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Variation-based Cause Effect Identification

APPENDIX

A EMPIRICAL DISTRIBUTION

The empirical probability density function (ePDF):

px,N (x) =
1

N

N∑
n=1

δxn
(x) (17)

is the derivative of the empirical cumulative distribution (eCDF) defined by

Fx,N (x) =
1

N

N∑
n=1

1xn ≤ x (18)

where 1(·) is the indicator function and the inequality is to be understood entry-wise. The eCDF
Fx,N (x) is the minimum variance unbiased estimator of the true CDF function Fx(x) (Scott, 1992).
The ePDF can also be viewed a limit case of kernel-density estimation.

The motivation behind such a modeling choice is that, we normally do not have the output of
our unknown system/data-generation-process to an arbitrary input x (other than the samples pairs
{xn, yn}Nn=1. Hence, in our search for a distinct marginal on e.g. px, we are limited to the convex
set defined by the mixture distribution. These are the stimuli for which we know the output of our
unknown system treating it as a stochastic mapping. This, in turn, allows us to treat the obtained
weight vector as a sample weight on the joint distribution pxy and train models to approximate the
conditionals px|y and py|x accordingly.

One downside is that the search space for a distinct marginal is limited to this convex set, which
is itself sensitive to the sampling error. A standard kernel density estimation can alleviate such a
problem, but as mentioned, we assume no access to (nor information on) the underlying system
allowing us to use this kde-based estimates on the output or joint spaces.

B MAXIMALLY DISTINCT MIXTURE

In this section we detail the derivation of the semidefinite relaxation (SDR) approach to the optimiza-
tion problem used in our method eq. 6–8.

B.1 FROM THE UNIFORM EMPIRICAL

Problem 1 Given a set of samples Dx = {xn}Nn=1 from a random variable x ∈ X, find the weight
vector α that renders the mixture distribution pαx,N maximally distinct from px,N in some discrepancy
measure D(·, ·).
With the kernel-based MMD measure D ≡ MMDkX , Problem 1 can be formalized as

maximize
α

MMD2
kX
(pαx,N , px,N ) (19a)

subject to 1⊤
Nα = 1 (19b)

α ⩾ 0 (entry-wise) (19c)
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where 1N refers to a vector of ones with dimensionality N . The quantity being optimized can be
reformulated as follows:
MMD2

kX
(pαx,N , px,N )=∥pαx,N (x)− px,N (x)∥2H (20a)

=

∥∥∥∥∥
N∑

n=1

αδxn
− 1

N

N∑
n=1

δxn

∥∥∥∥∥
2

H

(20b)

=

N∑
n,n′=1

αnαn′⟨δxn
, δxn′ ⟩ −

2

N

N∑
n,n′=1

αn⟨δxn
, δxn′ ⟩+

1

N2

N∑
n,n′=1

⟨δxn
, δxn′ ⟩

(20c)

=α⊤Kxxα−
2

N
α⊤Kxx1N +

1

N2
1⊤
NKxx1N (20d)

where Kxx = [k(xi, xj)]
N
i,j=1 is the Gram matrix of the kernel function kX : X× X→ R+ on the

sample set Dx. with which the optimization problem becomes:

maximize
α

α⊤Kxxα−
2

N
α⊤Kxx1N +

1

N2
1⊤
NKxx1N (21a)

subject to 1⊤
Nα = 1 (21b)

α ⩾ 0 (entry-wise) (21c)

The optimization problem is not a convex optimization problem since it is a maximization of a convex
function. Noting that the closed-form estimator of the squared MMD has a quadratic form in the
optimization variable α, Park & Boyd (2017) address this problem in a two-step procedure referred
to as semidefinite relaxation (SDR). They first lift the problem to a higher dimensional space by
defining A = αα⊤ in which the objective function becomes linear, then apply a convex relaxation
to the intractable constraints. Without affecting the solution to the problem and using the properties
of the trace of a matrix, each term of the objective eq. (21a) can be reformulated as:

