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APPENDIX

A EXPERIMENTAL SETUP

All experiments were conducted using the Ubuntu 18.04 operating system on an NVIDIA DGX
Station equipped with four V100 GPU cards, each having 128GB of GPU memory. The system also
included 256GB of RAM and a 20-core Intel Xeon E5-2698 v4 2.2 GHz CPU.

The datasets for factual and counterfactual explainers follow an 80:10:10 split for training,
validation and testing. We explain some of our design choices below.

• For factual explainers, the inductive explainers are trained on the training data and the reported
results are computed on the entire dataset. We also report results only on test data (please see Sec.
A.5) comparing only inductive methods. Transductive methods are run on the entire dataset.

• For counterfactual explainers, the inductive explainers are trained on the training data, and the
reported results are computed on the test data. Since transductive methods do not have the notion
of training and testing separately, they are run only on the test data.

A.1 BENCHMARK DATASETS

Datasets for Node classification: The following datasets have node labels and are used for the node
classification task.

• TREE-CYCLES Ying et al. (2019b): The base graph used in this dataset is a binary tree, and the
motifs consist of 6-node cycles (Figure D(a)). The motifs are connected to random nodes in the
tree. Non-motif nodes are labeled 0, while the motif nodes are labeled 1.

• TREE-GRID Ying et al. (2019b): The base graph used in this dataset is a binary tree, and the
motif is a 3× 3 grid connected to random nodes in the tree (Figure D(b)). Similar to the tree-cycles
dataset, the nodes are labeled with binary classes (0 for the non-motif nodes and 1 for the motif
nodes).

• BA-SHAPES Ying et al. (2019b): The base graph in this dataset is a Barabasi-Albert (BA) graph.
The dataset includes house-shaped structures composed of 5 nodes (Figure D (c)). Non-motif
nodes are assigned class 0, while nodes at the top, middle, and bottom of the motif are assigned
classes 1, 2, and 3, respectively.

Figure D: Motifs used in (a) Tree-Cycles, (b) Tree-Grid and (c) BA-Shapes datasets for the node
classification task. Please note the following. (i) Tree-Cycles and Tree-Grid have labels 0 and 1 for
the non-motif and the motif nodes, respectively. Hence, all nodes in (a) and (b) have label 1. (ii)
BA-Shapes dataset has 4 classes. Non-motif nodes have labels 0; motif nodes have integral labels
depending on the position in the house motif. The other labels are 1 (top node), 2 (middle nodes) and
3 (bottom nodes). They are represented in (c).

Datasets for Graph Classification: The following datasets are used for the graph classification task
and contain labeled graphs.

• MUTAG Ivanov et al. (2019) and Mutagenicity Riesen & Bunke (2008); Kazius et al. (2005):
These are graph datasets containing chemical compounds. The nodes represent atoms, and the
edges represent chemical bonds. The binary labels depend on the mutagenic effect of the compound
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on a bacterium, namely mutagenic or non-mutagenic. MUTAG and Mutagenicity datasets contain
188 and 4337 graphs, respectively.

• AIDS: Ivanov et al. (2019) This dataset contains small molecules. The nodes and edges are atoms
and chemical bonds, respectively. The molecules are classified by whether they are active against
the HIV virus or not.

• Proteins Borgwardt et al. (2005); Dobson & Doig (2003) and DD Dobson & Doig (2003): These
datasets are comprised of proteins categorized into enzymes and non-enzymes. The nodes represent
amino acids, and an edge exists between two nodes if their distance is less than 6 Angstroms.

• NCI1 Wale et al. (2008): This dataset is derived from cheminformatics and represents chemical
compounds as input graphs. Vertices in the graph correspond to atoms, while edges represent bonds
between atoms. This dataset focuses on anti-cancer screenings for cell lung cancer, with chemicals
labeled as positive or negative. Each vertex is assigned an input label indicating the atom type,
encoded using a one-hot-encoding scheme.

• IMDB-B Yanardag & Vishwanathan (2015): The IMDB-BINARY dataset is a collection of
movie collaboration networks, encompassing the ego-networks of 1,000 actors and actresses who
have portrayed roles in films listed on IMDB. Each network is represented as a graph, where the
nodes correspond to the actors/actresses, and an edge is present between two nodes if they have
shared the screen in the same movie. These graphs have been constructed specifically from movies
in the Action and Romance genres, which are the class labels.

