
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A ALGORITHM

A.1 VERIX+

In this enhanced BINARYSEARCH algorithm, the solver (e.g., Marabou or Lirpa) is passed as an
explicit parameter to enable the CHECK function, which performs the core verification queries.

Algorithm 2 BINARYSEARCH(f , x!, solver)
1: function BINARYSEARCH(f, x!, solver)
2: if |x!| = 1 then
3: if CHECK(f, xB → x!, solver) then
4: xB ↑ xB → x!

5: return
6: else
7: xA ↑ xA → x!

8: return
9: end if

10: end if
11: x”, x# = split(x!, 2)
12: if CHECK(f, xB → x”, solver) then
13: xB ↑ xB → x”

14: if CHECK(f, xB → x#, solver) then
15: xB ↑ xB → x#

16: else
17: if |x#| = 1 then
18: xA ↑ xA → x#

19: else
20: BINARYSEARCH(f, x#, solver)
21: end if
22: end if
23: else
24: if |x”| = 1 then
25: xA ↑ xA → x”

26: else
27: BINARYSEARCH(f, x”, solver)
28: end if
29: end if
30: end function

A.2 SIMULTANEOUS ADD

Algorithm 3 Simultaneous Add
1: Input: model f , input x, candidate set F , current free set A, adversarial procedure ATTACK(,)

property P

2: Initialize: E ↑ ↓ ω set of necessary features
3: for i ↔ F \ A do
4: F

→
↑ F \ {i}

5: if ATTACK(f,!(x,F →),P) succeeds then
6: E ↑ E → {i} ω i must remain fixed
7: end if
8: end for
9: Return: E

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.3 ITERATIVE SINGLETON FREEING

Algorithm 4 Iterative Singleton Free
1: Input: model f , input x, candidate set F , free set A, certificate method LIRPA(,) traversal

order ε, property P

2: repeat
3: found ↑ false
4: for i ↔ ε with i ↔ F \ A do
5: if LIRPA(f,!(x,A → {i}),P) succeeds then
6: A ↑ A → {i}
7: found ↑ true
8: break ω restart scan from beginning of ε
9: end if

10: end for
11: until found = false
12: Return: A

A.4 RECURSIVE SIMULTANEOUS FREE

Algorithm 5 Recursive Abstract Batch Freeing
1: Input: model f , input x, candidate set F
2: Initialize: A ↑ ↓ ω certified free set
3: repeat
4: Abest ↑ ↓

5: for m = 1 . . . |F \ A| do
6: Am ↑ GREEDYABSTRACTBATCHFREEING(f,!m(x;A),F \ A)
7: if |Am| > |Abest| then
8: Abest ↑ Am

9: end if
10: end for
11: A ↑ A →Abest

12: until Abest = ↓

13: A = ITERATIVE SINGLETON FREE(f, x, F , A) ω refine by testing remaining features
14: Return: A

B PROOF

THE ASYMMETRY OF PARALLEL FEATURE SELECTION

Proposition B.1 (Simultaneous Addition). Any number of essential features can be added to the
explanation simultaneously. This property allows us to leverage solvers capable of assessing mul-
tiple verification queries in parallel, leading to a substantial reduction in runtime.
Proposition B.2 (Simultaneous Freeing). The converse does not hold: it is unsound to free multi-
ple features at once based only on individual verification as two features may be individually irrele-
vant yet jointly critical.

Simultaneous Addition B.1. Let X be the current explanation candidate, and let R = {r1, . . . , rk}
be a set of features not in X . If, for every ri ↔ R, removing the single feature ri from the set
F \ (X → {ri}) produces a counterexample, then all features in R are necessary and can be added
to the explanation at once.

Simultaneous freeing B.2. If removing any feature from a set R ↗ F \ X individually causes the
explanation to fail (i.e., produces a counterexample), then all features in R can be added to the
explanation X simultaneously.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) Adding several features at once is sound. (b) Freeing several features at once is unsound.

Figure 5: Toy example illustrating the asymmetry between adding and freeing features.