α⊤Kxxα = trace(α⊤Kxxα) (22a)

= trace(αα⊤Kxx) (22b)
= trace(AKxx) (22c)
= A •Kxx (22d)

and similarly for the second term:

α⊤Kxx1N = trace(α⊤Kxx1N ) (23a)

= trace(αα⊤Kxx1N1⊤
N ) (23b)

= A •Kxx1N1⊤
N (23c)

where • denotes the dot-product in matrix space defined as A • Kxx = trace(AKxx). They
then extract all convex constraints from the condition A = αα⊤ = [aij ]

N,N
i,j=1 The first is the

entry-wise non-negativity aij = αiαj ⩾ 0 due to the entry-wise non-negativity of α ∈ [0, 1]N .
The second is the consequence of the normalized vector 1⊤

Nα = 1 which can expressed in A as
1⊤
NA1 = 1⊤

Nα(1⊤
Nα)⊤ = 1. The last is the similarity of A = A⊤ by definition. Finally, the

equality condition above is relaxed to A ⪰ αα⊤ and written in its Schur-complement form.

As a result, the following formulation is a relaxation of 19a–19c which is a quadratically constraint
quadratic program (QCQP):

maximize
A

A •
(
Kxx −

2

N
Kxx1N1⊤

N

)
+

1

N2
1⊤
NKxx1N (24)

subject to
[

A A1N

1⊤
NA 1

]
⪰ 0 (positive semidefiniteness) (25)

A ⩾ 0 (entry-wise) (26)

1⊤
NA1N = 1 (27)

A = A⊤ (28)
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this problem has a convex object (linear) with convex constraints which can be solved using existing
packages such as cvxpy Diamond & Boyd (2016).

Problem 2: Given two sets of samples {xn}Nn=1 and {x̃m}Mm=1 from the two distributions px,N
and px̃,M , respectively, with the corresponding random variables x, x̃ ∈ X find the weight vector
α̃ ∈ [0, 1]M that renders the mixture distribution pα̃x̃,M maximally distinct from px,N w.r.t the
discrepancy measure MMDkX .

This problem can be formalized as

maximize
α

MMD2
kX
(pα̃x̃,M , px,N ) (29a)

subject to 1⊤
M α̃ = 1 (29b)

α̃ ⩾ 0 (entry-wise) (29c)

Same as in 20 the objective can be reformulated as follows:

MMD2
kX
(pα̃x̃,M , px,N ) =

∥∥pα̃x̃,M (x̃)− px,N (x)
∥∥2
H (30a)

= α̃⊤Kx̃x̃α̃−
2

N
α̃⊤Kx̃x1N +

1

N2
1⊤
NKxx1N (30b)

Similar to Problem 1, the objective terms can be rewritten as:

α̃⊤Kx̃x̃α̃ = Ã •Kx̃x̃ (31a)

and similarly for the second term:

α̃⊤Kx̃x1N = Ã •Kx̃x1N1⊤
N (32a)

The constraints can be modified as in Problem 1. Hence, a relaxation of 29a–29c is formulated as:

maximize
Ã

Ã •
(
Kx̃x̃ −

2

N
Kx̃x1N1⊤

N

)
+

1

N2
1⊤
NKxx1N (33)

subject to
[

Ã Ã1M

1⊤
MÃ 1

]
⪰ 0 (positive semidefiniteness) (34)

Ã ⩾ 0 (entry-wise) (35)

1⊤
MÃ1M = 1 (36)

Ã = Ã⊤ (37)

which is a QCQP on the M2 optimization variables in Ã = [ãij ]
M,M
i,j=1.

C EXPERIMENTAL SETUP AND FURTHER ANALYSIS

In this section we detail the experimental setup that was used in estimating the results presented in
fig. 4. We first standardize the dataset using the RobustScalerfrom the sklearn library [B1].
As a second step we extract randomly M samples to use further in the optimization problem from
3.1. The next steps are then to be followed as stated in the Algorithm 1 where the hyperparameters
were defined as follows:

1. We use a squared exponential kernel (SEK), with its maximum likelihood estimate of its
lengthscale parameter using a KDE on a 5-fold cross validation scheme.

