.58), while its SNR (1.20 dB) surpasses both modalities,
translating to a 5-13 percentage point AAMI gain over the best single-modality results (85.17% vs
80.51% RGB, 72.03% NIR).

From Table 5, RF-Net achieves the highest SNR at 6.34 dB-nearly double the best camera result—yet
its MACC of 0.54 is exceeded by camera methods, with Contrast-Phys+ for the thermal placed below
reaching 0.59. The thermal camera positioned below consistently outperforms the one positioned
above across all algorithms, with MACC improvements of 0.06-0.15 points, suggesting this angle
captures respiratory movement more effectively. The fusion strategies diverge: Camera Fusion
achieves 0.57 MACC with moderate SNR (3.40 dB), while Waveform Fusion prioritizes SNR
(3.67 dB) over correlation (0.52)

6.4 Cross-Validation and Clinical Significance Analysis (All Folds)

To provide robust performance estimates, we conducted 4-fold cross-validation for the top-performing
HR and RR estimation methods. All 37 participants appeared in the test set exactly once across the 4
folds, with test set sizes of {10, 9, 9, 9} participants. Note that this is different than the train/valid/test
split used in the main paper, which was described in section 5.1.6. Please note, the RythmFormer
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Table 5: Performance of resp. rate (RR) estimation algorithms on the main fold CogPhys
dataset (continuation of the metrics in the main paper). We report the SNRMACC. The standard
error spread for each metric has also been tabulated. Post-processing steps were used to clean the
waveforms before error calculation. The best and second-best performing numbers are shown in bold
and underline, respectively.

Waveform Metrics

Method SNR (dB) ↑ MACC ↑

A
bo

ve

PhysNet [50] 0.29 ± 0.40 0.38 ± 0.01
RythmFormer [55] 2.27 ± 0.27 0.42 ± 0.00
PhysFormer [52] 2.63 ± 0.92 0.44 ± 0.01
FactorizePhys [] 3.09 ± 0.37 0.45 ± 0.01
PhysMamba [27] 1.12 ± 0.38 0.41 ± 0.01
Contrast-Phys+ [41] 1.33 ± 0.48 0.44 ± 0.01

B
el

ow
PhysNet [50] 2.90 ± 0.55 0.53 ± 0.01
RythmFormer [55] 3.56 ± 0.57 0.54 ± 0.01
PhysFormer [52] 1.33 ± 0.94 0.47 ± 0.01
FactorizePhys [18] 3.87 ± 0.45 0.54 ± 0.01
PhysMamba [27] 3.00 ± 0.55 0.57 ± 0.01
Contrast-Phys+ [41] 3.61 ± 0.60 0.59 ± 0.01

R
F RF-Net 6.34 ± 0.59 0.54 ± 0.01

Cameras Fusion 3.40 ± 0.58 0.57 ± 0.01
Waveform Fusion 3.67 ± 0.66 0.52 ± 0.01

Table 6: Performance of HR estimation algorithms on the CogPhys dataset (all folds We report
the mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error
(MAPE), Pearson correlation (r), and inter-beat interval (IBI) error. Post-processing steps were used
to clean the waveforms before error calculation. The best and second-best performing numbers are
shown in bold and underline, respectively.

HR Metrics (BPM ) HRV Metric

Method MAE ↓ RMSE ↓ MAPE ↓ r ↑ IBI (ms) ↓

N
IR

PhysNet [50] 13.58 ± 0.34 16.93 ± 3.55 17.46 ± 0.49 −0.05 ± 0.03 320.95 ± 7.11
PhysFormer [52] 12.28 ± 0.33 15.75 ± 3.62 16.22 ± 0.51 −0.01 ± 0.03 129.36 ± 4.83
FactorizePhys [18] 9.37 ± 0.44 15.95 ± 4.19 10.95 ± 0.48 0.40 ± 0.03 82.96 ± 3.00
PhysMamba [27] 5.76 ± 0.31 10.71 ± 3.20 7.89 ± 0.50 0.58 ± 0.03 72.46 ± 3.49
Contrast-Phys+ [41] 7.80 ± 0.34 12.69 ± 3.40 10.38 ± 0.53 0.37 ± 0.03 74.41 ± 3.37
Pretrained Contrast-Phys+ 5.83 ± 0.31 10.88 ± 3.28 7.90 ± 0.51 0.55 ± 0.03 68.23 ± 3.36

R
G

B

Green [43] 22.91 ± 0.53 27.68 ± 5.17 27.32 ± 0.56 0.01 ± 0.03 119.74 ± 3.15
ICA [36] 14.08 ± 0.50 20.48 ± 4.67 16.38 ± 0.54 0.20 ± 0.03 74.09 ± 2.60
CHROM [10] 5.63 ± 0.29 10.23 ± 3.12 6.67 ± 0.32 0.68 ± 0.02 58.26 ± 2.82
POS [45] 5.33 ± 0.35 11.73 ± 4.79 6.52 ± 0.43 0.63 ± 0.03 50.66 ± 2.63
PhysNet [50] 11.27 ± 0.34 15.17 ± 3.44 14.48 ± 0.48 0.11 ± 0.03 274.93 ± 7.17
PhysFormer [52] 10.12 ± 0.37 14.96 ± 3.89 13.17 ± 0.53 0.13 ± 0.03 97.09 ± 3.96
FactorizePhys [18] 4.62 ± 0.32 10.54 ± 3.73 5.30 ± 0.34 0.69 ± 0.02 40.04 ± 1.66
PhysMamba [27] 4.36 ± 0.27 9.14 ± 3.21 5.36 ± 0.34 0.72 ± 0.02 48.77 ± 2.78
Contrast-Phys+ [41] 4.60 ± 0.27 9.32 ± 3.06 6.16 ± 0.44 0.69 ± 0.02 50.05 ± 3.09