Batch-Certifiable Freeing 4.1. For any i ↘= c and x→
↔ !(x), lirpa bounds give fi(x→) ≃ fc(x→) ⇐

b
i
(x) +

∑
j↑A ”i,j(x→) with ”i,j(x→) ⇐ ci,j . Taking the worst case over x→ and i yields fi(x→) ≃

fc(x→) ⇐ #(A) ⇐ 0, precluding a label flip.

—–

PROPOSITION (CORRECTNESS OF THE RECURSIVE PROCEDURE)

Let A be the set returned by Algorithm 5 augmented with the final singleton refinement step that
tests each remaining feature individually with the LiRPA certificate #(·). Then:

(i) (No singleton extension) For every feature j ↔ F \ A we have

#(A → {j}) > 0,

i.e. no single feature can be added to A while preserving the certificate. Hence A is
singleton-maximal with respect to the LiRPA certificate.

(ii) (Termination) Algorithm 5 terminates in at most |F| outer iterations (and finitely many
inner steps).

(iii) (Full abstract minimality — conditional) If the inner batch solver called by Algorithm 5
returns, for each tested budget p, a globally optimal certified free set (i.e., for the current
domain it finds a maximum-cardinality Ap satisfying #(Ap) ⇐ 0), then the final A is a
globally maximal certified free set: there is no A

→ ⊋ A with #(A→) ⇐ 0. In this case A is
a true minimal abstract explanation (with respect to the chosen LiRPA relaxation).

Proof. (i) No singleton extension. By construction, the algorithm performs a final singleton re-
finement: it tests every feature j ↔ F \ A by evaluating the certificate on A → {j}. The algorithm
only adds j to A if #(A → {j}) ⇐ 0. Since the refinement ends with no further additions, it follows
that for every remaining j we have #(A → {j}) > 0. This is exactly the stated property.

(ii) Termination. Each time the algorithm adds at least one feature to A, the cardinality |A| strictly
increases and cannot exceed |F|. The outer loop therefore performs at most |F| successful addi-
tions. If an outer iteration yields no new features, the loop stops. Inner loops (scanning budgets
p or performing singleton checks) are finite since they iterate over finite sets. Hence the algorithm
terminates in finite time.

(iii) Full abstract minimality under optimal inner solver. Suppose that for every domain tested,
the inner routine (called for each p) returns a certified free set of maximum possible cardinality
among all subsets that satisfy #(·) ⇐ 0 on that domain. During each outer iteration the algorithm
enumerates budgets p (or otherwise explores the space of allowed cardinalities) and selects the
largest Ap found; then A is augmented by that largest globally-feasible batch. If no nonempty
globally-feasible batch exists for any tested p, then no superset of the current A can be certified
(because any superset would have some cardinality p→ tested and the solver would have returned it).
After the final singleton checks (which also use the optimal verifier on singletons), there remains no

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

single feature that can be added. Combining these facts yields that no superset of A is certifiable,
i.e. A is a globally maximal certified free set, as claimed.

Abstract Minimal Explanation

Correctness of Iterative Singleton Freeing. Let F be the candidate feature set and let A0 ↗ F be
an initial free set such that the LiRPA certificate verifies A0 (i.e. #(A0) ⇐ 0). Run the Iterative
Singleton Freeing procedure (Algorithm 4) with traversal order ε. The algorithm returns a set A
with the following properties:

1. (Soundness) The final set A satisfies #(A) ⇐ 0 (every added singleton was certified).

2. (Termination) The algorithm terminates after at most |F| ≃ |A0| successful additions
(hence in finite time).

3. (Singleton-maximality) For every j ↔ F \ A we have #(A → {j}) > 0, i.e. no remaining
single feature can be certified as free.

Proof. Soundness (invariant). By assumption #(A0) ⇐ 0. The algorithm only appends a feature
i to the current free set after a LiRPA call returns success on A → {i}, i.e. #(A → {i}) ⇐ 0. Since
LiRPA certificates are sound, every update preserves the invariant “current A is certified”. Therefore
the final A satisfies #(A) ⇐ 0.