• REDDIT-B Yanardag & Vishwanathan (2015): REDDIT-BINARY dataset encompasses graphs
representing online discussions on Reddit. Each graph has nodes representing users, connected by
edges when either user responds to the other’s comment. The four prominent subreddits within
this dataset are IAmA, AskReddit, TrollXChromosomes, and atheism. IAmA and AskReddit are
question/answer-based communities, while TrollXChromosomes and atheism are discussion-based
communities. Graphs are labeled based on their affiliation with either a question/answer-based or
discussion-based community.

• GRAPH-SST2 Yuan et al. (2022): The Graph-SST2 dataset is a graph-based dataset derived
from the SST2 dataset Socher et al. (2013), which contains movie review sentences labeled with
positive or negative sentiment. Each sentence in the Graph-SST2 dataset is transformed into a
graph representation, with words as nodes and edges representing syntactic relationships capturing
the sentence’s grammatical structure. The sentiment labels from the original SST2 dataset are
preserved, allowing for sentiment analysis tasks using the graph representations of the sentences.

• ogbg-molhiv Allamanis et al. (2018): ogbg-molhiv is a molecule dataset with nodes representing
atoms and edges representing chemical bonds. The node features represent various properties of the
atoms like chirality, atomic number, formal charge etc. Edge attributes represent the bond type. We
study binary classification task on this dataset. The task is to achieve the most accurate predictions
of specific molecular properties. These properties are framed as binary labels, indicating attributes
like whether a molecule demonstrates inhibition of HIV virus replication or not.

A.2 DETAILS OF GNN MODEL Φ USED FOR NODE CLASSIFICATION

We use the same GNN model used in CF-GNNEXPLAINER and CF2. Specifically, it is a Graph
Convolutional Networks Kipf & Welling (2016) trained on each of the datasets. Each model has 3
graph convolutional layers with 20 hidden dimensions for the benchmark datasets. The non-linearity
used is relu for the first two layers and log softmax after the last layer of GCN. The learning rate is
0.01. The train and test data are divided in the ratio 80:20. The accuracy of the GNN model Φ for
each dataset is mentioned in Table I.

Table I: Accuracy of black-box GNN Φ on the datasets used for node classification, for evaluation of
counterfactual explainers. Φ is a GCN Kipf & Welling (2016) for this task

Dataset Train accuracy Test Accuracy

Tree-Cycles 0.9123 0.9086
Tree-Grid 0.8434 0.8744

BA-Shapes 0.9661 0.9857
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A.3 DETAILS OF BASE GNN MODEL Φ FOR THE GRAPH CLASSIFICATION TASK

Our GNN models have an optional parameter for continuous edge weights, which in our case
represents explanations. Each model consists of 3 layers with 20 hidden dimensions specifically
designed for benchmark datasets. The models provide node embeddings, graph embeddings, and
direct outputs from the model (without any softmax function). The output is obtained through a one-
layer MLP applied to the graph embedding. We utilize the max pooling operator to calculate the graph
embedding. The dropout rate, learning rate, and batch size are set to 0, 0.001, and 128, respectively.
The train, validation, and test datasets are divided into an 80:10:10 ratio. The algorithms run for 1000
epochs with early stopping after 200 patience steps on the validation set. The performance analysis of
the base GNN models ( Kipf & Welling (2016); Veličković et al. (2018); Xu et al. (2019); Hamilton
et al. (2017)) for each graph classification dataset is presented in Table J.

Table J: Test accuracy of black-box GNN Φ trained for the graph classification task, averaged over 10
runs with random seeds. We train multiple GNNS for this task to test explainers for stability against
GNN architectures.