Fusion 4.45 ± 0.28 9.32 ± 3.16 6.07 ± 0.46 0.69 ± 0.02 47.87 ± 3.18

model was found to be extremely computationally intensive. Hence, cross-fold training of the same
was unfeasible.

6.4.1 HR Cross Validation and Significance Testing

Based on the tabulated values from Tables 6 & 7, PhysMamba RGB achieves the best HR estimation
performance, with the lowest MAE = 4.36 BPM , albeit marginally. The RGB-NIR fusion approach
emerges as the second best, trailing PhysMamba by only 2% in MAE, while delivering a substantially
superior SNR. We further test this via the ANOVA and Tukey HSD pairwise testing. Specifically,
we run the tests on the best performing RGB, NIR, and Fusion methods, i.e., PhysMamba (RGB),
pretrained and finetuned ContrastPhys+ (NIR), and the Siamese Fusion Network (Fusion).

ANOVA confirms significant performance differences across methods (F = 8.06, p < 0.001), with
post-hoc analysis revealing that both Fusion and RGB significantly outperform NIR (p = 0.002 vs

17



Table 7: Waveform and clinical metrics for HR estimation on the CogPhys dataset (all folds). We
report SNR, MACC, and clinical performance according to AAMI standards. Post-processing steps
were used to clean the waveforms before error calculation. The best and second-best performing
numbers are shown in bold and underline, respectively.

Waveform Metrics Clinical Metric

Method SNR (dB) ↑ MACC ↑ AAMI (%) ↑

N
IR

PhysNet [50] −6.01 ± 0.09 0.17 ± 0.00 23.85
PhysFormer [52] −8.54 ± 0.39 0.30 ± 0.01 26.83
FactorizePhys [18] −2.83 ± 0.17 0.50 ± 0.01 60.67
PhysMamba [27] −1.06 ± 0.15 0.55 ± 0.01 70.87
Contrast-Phys+ [41] −1.87 ± 0.17 0.51 ± 0.01 57.91
Pretrained Contrast-Phys+ −0.41 ± 0.17 0.58 ± 0.01 69.38

R
G

B

Green [43] −8.38 ± 0.13 0.24 ± 0.00 19.41
ICA [36] −4.17 ± 0.18 0.37 ± 0.00 44.86
CHROM [10] −2.36 ± 0.13 0.42 ± 0.00 71.58
POS [45] −1.47 ± 0.14 0.44 ± 0.00 75.11
PhysNet [50] −4.83 ± 0.12 0.20 ± 0.00 37.21
PhysFormer [52] −3.13 ± 0.38 0.38 ± 0.01 44.63
FactorizePhys [18] −0.00 ± 0.15 0.47 ± 0.00 81.62
PhysMamba [27] 0.44 ± 0.15 0.48 ± 0.00 80.37
Contrast-Phys+ [41] 1.13 ± 0.16 0.50 ± 0.00 79.34

Fusion 1.35 ± 0.15 0.50 ± 0.00 80.73

Table 8: Performance of RR estimation algorithms on the CogPhys dataset (all folds). We
report the MAE, RMSE, MAPE, Pearson correlation (r), SNR, and MACC. The best and second-best
performing numbers are shown in bold and underline, respectively.

RR Metrics (RPM ) Waveform Metrics

Method MAE ↓ RMSE ↓ MAPE ↓ r ↑ SNR (dB) ↑ MACC ↑

A
bo

ve

PhysNet [50] 3.36 ± 0.11 4.30 ± 1.02 19.41 ± 0.67 0.02 ± 0.04 −0.89 ± 0.22 0.37 ± 0.00
PhysFormer [52] 4.07 ± 0.12 5.11 ± 1.18 21.96 ± 0.61 −0.01 ± 0.04 −0.67 ± 0.45 0.42 ± 0.01
FactorizePhys [18] 3.06 ± 0.11 4.19 ± 1.06 18.44 ± 0.79 0.08 ± 0.04 2.32 ± 0.19 0.44 ± 0.00
PhysMamba [27] 5.07 ± 0.15 6.39 ± 1.43 27.67 ± 0.79 −0.01 ± 0.04 0.61 ± 0.16 0.40 ± 0.00
Contrast-Phys+ [41] 2.45 ± 0.10 3.47 ± 0.89 14.24 ± 0.61 0.25 ± 0.04 1.18 ± 0.25 0.46 ± 0.01