Termination. Each successful iteration increases |A| by one and |A| ⇐ |F|. Thus there can be at
most |F|≃ |A0| successful additions. The algorithm halts when a full scan yields no addition; since
scans iterate over a finite set ordered by ε, the procedure terminates in finite time.

Singleton-maximality. Assume by contradiction that after termination there exists j ↔ F \ A with
#(A → {j}) ⇐ 0. The final scan that caused termination necessarily tested j (traversal order covers
all remaining indices), so the algorithm would have added j, contradicting termination. Hence for
every j ↔ F \ A we must have #(A → {j}) > 0, proving singleton-maximality.

Worked counterexample (illustrating joint freeing). Consider a toy binary classifier with two
input features x1, x2 and property P: the label remains class 0 iff f0(x→)≃ f1(x→) ⇒ 0. Suppose the
LiRPA relaxation yields conservative linear contributions such that

b+ c1 > 0, b+ c2 > 0, but b+ c1 + c2 ⇐ 0,

where ci is the worst-case contribution of feature i and b is the baseline margin. Then neither
singleton {1} nor {2} is certifiable (each violates the certificate), but the joint set {1, 2} is certifiable.
The iterative singleton procedure terminates without adding either feature, while a batch routine (or
an optimal MKP solver) would free both. This demonstrates the algorithm’s limitation: it guarantees
only singleton-maximality, not global maximality over multi-feature batches.

Complexity and practical cost. Let n = |F|. In the worst case the algorithm may attempt a
LiRPA call for every remaining feature on each outer iteration. If r features are eventually added,
the total number of LiRPA calls is bounded by

(n) + (n≃ 1) + · · ·+ (n≃ r + 1) = r · n≃
r(r ≃ 1)

2
⇐

n(n+ 1)

2
= O(n2).

Thus worst-case LiRPA call complexity is quadratic in n. In practice, however, each successful ad-
dition reduces the candidate set and often many iterations terminate early; empirical behavior tends
to be much closer to linear in n for structured data because (i) many features are certified in early
passes and (ii) LiRPA calls are highly parallelizable across features and can exploit GPU accelera-
tion. Finally, the dominant runtime factor is the per-call cost of LiRPA (forward/backward bound
propagation); therefore hybrid strategies (batch pre-filtering, prioritized traversal orders, occasional
exact-solver checks on promising subsets) are useful to reduce the number of expensive LiRPA
evaluations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

C EXAMPLES

Illustration of the Knapsack Formulation This is an example demonstrating how the greedy
heuristic described in Algorithm 1 works. Given a multi-class classification problem with three
classes: 0, 1, and 2. The model correctly predicts class 0 for a given input. We want to free features
from the irrelevant set A based on the abstract batch certificate. We have three candidate features to
free: j1, j2, and j3. The baseline budgets for the non-ground-truth classes are:

• Class 1: ≃b
1
= 10

• Class 2: ≃b
2
= 20

The normalized costs for each feature are calculated as ci,j/(≃b
i
):

Table 2: Example of Greedy Heuristic Decision Making
Feature Normalized Cost for Class 1 Normalized Cost for Class 2 Maximum Normalized Cost
(j) (c1,j/(≃b

1
)) (c2,j/(≃b

2
)) (maxi)

j1 2/10 = 0.2 8/20 = 0.4 0.4
j2 7/10 = 0.7 4/20 = 0.2 0.7
j3 3/10 = 0.3 3/20 = 0.15 0.3

The algorithm’s objective is to minimize the maximum normalized cost across all non-ground-truth
classes. As shown in the table, the minimum value in the ”Maximum Normalized Cost” column is
0.3, which corresponds to feature j3. Therefore, the greedy heuristic selects feature j3 to be added
to the free set in this step, as it represents the safest choice.

D EXPERIMENTS

D.1 MODEL SPECIFICATION

We evaluated our framework on standard image benchmarks including the MNIST(43) and
GTSRB(38) datasets. We used both fully connected and convolutional models trained in a prior
state-of-the-art VERIX+(40) to perform our analysis.