Dataset GCN GAT GIN GraphSAGE

Mutagenicity 0.8724± 0.0092 0.8685± 0.0111 0.8914± 0.0101 0.8749± 0.0059
Mutag 0.925± 0.0414 0.8365± 0.0264 0.9542± 0.0149 0.8323± 0.0445

Proteins 0.8418± 0.0144 0.8362± 0.0269 0.8352± 0.0165 0.8408± 0.0124
IMDB-B 0.8318± 0.0197 0.8292± 0.015 0.8554± 0.027 0.8373± 0.0093

AIDS 0.999± 0.0005 0.9971± 0.0068 0.9797± 0.0099 0.9903± 0.0088
NCI1 0.8243± 0.028 0.8096± 0.015 0.8365± 0.0201 0.8303± 0.0137

Graph-SST2 0.957± 0.001 0.9603± 0.0009 0.9552± 0.0014 0.9611± 0.0011
DD 0.736± 0.0377 0.7312± 0.048 0.7693± 0.0238 0.7541± 0.0415

REDDIT-B 0.8984± 0.0247 0.8444± 0.0266 0.6886± 0.1231 0.8733± 0.0196
ogbg-molhiv 0.9729± 0.0002 0.9722± 0.0010 0.9726± 0.0003 0.9725± 0.0005

A.4 DETAILS OF FACTUAL EXPLAINERS FOR THE GRAPH CLASSIFICATION TASK

In many cases, explainers generate continuous explanations that can be used with graph neural
network (GNN) models, which can handle edge weights. To be able to use explanations in our
GNN models, we map them into [0, 1] using a sigmoid function if not mapped. While generating
performance results, we calculate top-k edges based on their scores instead of assigning a threshold
value (e.g., 0.5). However, there are some approaches, such as GEM and SubgraphX, that do not rely
on continuous edge explanations.

GEM employs a variational auto-encoder to reconstruct ground truth explanations. As a result, the
generated explanations can include negative values. While our experiments primarily focus on the
order of explanations and do not require invoking the base GNN in the second stage of GEM, we can
still use negative explanation edges.

On the other hand, SubgraphX ranks different subgraph explanations based on their scores. We
select the top 20 explanations and, for each explanation, compute the subgraph. Then, we enhance
the importance of each edge of a particular subgraph by incrementing its score by 1. Finally, we
normalize the weights of the edges. This process allows us to obtain continuous explanations as well.
Moreover, since SubgraphX employs tree search, its scalability is limited when dealing with large
graphs. For instance, in the Mutagenicity dataset, obtaining explanations for 435 graphs requires
approximately 26.5 hours. To address this challenge, we restricted our analysis to test graphs when
calculating explanations using SubgraphX. It is important to include this disclaimer, working on only
subset of graphs may introduce potential biases or noises in the results.

A.5 FACTUAL EXPLAINERS: INDUCTIVE METHODS ON TEST SET

The inductive factual explainers are run only on the test data and the results are reported in Figure E.
The results are similar to the ones where the methods are run on the entire dataset (Figure 2). Consis-
tent with the earlier results, PGEXPLAINER consistently delivers inferior results compared to other
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baseline methods, and no single technique dominates across all datasets. Overall, RCEXPLAINER
could be recommended as one of the preferred choices.
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Figure E: Sufficiency of the inductive factual explainers against the explanation size on only test
data. For factual explanations, higher is better. We omit those methods for a dataset that throw an
out-of-memory (OOM) error and are not scalable.

A.6 CODES AND IMPLEMENTATION

Table K shows the code bases we have used for the explainers. We have adapted the codes based
on our base GNN models. Our repository, https://github.com/idea-iitd/gnn-x-bench/, includes the
adaptations of the methods to our base models.

Table K: Reference of code repositories.

Method Repository

PGExplainer Luo et al. (2020) https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks/
TAGExplainer Xie et al. (2022) https://github.com/divelab/DIG/tree/main/dig/xgraph/TAGE/
CF2 Tan et al. (2022) https://github.com/chrisjtan/gnn_cff
RCExplainer Bajaj et al. (2021) https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=e41f63d3-e346-4891-bf6a-40e64b4a3278
GNNExplainer Ying et al. (2019b) https://github.com/LarsHoldijk/RE-ParameterizedExplainerForGraphNeuralNetworks/
GEM Lin et al. (2021b) https://github.com/wanyu-lin/ICML2021-Gem/
SubgraphX Yuan et al. (2021) https://github.com/divelab/DIG/tree/main/dig/xgraph/SubgraphX

A.7 FEASIBILITY

Counterfactual explanations: As shown in Table L, we observe statistically significant deviations
from the expected values in two out of three molecular datasets. This suggests a heightened probability
of predicting counterfactuals that do not correspond to feasible molecules. This finding underscores
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Table L: Assessing the statistical significance of deviations in the number of connected graphs between
the test set and their corresponding counterfactual explanations on molecular datasets. Statistically
significant deviations with p-value< 0.05 are highlighted.