2. We use the Exact-GP as our predictive model classM (SEK as a kernel).

3. We use bα = 0.2

4. We use the mean value for the predition of the GP model

5. All experiments took place on an 8-core processor from a single PC (without GPU compute
power).
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Note that in case of a large dataset (such as the pair-07 in Tübingen benchmark) we extract a subset
that represents the distribution of the original set, referred to as a coreset DC which is estimated
as follows. From a KDE estimate [B2] on either of the marginals (on x and y), include the k rare
samples of with probability lower than 0.05 in either of the marginal KDEs. This is then further
complemented with M − k samples drawn randomly. This last step (the random draw of M − k
samples) is repeated a number of times, and the case with the minimal MMD to the original set is
selected. In case of a small dataset, the coreset is automatically identical to the main set.

C.1 BENCHMARK DATASETS

Simulated data:

Another benchmark of synthetic data, inspired by Peters et al. (2014), is a diversified dataset of
causal pairs with additive, location-scale, and multiplicative noise. For some deterministic non-linear
function f , samples from a Gaussian Process, non-linear additive noise (AN) models of the form
y = f(x) + ϵ were considered with x ∼ N (0,

√
2) and ϵ ∼ N (0, σ) with σ ∼ U [1/5,

√
2/5]. In

the same manner of additive noise, f was replaced by a sigmoid function to generate the AN-s
scenario. The third scenario consists of location-scale (LS) data-generation processes in which
the effect’s mean and variance are functions of the cause, i.e. y = f(x) + g(x) ϵ, where ϵ and x
are the same as described in additive noise models. LS and LS-s correspond, therefore, to the
GP-sampled and sigmoid functions described for AN and AN-s scenarios, respectively. The last
scenario has multiplicative models (MN) that are defined as y = f(x) ϵ, where f is a sigmoid function
and ϵ ∼ U [0, 1].
Each of the above mentioned datasets contains 100 pairs of size N = 1000 samples. All pairs have
the same weights, and variable ordering is determined by a coin flip, resulting in balanced datasets.

Real-world data: 9 10.

C.2 BASELINES

For relevance, we compared our method only to high performing methods shown in Figure 4. All
these baselines distinguish between cause and effect solely in the bivariate case. Other methods like
CAM, RESIT and LinGaM allow for higher dimensional causal discovery. For more details about the
baselines, their implementation and computational complexity we refer to Tagasovska et al. (2018).

C.3 DETAILED ANALYSIS

Functional asymmetry illustrative figures: In a first step and similar to the toy-example [1]
presented in the beginning, Figure 5 contains some illustrative examples of our method tested on real
data, which again shows stability of the causal predictive models compared to acausal ones.

9Version Dec 2017.
10Accompanied weights were used to estimate the final identification accuracies to avoid bias introduced by

multiple copies of the same data (see: https://webdav.tuebingen.mpg.de/cause-effect/ for details).
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(a)

(b)

(c)

Figure 5: Sample results showing the trained models in each (causal) direction over some files of the
SIM dataset.

computational and parameter analysis: In the following, we tackle our method from different
angles to analyse its performance.

Figure 6 shows how the maximized objective function (i.e. solution to eq. 9–13 and 15) changes
per subset for the SIM dataset (which includes 100 pairs) for a certain bα. Figure 7 illustrates that
the maximum MMD is a monotonic function of the controllable hyperparameter bα, and that its
variations increase as the optimization problem gets less constrained (i.e. larger bα).