B
el

ow

PhysNet [50] 2.57 ± 0.11 3.74 ± 1.01 14.55 ± 0.62 0.24 ± 0.04 1.11 ± 0.28 0.50 ± 0.01
PhysFormer [52] 3.64 ± 0.13 4.84 ± 1.14 19.49 ± 0.63 0.14 ± 0.04 −1.07 ± 0.45 0.46 ± 0.01
FactorizePhys [18] 2.40 ± 0.11 3.70 ± 1.14 14.28 ± 0.72 0.33 ± 0.04 3.48 ± 0.23 0.54 ± 0.01
PhysMamba [27] 2.25 ± 0.10 3.45 ± 0.95 12.83 ± 0.61 0.34 ± 0.04 2.58 ± 0.29 0.57 ± 0.01
Contrast-Phys+ [41] 2.25 ± 0.11 3.54 ± 1.09 12.66 ± 0.62 0.38 ± 0.04 2.22 ± 0.31 0.58 ± 0.01

R
F RF-Net 2.45 ± 0.10 3.45 ± 0.91 13.73 ± 0.55 0.24 ± 0.04 4.09 ± 0.32 0.55 ± 0.01

Cameras Fusion 2.29 ± 0.10 3.43 ± 0.93 12.80 ± 0.57 0.32 ± 0.04 1.80 ± 0.31 0.56 ± 0.01
Waveform Fusion 2.52 ± 0.10 3.62 ± 1.02 13.85 ± 0.53 0.23 ± 0.04 1.73 ± 0.35 0.50 ± 0.01

Fusion and p = 0.001 vs RGB), while showing no significant difference from each other (p = 0.98).
RGB and Fusion also achieve equally high clinical compliance of 80.73%.

6.4.2 RR Cross Validation and Significance Testing

Table 8 reveals that RR estimation exhibits more uniform performance across methods compared to
HR. Thermal Below Contrast-Phys+ and Thermal Below PhysMamba share the top position with
identical MAE values of 2.25RPM , closely followed by the Cameras Fusion approach at 2.29RPM .
Notably, Radar achieves superior waveform quality with the highest SNR of 4.09 dB. To assess
statistical significance, we conduct ANOVA and Tukey HSD pairwise testing across Cameras Fusion,
Radar, Waveform Fusion, and Thermal Below CP+.

The analysis demonstrates no statistically significant differences among methods (F=1.50, p=0.214),
with all pairwise comparisons yielding p > 0.25. The post-hoc analysis further confirmed no
significant pairwise differences between Cameras Fusion (MAE = 2.29 RPM), Radar (MAE =
2.45 RPM), Waveform Fusion (MAE = 2.52 RPM), and Thermal Below CP+ (MAE =
2.25 RPM , all p > 0.25). All methods achieve statistically equivalent accuracy for RR estimation.
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Table 9: 4-fold cross-validation performance comparison of ML models across seven physiological
signal combinations for mental workload classification. Showing Accuracy(F1 Score) in each cell.
Bold values indicate the highest accuracy for each model across all experimental configurations;
underlined values indicate the second-highest accuracy. The overall best accuracy is marked in red
and the second best in blue.

Model Contact Remote Blink Contact PPG + Contact PPG + rPPG + rPPG + rPPG +
PPG PPG Markers Contact Resp Contact Resp + Contact Resp Remote Resp Remote Resp +

Blink Markers Blink Markers

RF 0.65(0.65) 0.54(0.56) 0.53(0.56) 0.68(0.68) 0.81(0.81) 0.54(0.56) 0.60(0.62) 0.80(0.82)
GB 0.60(0.59) 0.55(0.57) 0.57(0.59) 0.64(0.63) 0.82(0.82) 0.55(0.57) 0.61(0.63) 0.78(0.80)
SVM 0.60(0.60) 0.62(0.68) 0.55(0.61) 0.62(0.64) 0.83(0.84) 0.62(0.68) 0.59(0.63) 0.83(0.85)
LR 0.62(0.63) 0.59(0.59) 0.52(0.56) 0.64(0.64) 0.79(0.80) 0.59(0.59) 0.58(0.56) 0.81(0.83)
LDA 0.62(0.63) 0.59(0.60) 0.51(0.53) 0.58(0.60) 0.77(0.78) 0.59(0.60) 0.58(0.60) 0.73(0.75)
KNN 0.53(0.56) 0.54(0.58) 0.52(0.62) 0.56(0.62) 0.72(0.76) 0.54(0.58) 0.58(0.62) 0.66(0.73)
DT 0.51(0.44) 0.45(0.37) 0.52(0.58) 0.62(0.59) 0.64(0.64) 0.45(0.37) 0.50(0.54) 0.66(0.69)
MLP 0.62(0.62) 0.62(0.62) 0.57(0.61) 0.62(0.61) 0.84(0.84) 0.62(0.62) 0.63(0.65) 0.80(0.82)

6.4.3 Cognitive Load classification Cross-Validation

The 4-fold cross-validation results for cognitive load classification, detailed in Table 9, reveal
several key trends regarding model and modality performance. The primary insight is the significant
performance gain achieved through multimodal signal integration. While unimodal approaches
using either remote or contact PPG yield only moderate accuracies, their fusion with respiratory and,
critically, ocular data leads to substantial improvements across all models. Notably, the combination
of fully remote signals (rPPG, Remote Respiratory, and Blink Markers) consistently outperforms any
single modality, including the high-fidelity contact PPG sensor. For example, the SVM model reaches
83%accuracy with the full remote fusion, far surpassing the 65% accuracy from the top model using
only contact PPG. This finding strongly validates the central hypothesis that fusing multiple, lower-
quality remote signals can yield a more informative representation for cognitive state estimation than
a single, high-quality contact signal. Moreover, the performance of this fully remote configuration
(83% accuracy, 0.85 F1) closely approaches that of its contact-based counterpart (84% accuracy,
0.84 F1), demonstrating the increasing viability of non-intrusive sensing for reliable cognitive load
assessment. Lastly, the results underscore the immense value of ocular data; the inclusion of blink
markers consistently provides the largest incremental boost in classification accuracy, confirming that
blink dynamics offer complementary, discriminative information beyond cardio-respiratory signals
for assessing cognitive workload.