The MNIST dataset consists of 28 ⇑ 28 ⇑ 1 grayscale handwritten images. The architectures of
the fully connected and convolutional neural networks trained on this dataset are detailed in Table
3 and Table 4, respectively. These models achieved prediction accuracies of 93.76% for the fully
connected model and 96.29% for the convolutional model.

Table 3: Architecture of the MNIST-FC model.
Layer Type Input Shape Output Shape Activation
Flatten 28⇑ 28⇑ 1 784 -
Fully Connected 784 10 ReLU
Fully Connected 10 10 ReLU
Output 10 10 -

Table 4: Architecture of the MNIST-CNN model.
Layer Type Input Shape Output Shape Activation
Convolution 2D 28⇑ 28⇑ 1 13⇑ 13⇑ 4 -
Convolution 2D 13⇑ 13⇑ 4 6⇑ 6⇑ 4 -
Flatten 6⇑ 6⇑ 4 144 -
Fully Connected 144 20 ReLU
Output 20 10 -

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

The GTSRB dataset contains colored images of traffic signs with a shape of 32!32!3 and includes
43 distinct categories. In the models used for our experiments, which were trained by the authors
of VERIX+, only the 10 most frequent categories were used to mitigate potential distribution shift
and obtain higher prediction accuracies. The architectures of the fully connected and convolutional
models trained on GTSRB are presented in Table 5 and Table 6, respectively. These networks
achieved prediction accuracies of 85.93% and 90.32%, respectively.

Table 5: Architecture of the GTSRB-FC model.
Layer Type Input Shape Output Shape Activation
Flatten 32⇑ 32⇑ 3 3072 -
Fully Connected 3072 10 ReLU
Fully Connected 10 10 ReLU
Output 10 10 -

Table 6: Architecture of the GTSRB-CNN model.
Layer Type Input Shape Output Shape Activation
Convolution 2D 32⇑ 32⇑ 3 15⇑ 15⇑ 4 -
Convolution 2D 15⇑ 15⇑ 4 7⇑ 7⇑ 4 -
Flatten 7⇑ 7⇑ 4 196 -
Fully Connected 196 20 ReLU
Output 20 10 -

D.2 DETAILED EXPERIMENTAL SETUP

We configured the VERIX+ implementation with the following settings: binary search=true,
logit ranking=true, and traversal order=bounds. To identify necessary features, we used the Fast
Gradient Sign (FGS) technique for singleton attack addition, though the Projected Gradient Descent
(PGD) is also available for this purpose.

D.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

PERFORMANCE WITH ITERATIVE REFINEMENT The three plots compare the perfor-
mance of a greedy heuristic with an exact MILP solver for an iterative refinement task. The central
finding across all three visualizations is that the greedy heuristic provides a strong trade-off between
speed and solution quality, making it a more practical approach for large-scale problems.

Figure 6: Performance Comparison of FAME’s Abstract Batch Freeing Methods. These three
plots compare the greedy heuristic against the exact MILP solver for the iterative refinement task
for all the models. The first plot shows the runtime comparison of the two methods on a log-log
scale. The second plot compares the size of the freed feature set for both methods. The third plot
illustrates the distribution of the optimality gap (MILP size - Greedy size).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Analysis of FAME’s Abstract Batch Freeing The visualizations demonstrate that the greedy
heuristic provides a strong trade-off between speed and solution quality for the iterative refinement
task.

• Runtime Performance: As shown in the first plot, the greedy algorithm is consistently
faster than the MILP solver. This is evidenced by the data points for all models lying
significantly below the diagonal line, confirming a substantial gain in runtime.

• Solution Quality: The second plot shows that the greedy algorithm produces solutions of
comparable quality to the optimal MILP solver. The tight clustering of data points along
the diagonal line for all models indicates a strong correlation between the sizes of the freed
feature sets.

• Optimality Gap: The histogram of the final plot reinforces these findings by showing that
the greedy heuristic frequently achieves the optimal solution, with the highest frequency
of samples occurring at a gap of zero. The distribution further confirms that any sub-
optimality is typically minimal.

19