One should rather note that (as discussed in Section 3.3 paragraph: Dirac Distributions), while the
maximum MMD increases for an increasing bα, the resultant distribution pα actually becomes more
and more degenerate (i.e. towards a Dirac delta). Effectively, the models fα and gα trained on such
an empirical distribution are less stable. In other words, there should be a peak point in the range of

17



Under review as a conference paper at ICLR 2023

Figure 6: The Maximum Mean Discrepancy (MMD) for each pair of the SIM benchmark dataset
with a fixed bound bα = 0.015 and sample size M = 70 samples. As observed, the obtained max.
MMD value differs across subsets, and is not directly controllable.

Figure 7: The Maximum Mean Discrepancy (MMD) for different values of bα with a sample size
of 70 samples over all SIM pairs. As bα → 1.0 the search space for the maximally distinct subset
increases, and thus the max. MMD is a monotonic function of bα. Shaded are represent the variation
in the max. MMD for the subsets of the SIM benchmark dataset for a given value of the hyper-
parameters bα and M .

the parameter bα that reaches an optimal accuracy (i.e. giving non-negligible MMD value, but also
non-degenerate empirical distributions). This is depicted in Figure 8 for the SIM dataset (10 trial runs
of VCEI with M = 70 samples). Note that, the results in this figure shouldn’t be compared to the
accuracies presented in the experiments section of the paper (Figure 4) since the number of samples
has been drastically reduced for these analysis.

Another hyperparameter in our framework is the size of the subset we use. The expected behavior
here is that as more samples are included, the optimization is able to search across a larger space for
distinct subset. In other words, the maximum MMD obtained should be a monotonic function of the
number of samples M for a fixed optimization hyper-parameters (e.g. bα). This is shown empirically
for a single trial on the SIM dataset in Figure 9.

For a fixed bα, the effect of increasing M has multiple (potentially conflicting) effects on the scores
Sx→y and Sy→x. On the one hand, increasing M gives more distinct subsets as a solution to the
optimization problem 9–13. Yet, it also gives more training samples for the models f and g as
compared to the corresponding fα and gα which are normally fixed to b−1

α training samples. The
identification accuracy vs M for a fixed value of bα is depicted in Figure 10. An approach to mitigate
this issue is to make bα a function of the subset size (e.g. bα = 2/M ). the identification accuracy vs
M for a linked value of bα (for 4 trials on the SIM dataset) is shown in Figure 11
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Figure 8: The identification accuracy for different values of bα with a sample size of M = 70. As
expected, small values of bα renders the marginals p and pα almost similar (since α→ 1

M 1), leading
to inferior performance. As bα → 1.0, the marginal pα degenerate to a Dirac delta measure, which
leads to an unstable training of the models fα or gα. Variations (shaded region) are across 10 trials
on the same dataset.

Figure 9: The Maximum Mean Discrepancy (MMD) for different sample size M with a fixed value
for the hyper-parameter bα = 1/35. Similar to the effect of bα, increasing the sample size M widens
the search space for the maximally distinct marginal. Effectively, the max. MMD is also a monotonic
function of the sample size M . Variations (shaded area) are across different subsets of the SIM
bechmark dataset.

Figure 12 provides an overview about the computational complexity of our method in sort of
histograms of processing time per dataset pair for the benchmark datasets SIM and Tübingen with
M = 70 samples. For the Tübingen benchmark, for instance, most of the dataset pairs took 25
seconds of a processing time, with some outliers reaching up to 250 seconds. The total processing
time of this dataset on a 28-core workstation is around 25-30 minutes. In the supplementary material,
we also show histogram plots of the processing time vs sub-set size M .
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Figure 10: The identification accuracy for different subset sample size M with a fixed bound
bα = 1/35 on the SIM benchmark dataset. Variations are across 2 trials with random seeds.

Figure 11: The identification accuracy for different subset sample size M with a linked hyper-
parameter bα = 2

M on the SIM benchmark dataset. Variations are across 4 trials.

Figure 12: A histogram of the processing time of each pair (aka subset) for the (left) SIM and (right)
Tübingen benchmark datasets for a sample size of M = 70 and a bα = 65−1. The total processing
time is around 25min. (for either of the datasets) on a 28 core workstation.
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