6.5 RGB Algorithmic Baseline for rPPG

In Tables 6 & 7 we report the baseline algorithmic methods for the RGB modality. We notice model-
driven approaches such as POS [45] and CHROM [10] significantly outperform simpler method such
as Green [43] and ICA [36]. This can be attributed to the inductive biases within the algorithms to
denoise and mitigate the effects of motion. Green is a simple single-channel averaging operation,
while ICA assumes independence with noise and the rPPG signals. However, these methods work
well under simple, stationary cases. In the presence of motion, and thereby, sub-surface scattering
changes due to motion, these assumptions are no longer true. POS and CHROM are projection
methods derived from optical and physiological properties of the skin and blood, leading them to
outperform the other baselines.

6.6 Bias Analysis for rPPG

Bias in rPPG is has been extensively documented [7, 44, 34, 9]. The rPPG signal is the diffuse
component of light that reflects off the skin. That is, it captures pulsatile changes through sub-surface
scattering. However, light rays are attenuated as they travel through the epidermal layers. Melanin is
one such reason. High concentration of melanin causes more light to be absorbed, thereby reducing
the signal strength of the incident light ray. In other words, the SNR of the observed rPPG signals is
weaker for participants/volunteers with darker skin tones.

In accordance with this, we report the performance of the rPPG algorithms across several skin tones
in Tables 10 & 11. Specifically, we categorize the skin tone into light, medium, and dark by binning
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Table 10: Performance of standard rPPG algorithms across skin tones - HR Metrics. The metrics
for light, medium, and dark skin tones have been reported together, spaced by a forward slash. We
report the mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage
error (MAPE), and the Pearson correlation (r) for HR estimation.

HR Metrics (BPM )
Data Split: light / medium / dark

Method MAE ↓ RMSE ↓ MAPE ↓ r ↑

N
IR

PhysNet [50] 13.39 / 13.75 / 13.12 16.67 / 17.16 / 16.18 17.19 / 18.14 / 15.32 -0.11 / -0.04 / -0.01
RythmFormer [55] 4.90 / 9.12 / 9.03 7.88 / 11.93 / 11.84 5.70 / 11.46 / 10.14 0.68 / 0.53 / -0.19
PhysFormer [52] 11.46 / 12.02 / 11.07 14.75 / 15.42 / 12.91 15.09 / 16.33 / 13.54 -0.02 / -0.01 / 0.09
FactorizePhys [18] 8.50 / 9.42 / 10.83 15.02 / 15.98 / 17.48 9.78 / 11.16 / 12.44 0.32 / 0.47 / 0.25
PhysMamba [27] 4.90 / 6.38 / 5.22 9.48 / 11.77 / 8.75 6.21 / 9.28 / 6.19 0.64 / 0.55 / 0.65
Contrast-Phys+ [41] 6.75 / 8.54 / 6.14 11.13 / 13.73 / 9.60 8.42 / 11.98 / 7.08 0.48 / 0.30 / 0.58
Pretrained Contrast-Phys+ 4.36 / 6.71 / 5.20 8.62 / 12.35 / 8.41 5.28 / 9.70 / 6.09 0.71 / 0.47 / 0.66

R
G

B

Green [43] 22.42 / 22.56 / 24.20 27.33 / 27.45 / 28.65 26.84 / 26.97 / 28.27 -0.15 / 0.07 / -0.03
ICA [36] 13.70 / 13.30 / 16.72 19.83 / 20.22 / 21.97 16.12 / 15.42 / 19.29 0.21 / 0.24 / 0.05
CHROM [10] 3.74 / 5.86 / 8.18 7.60 / 10.71 / 12.56 4.48 / 7.01 / 9.37 0.79 / 0.69 / 0.39
POS [45] 3.10 / 6.01 / 7.14 6.51 / 13.90 / 11.10 3.88 / 7.42 / 8.33 0.84 / 0.59 / 0.47
PhysNet [50] 11.70 / 11.45 / 10.01 15.64 / 15.40 / 13.43 14.83 / 15.16 / 11.67 0.00 / 0.14 / 0.22
RythmFormer [55] 4.11 / 10.16 / 7.62 6.55 / 12.72 / 10.46 4.89 / 12.87 / 8.44 0.75 / 0.43 / 0.04
PhysFormer [52] 8.85 / 10.46 / 9.42 14.31 / 15.08 / 12.57 11.14 / 14.10 / 11.46 0.14 / 0.16 / 0.01
FactorizePhys [18] 3.52 / 4.14 / 7.69 9.04 / 9.72 / 13.85 4.09 / 4.81 / 8.65 0.74 / 0.76 / 0.38
PhysMamba [27] 3.53 / 4.35 / 5.44 8.90 / 9.18 / 8.71 4.04 / 5.55 / 6.55 0.72 / 0.75 / 0.61
Contrast-Phys+ [41] 2.93 / 5.00 / 5.23 6.20 / 10.32 / 8.72 3.42 / 7.27 / 5.98 0.86 / 0.65 / 0.63