Dataset RCEXPLAINER CF2

Expected Count Observed Count p-value Expected Count Observed Count p-value

Mutagenicity 233.05 70 < 0.00001 206.65 0 < 0.00001
Mutag 11 9 0.55 4 1 0.13
AIDS 17.6 8 < 0.00001 1.76 0 0.0001

a limitation of counterfactual explainers, which has received limited attention within the research
community.

Factual explanations: The feasibility metric is commonly used in the context of counterfactual graph
explainers because it measures how feasible it is to achieve a specific counterfactual outcome. In
other words, it assesses the likelihood of a counterfactual scenario being realized given the constraints
and assumptions of the underlying base model. On the other hand, factual explainers aim to explain
why a model makes a certain prediction based on the actual input data. They do not involve any
counterfactual scenarios, so the feasibility metric is not relevant in this context. Instead, factual
explainers may use other metrics such as sufficiency and reproducibility to provide insights into
how the model is making its predictions. Therefore, we have not used feasibility metrics for factual
explanations.

B SUFFICIENCY OF FACTUAL EXPLANATIONS UNDER TOPOLOGICAL NOISE

We check the sufficiency of the factual explanations under noise for four different datasets. Figure F
demonstrates the results, including when there is no noise (i.e., when X = 0). We set the explanation
size (i.e., the number of edges) to 10 units. We observe that, in most cases, increasing noise results
in a decrease in the sufficiency metric for the Mutagenicity and AIDS datasets, which is expected.
However, for the Proteins and IMDB-B datasets, even though there are still drops for some methods,
others remain stable in sufficiency across different noise levels. This demonstrates that, despite the
changes in explanations caused by noise, GNN may still predict the same class under noisy conditions.
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Figure F: Sufficiency of factual explainers under topological noise.

C STABILITY

In addition to stability against topological noise, different seeds, and different GNN architecture, we
also analyze stability against feature pertubation and stability against topological adversarial attack.

For feature perturbation, we first select the percentage of nodes to be perturbed (X% ∈
{10, 20, 30, 40, 50}). Then, perturbation operation varies depending on the nature of node features
(continuous or discrete). For the Proteins dataset (continuous features); for each feature f , we com-
pute its standard deviation σf . Then we sample a value uniformly at random from ∆ ∼ [−0.1, 0.1].
The feature value fx is perturbed to fx + ∆ × σf . For other datasets (discrete features), for each
selected node, we flip its feature to a randomly sampled feature.

For topology adversarial attack, we follow the flip edge method from Wan et al. (2021) with a query
size of one and vary the number flip count across datasets.
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C.1 FACTUAL EXPLAINERS

Stability against feature perturbation:

Figure G illustrates the outcomes, demonstrating a continuation of the previously observed trends.
Among these trends, we see that there is one clear winner for both datasets. However, PGEXPLAINER
performs better than most datasets in both datasets (with discrete and continuous features). On
the other hand, the transductive method GNNEXPLAINER performs very poorly in both datasets
compared to other methods (i.e., inductive), which further provides evidence that transductive methods
are poor in stability for factual explanations.
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Figure G: Stability of factual explainers against feature perturbation in Jaccard similarity. The stability
of explanations drops when the perturbation percentage increases. GNNEXPLAINER (transductive)
is the worst method for these two datasets.

Adversarial attack on topology: Figure H demonstrates the performance of four factual methods
on these evasion attacks for four datasets. The behavior of the factual methods is similar to the
topological noise attack explained in Section 4.2 and the feature perturbations results. When an
adversarial attack is compared to random perturbations (Fig. 3), we observe higher deterioration
in stability, which is expected since adversarial edge flip attack aims every possible edge in the
graph rather than only considering nonexistent edges. Similar to feature perturbation, GNNExplainer
(transductive) is affected more by the adversarial attack.