Fusion 3.07 / 4.90 / 4.98 7.39 / 10.23 / 8.51 3.55 / 7.32 / 5.68 0.80 / 0.66 / 0.66

Table 11: Performance of standard rPPG algorithms across skin tones - HRV Metric. The
metrics for light, medium, and dark skin tones have been reported together, spaced by a forward slash.
We report SNR, MACC, AAMI, and IBI error for HRV estimation.

Data Split: light / medium / dark

Method SNR (dB) ↑ MACC ↑ AAMI (%) ↑ IBI (ms) ↓

N
IR

PhysNet [50] -6.09 / -5.96 / -5.90 0.16 / 0.18 / 0.19 25.00 / 22.97 / 23.33 327.25 / 323.71 / 247.68
RythmFormer [55] 2.08 / -4.42 / -2.12 0.62 / 0.44 / 0.48 67.39 / 35.83 / 41.67 48.41 / 88.85 / 73.33
PhysFormer [52] -7.66 / -8.10 / -8.97 0.30 / 0.31 / 0.31 28.81 / 28.05 / 21.67 115.53 / 120.57 / 99.22
FactorizePhys [18] -1.90 / -3.05 / -3.71 0.52 / 0.50 / 0.47 63.98 / 59.76 / 57.50 82.48 / 85.01 / 75.04
PhysMamba [27] -0.04 / -1.38 / -1.82 0.58 / 0.54 / 0.52 74.58 / 68.90 / 70.83 68.32 / 80.50 / 53.05
Contrast-Phys+ [41] -0.88 / -2.19 / -1.84 0.55 / 0.50 / 0.52 62.71 / 55.69 / 60.00 62.55 / 83.70 / 54.13
Pretrained Contrast-Phys+ 0.73 / -0.84 / -0.89 0.62 / 0.57 / 0.57 76.69 / 66.26 / 67.50 56.72 / 78.37 / 51.93

R
G

B

Green [43] -8.17 / -8.26 / -9.01 0.24 / 0.24 / 0.22 25.42 / 18.95 / 13.33 125.64 / 117.80 / 121.75
ICA [36] -3.57 / -3.80 / -6.18 0.38 / 0.39 / 0.32 48.31 / 47.78 / 32.50 69.86 / 71.19 / 93.43
CHROM [10] -1.52 / -2.22 / -4.21 0.44 / 0.42 / 0.37 82.20 / 70.56 / 57.50 41.88 / 63.64 / 69.98
POS [45] -1.11 / -1.46 / -2.30 0.44 / 0.44 / 0.42 84.32 / 74.18 / 62.50 44.67 / 54.10 / 52.56
PhysNet [50] -4.79 / -4.84 / -4.90 0.20 / 0.21 / 0.20 36.86 / 37.10 / 35.00 282.20 / 286.58 / 245.46
RythmFormer [55] 3.15 / -4.42 / -2.46 0.50 / 0.37 / 0.43 76.09 / 30.83 / 45.83 41.69 / 98.16 / 57.33
PhysFormer [52] -0.89 / -3.73 / -4.61 0.40 / 0.37 / 0.38 51.27 / 42.14 / 43.33 86.10 / 102.85 / 76.70
FactorizePhys [18] 1.00 / 0.22 / -2.33 0.49 / 0.48 / 0.43 88.98 / 82.46 / 68.33 36.51 / 34.74 / 65.09
PhysMamba [27] 1.39 / 0.49 / -1.02 0.49 / 0.48 / 0.45 88.14 / 80.24 / 70.00 36.43 / 54.29 / 49.05
Contrast-Phys+ [41] 2.15 / 1.23 / -0.54 0.51 / 0.50 / 0.47 87.29 / 78.43 / 72.50 33.69 / 55.64 / 51.79

Fusion 2.42 / 1.36 / -0.13 0.52 / 0.50 / 0.47 89.83 / 78.66 / 73.33 34.35 / 54.56 / 47.47

the 6 Fitzpatrick skin-tone labels (two per bin) [38]. This binning ameliorates noise in label collection.
Participants with lighter skin tones show the best performance across all modalities, reflecting a
fundamental challenge in optical physiological sensing: melanin in darker skin absorbs more light
in the visible spectrum, making it harder to detect the subtle blood volume changes needed for HR
measurement. NIR wavelengths experience less melanin absorption, which is why NIR methods
generally show smaller performance drops across skin tones—the physics favors more equitable
sensing. RGB achieves better absolute accuracy on participants with lighter skin tones but suffers
steeper degradation on participants with darker skin tones due to this melanin interference. Fusion
delivers the best overall performance by combining both modalities, achieving strong accuracy on
participants with lighter skin tones while maintaining relative stability on participants with medium
and darker skin tones—essentially leveraging RGB’s peak performance where it works well and
NIR’s robustness where RGB struggles. However, Fusion doesn’t eliminate the bias; it still shows
meaningful degradation from participants with lighter to medium skin tones before stabilizing. The
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fairness advantage of NIR stems from its reduced melanin sensitivity, but even NIR methods show
performance gaps, indicating that skin tone bias in remote sensing is partly a hardware problem
rooted in optical physics, not just algorithmic design. Further, we note that the distribution of ski tone
labels is not uniform - 10, 21, and 5 for participants with lighter, medium, and darker skin tone - and
can introduce uncertainty in the estimates.

7 Cognitive Load Prediction Benchmarking Results

7.1 Detailed Performance Analysis

The evaluation across seven experimental configurations revealed several key insights about physio-
logical signal utility for cognitive load detection. Note: The metrics numbers in this section are from
the test split in the main paper, not the 4-fold cross-validation in 6.4.

Contact vs. Remote Sensing Performance Contact PPG achieved 70.00% accuracy with Random
Forest, establishing a strong baseline for cardiac-based cognitive load detection. rPPG performance
was notably lower at 56.41%, reflecting the inherent noise and artifacts in camera-based physiological
sensing. However, this gap was substantially reduced through multimodal integration, with remote
sensing combinations ultimately achieving superior performance to any single contact modality.

Multimodal Integration Benefits The systematic addition of modalities demonstrated clear perfor-
mance improvements (models are the best-performing ones of that modality combination):

• rPPG alone: 56.41% (RF)

• rPPG + Remote Respiratory: 73.08%(RF)

• rPPG + Remote Respiratory + Blink: 86.49% (GB)

This progression illustrates the complementary nature of different physiological indicators, with each
modality contributing unique information about cognitive state.

Model Architecture Comparison Traditional ML models consistently outperformed DL ap-
proaches across most configurations. The best-performing models were:

• Gradient Boosting: Highest overall performance (86.49% accuracy)

• Random Forest: Consistent strong performance across configurations

• SVM: Competitive performance with good generalization

• DL: Best performance with blink-only data (68.00% CNN)

Feature Importance Insights Analysis of feature importance in the best-performing models
revealed that HRV metrics (RMSSD, SDNN, pNN50) and blink dynamics (rate, duration variability)
were the most discriminative features for cognitive load classification. This aligns with physiological
literature on autonomic nervous system responses to mental workload.

Generalization Performance The participant-based split strategy ensured that all reported results
represent true generalization to unseen individuals. The consistent performance across different
participants validates the robustness of the extracted physiological features and the potential for
deployment in real-world scenarios without requiring user-specific calibration.

7.2 PPG Feature Importance Analysis

To understand which PPG-derived features were most influential in the classification decisions,
after training the cognitive load classifier with contact-PPG features only, we averaged the feature
importances across all 37 Leave-One-Subject-Out folds for Random Forest and XGBoost models.
The top 10 most important features for each model are listed in Table 12.

Both models consistently ranked features related to HR and HRV as highly important. Mean BPM and
the average IBI were top contributors for both the Random Forest (RF) and Gradient Boosting (GB)
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Table 12: Top 10 Mean Feature Importances from LOSO CV. PPG features are described in detail
in 5.1.1.

Random Forest Gradient Boosting
Rank Feature Mean Importance Rank Feature Mean Importance

1 bpm 0.107 1 bpm 0.122
2 ibi 0.103 2 sd1/sd2 0.119
3 sdnn 0.095 3 pnn50 0.117
4 pnn20 0.090 4 pnn20 0.115
5 sd1/sd2 0.090 5 sdnn 0.110
6 pnn50 0.088 6 ibi 0.110
7 sd2 0.087 7 sd2 0.068
8 s 0.077 8 sdsd 0.062
9 sdsd 0.070 9 s 0.045

10 sd1 0.066 10 rmssd 0.038

classifiers, aligning with the expectation that overall HR changes under cognitive load. Specifically,
SDNN (representing overall HRV), the Proportion of successive NN intervals differences pNN20 and
pNN50 (associated with parasympathetic nervous system activity), and the Poincaré plot ratio of the
standard deviation (SD1) to that along the line-of-identity (SD2), reflecting short-term to long-term
variability, appeared important for both classifiers. The high ranking of these features is consistent
with physiological literature suggesting that increased cognitive load often leads to increased HR (i.e.,
lower IBI) and decreased HRV (i.e., lower SDNN, pNN50, RMSSD, and potentially altered Poincaré
metrics).

7.3 Subject-Level Performance Analysis

To better understand the generalization patterns of our cognitive load classification models, we
conducted a detailed subject-level performance analysis using the best-performing configuration
(rPPG + Remote Respiratory + Blink Markers) with the Gradient Boosting classifier. This analysis
provides insights into individual differences in physiological responses to cognitive load and the
corresponding classification performance.

Experimental Methodology For this analysis, we extracted features from all three modalities
(rPPG, remote respiratory, and blink markers) for each subject in the test set (n=10) and trained
the Gradient Boosting model on the training set with the same hyperparameters used in the main
experiments. We then evaluated performance separately for each subject, calculating per-subject
accuracy, F1 score, specificity, and sensitivity. Additionally, we analyzed performance variations
across different cognitive tasks to identify which tasks were most consistently classified correctly.

Subject-Level Performance Distribution The per-subject analysis revealed substantial variability
in classification performance. As shown in Figure 8, 7 out of 10 test subjects achieved perfect
classification accuracy (100%), demonstrating robust performance across the majority of participants.
However, three subjects (v22, v32, and v23) showed notably lower performance, with accuracies of
75%, 50%, and 33.3%, respectively.

Analysis of Difficult Cases Examining the confusion matrices for the lowest-performing subjects
revealed interesting patterns. Subject v23 showed consistent misclassification of high cognitive load
states as low load (false negatives), suggesting this individual may have exhibited physiological
responses that deviated from the typical patterns observed in the training population. In contrast,
subject v32 exhibited more balanced errors, with both false positives and false negatives, indicating a
general difficulty in distinguishing cognitive load states for this participant based on the extracted
physiological features.

Task-Specific Performance Analysis across different task types revealed that number tasks (arith-
metic) were most consistently classified correctly (90% accuracy), while reading tasks achieved 77.8%
accuracy. This suggests that arithmetic tasks may elicit more consistent and distinctive physiological
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Figure 8: Per-subject classification accuracy for cognitive load detection using the Gradient Boosting
model with rPPG + Remote Respiratory + Blink features. Annotations indicate the number of samples
per subject, with most subjects having 4 samples. Seven subjects achieved perfect classification,
while three subjects (v22, v32, and v23) showed substantially lower performance.

responses across subjects compared to reading tasks. The still (baseline) task showed moderate
classification performance, likely due to individual variations in resting physiological patterns.

7.4 Cognitive Load Cross-Validation and Statistical Analysis

To ensure robust performance estimates, we conducted 4-fold cross-validation (fold split detailed in
section 6.4) for cognitive load classification using the best-performing configuration (rPPG + Remote
Resp + Blink Markers).

Cross-Validation Results: Gradient Boosting achieved the best performance across folds:

• Mean Accuracy: 0.832± 0.012 (95% CI: [0.813, 0.851])

• Mean F1 Score: 0.855± 0.015

• Mean Precision: 0.814± 0.042

• Mean Recall: 0.907± 0.068

Statistical Significance Testing: We conducted comprehensive statistical analyses across 8 ML
models with 4-fold cross-validation (32 total evaluations):

• One-way ANOVA: Revealed significant differences between models in accuracy (F = 12.55,
p = 0.00011), rejecting the null hypothesis that all models perform equivalently.

• Pairwise t-tests: With Bonferroni correction (α = 0.0018), SVM significantly outperforms
multiple baseline models (e.g., vs. Decision Tree, p < 0.01).

• Tukey HSD post-hoc tests: Confirmed significant performance differences for Gradient
Boosting compared to several baseline models.

• Coefficient of Variation: SVM exhibits low variability (CV < 0.02 for accuracy and F1)
across folds, which shows stability in performance.

This statistical validation confirms that Gradient Boosting with multimodal remote signals pro-
vides significantly better and more consistent cognitive load classification compared to alternative
approaches.
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7.5 Cognitive Load Classification Discussions

We evaluated ML benchmark models for cognitive load classification using the physiological features
extracted from various signal combinations. The results demonstrate the effectiveness of multimodal
signal integration for cognitive load assessment.

For the result metrics, ML models with crafted, physiology-relevant features consistently outper-
formed DL approaches across most signal configurations. The Gradient Boosting classifier achieved
the highest overall accuracy of 86.49% (F1: 0.878) when utilizing the complete multimodal signal
set (rPPG + Remote Respiratory + Blink Markers). This represents a substantial improvement over
unimodal approaches, with rPPG alone achieving 69.23% and Blink Markers alone reaching 65.00%.

Across all ML classifiers, the integration of multiple physiological signals consistently yielded
superior performance compared to single-signal approaches. Notably, the addition of blink markers
to cardiorespiratory signals produced the largest performance gains, with accuracy improvements
ranging from 8− 18% over the next best configuration. This suggests that ocular dynamics contain
complementary information to cardiac and respiratory patterns when assessing cognitive workload.

For the DL models, a different pattern emerged. The 1D CNN and ResNet1D architectures performed
best with blink markers alone (68.00%accuracy), while their performance on multimodal inputs was
notably inferior to traditional ML approaches. This suggests that the selected deep architectures may
be less effective at integrating the heterogeneous information present in multimodal physiological
signals compared to ensemble methods like Gradient Boosting and Random Forest. Our CogPhys
dataset presents an opportunity for future research to develop specialized DL architectures specifically
designed for multimodal physiological signal integration, potentially through attention mechanisms
or specialized fusion strategies that better capture cross-modal interactions.

While both contact-based and rPPG signals alone showed moderate classificatory power, neither
achieved particularly strong results in isolation (70.00% and 56.41% with RF, respectively). However,
this performance limitation was dramatically overcome through multimodal integration, with the
combination of remote sensing modalities ultimately achieving the highest overall performance.
This finding underscores the importance of complementary signal sources in remote physiological
sensing applications, demonstrating that the integration of multiple less-than-ideal remote signals can
effectively surpass the performance of individual high-fidelity contact measurements.

When comparing across model types, ensemble methods (particularly Gradient Boosting) consistently
outperformed other approaches, likely due to their robustness to the high variability and non-linear
relationships present in physiological data, as well as their ability to effectively utilize the carefully
crafted, physiologically meaningful features extracted from each modality. Our participant-based test
split, where models were evaluated on previously unseen subjects, ensures these results represent
generalizable performance across individuals, validating the potential for practical deployment in
real-world settings where new users would not require personalized calibration.

8 Ethical Safeguards and Data Privacy

8.1 Data Privacy and Security Measures

Our dataset was collected under IRB approval (Rice University IRB-FY2025-59) with informed
consent from all participants. We implement multiple layers of data protection:

Secure Storage: All dataset files are stored on Rice University’s Box Drive, an IRB-approved secure
cloud storage solution with enterprise-grade encryption and access controls.

Access Control: Dataset access is regulated through a comprehensive Data Use Agreement (DUA).
Researchers requesting access must:

• Provide institutional affiliation verification

• Agree to use data solely for non-commercial research purposes

• Commit to proper anonymization practices when using data in publications

• Acknowledge time-gated access periods to limit misuse from extended link durations
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Anonymization Guidelines: For participants who consented to having their data used in publications
and presentations, we provide clear guidelines on face anonymization techniques (blurring, masking)
when required. The dataset folder is accompanied by a list of participants whose faces must not be
used in illustrative formats such as publications, presentations, websites, and other similar formats.
The test set for the main fold was specifically constructed to include only participants who provided
such consent, enabling researchers to use these samples for presentations. The researchers, however,
must still adhere to anonymization protocols such as blurring the face and masking the eyes.

8.2 Long-term Societal and Ethical Implications

Remote cognitive load monitoring presents significant opportunities and challenges for society:

Positive Applications:

• Enhanced user experience and convenience for drivers.

• Improved accessibility of cognitive assessment in telehealth settings

• Development of adaptive user interfaces that respond to mental workload

• Support for assistive technologies for individuals with cognitive impairments

Ethical Concerns:

• Privacy: Continuous camera-based physiological monitoring raises concerns about consent
and data collection in public/private spaces

• Algorithmic Bias: Performance variations across demographic groups (see Section 6.6)
require careful consideration to ensure equitable outcomes

• Workplace: Potential misuse for employee monitoring without proper consent or oversight

• Data Security: Physiological data represents sensitive biometric information requiring robust
protection

Recommendations: We advocate for responsible development that includes:

• Clear disclosure and opt-in consent for any cognitive monitoring applications

• Regular algorithmic audits for bias across diverse populations

• Strict data minimization principles (collecting only necessary data)

• Transparent reporting of system limitations and failure modes

• Multi-stakeholder engagement in deployment decisions

9 Implications, Broader Impacts, and Limitations

The evaluation of cognitive load classification using multimodal physiological sensing reveals several
important implications for the field of human-computer interaction and cognitive state monitoring:

Practical Deployment Considerations The superior performance of traditional ML models with
engineered features suggests that domain knowledge remains crucial for physiological signal analysis.
While DL approaches offer the promise of end-to-end learning, the complexity and variability
of physiological signals may require more sophisticated architectures or larger datasets to achieve
comparable performance. The 86.49% accuracy achieved with multimodal remote sensing approaches
the performance levels needed for practical applications in cognitive load monitoring systems.

Multimodal Sensing Advantages The substantial performance gains from multimodal integration
(from 56.41% with rPPG alone to 86.49% with the full multimodal setup) demonstrate the critical
importance of complementary physiological indicators. This finding has significant implications for
the design of future cognitive monitoring systems, suggesting that investment in multiple sensing
modalities yields substantial returns in classification accuracy.
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Remote Sensing Viability The ability to achieve high classification accuracy using entirely remote
sensing modalities (camera-based rPPG, thermal respiratory sensing, and computer vision-based
blink detection) validates the feasibility of non-intrusive cognitive load monitoring. This capability is
particularly valuable for applications where contact sensors are impractical or undesirable, such as
long-term monitoring, automotive applications, or public spaces.

Broader Impacts Remote cognitive load monitoring has significant societal implications. Positive
impacts can include improved accessibility of cognitive assessment in stationary healthcare settings,
and drivinassistiveve technologies. However, these benefits come with important ethical consider-
ations, including (1) privacy concerns with continuous camera-visual or physiological monitoring,
(2) potential algorithmic bias across diverse populations, and (3) risks of workplace surveillance.
We advocate for responsible development that balances innovation with appropriate safeguards for
privacy, equity, and individual autonomy.

Limitations and Future Directions Several limitations should be acknowledged: (1) The binary
classification approach (Low vs. High cognitive load) may not capture the full spectrum of cognitive
states; (2) The participant-based split, while ensuring generalization, resulted in a relatively small
test set (10 participants); (3) The laboratory setting may not fully represent real-world conditions
with additional confounding factors; (4) The 120-second signal windows may not be optimal for all
applications requiring real-time monitoring.

Generalizability Considerations While the participant-based evaluation strategy ensures that
results represent true generalization to unseen individuals, the demographic composition of our
dataset (primarily young adults, university setting) may limit generalizability to broader populations.
Future work should evaluate performance across diverse age groups, occupations, and cultural
backgrounds to establish the robustness of these approaches for widespread deployment.
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