1 2 3 4 5

0.5

0.6

0.7

0.8

Ja
cc

ar
d 

Si
m

ila
rit

y

Mutagenicity

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Proteins

1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

IMDB-B

PGExplainer TAGExplainer RCExplainer GNNExplainer

1 2 3 4 5
0.75

0.80

0.85

0.90

0.95

AIDS

0.0 0.2 0.4 0.6 0.8 1.0
X (flip count)

0.0

0.2

0.4

0.6

0.8

1.0

Figure H: Stability of factual explainers against random edge flip in Jaccard similarity. The stability
of explanations drops when the flip count increases. GNNEXPLAINER (transductive) is the worst
method for these two datasets.

C.2 COUNTERFACTUAL EXPLAINERS

Stability against topological noise: In this section, we investigate the influence of topological noise
on datasets on both the performance and generated explanations of counterfactual explainers. For
inductive methods (RCEXPLAINER and CLEAR), we utilize explainers trained on noise-free data
and only infer on the noisy data. However, for the transductive method CF2, we retrain the model
using the noisy data.

Figure I presents the average Jaccard similarity results, indicating the similarity between the coun-
terfactual graph predicted as an explanation for the original graph and the noisy graphs at varying
levels of perturbations. Additionally, Figure J demonstrates the performance of different explainers in
terms of sufficiency and size as the degree of noise increases. This provides insights into how these
explainers handle higher levels of noise.
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RCExplainer outperforms other baselines by a significant margin in terms of size and sufficiency
across datasets, as shown in Fig. J. However, the Jaccard similarity between RCExplainer and CF2

for counterfactual graphs is nearly identical, as shown in Fig. I. CF2 benefits from its transductive
training on noisy graphs. CLEAR’s results are not shown for Proteins and Mutagenicity datasets
due to scalability issues. In the case of IMDB-B dataset, CLEAR is highly unstable in predicting
counterfactual graphs, indicated by a low Jaccard index (Fig. I). Additionally, CLEAR demonstrates
high sufficiency but requires a large number of edits, indicating difficulty in finding minimal-edit
counterfactuals (Fig. J).

Overall, RCExplainer seems to be the model of choice when topological noise is introduced, and it is
significantly faster than CF2 because it is inductive. Further, it is better than CLEAR as the latter
does not scale for larger datasets and is inferior in terms of sufficiency and size as well.
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Figure I: Stability of counterfactual explainers against topological noise (Jaccard). We omit CLEAR
for Mutagenicity and Proteins as it throws an OOM error for these datasets. The absence of markers
representing CF2 in the Protein dataset’s plot indicates that counterfactual graphs were not predicted
at the corresponding noise values by the method. Overall, RCExplainer performs best in terms of the
Jaccard index.
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Figure J: Performance evaluation of counterfactual explainers against topological noise. We omit
CLEAR for Mutagenicity and Proteins as it throws an OOM error for these datasets. RCExplainer is
more robust to noise in both metrics: (a) sufficiency and (b) size.
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Stability against explainer instances: Table M provides an overview of the stability exhibited
among explainer instances trained using three distinct seeds. Notably, we observe a substantial
Jaccard index, indicating favorable stability, in the case of RCEXPLAINER and CF2 explainers.
Conversely, CLEAR fails to demonstrate comparable stability. These findings align with the outcomes
derived from Table 5. Specifically, when RCEXPLAINER and CF2 are successful in identifying
a counterfactual, the resultant counterfactual graphs are obtained through a small number of
perturbations. Consequently, the counterfactual graphs exhibit similarities to the original graph,
rendering them akin to one another. However, this trend does not hold for CLEAR, as it necessitates
a significantly greater number of perturbations.

Table M: Stability against explainer instances. Note that stability with respect to a graph is computable
only if both explainer instances find their counterfactual. “NA” indicates no such graph exists.

RCExplainer CF2 CLEAR

Dataset / Seeds 1vs2 1vs3 2vs3 1vs2 1vs3 2vs3 1vs2 1vs3 2vs3

Mutagenicity 0.96 ±0.06 0.96 ±0.04 0.98 ±0.03 0.90 ±0.09 0.89 ±0.1 0.89 ±0.11 OOM OOM OOM
Proteins 0.95 ±0.0 0.94 ±0.0 0.90 ±0.0 NA NA NA OOM OOM OOM
Mutag 0.98 ±0.03 0.98 ±0.03 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 0.55 ±0.01 0.53 ±0.01 0.54 ±0.02
IMDB-B 0.99 ±0.01 1.0 ±0.0 0.99 ±0.01 0.96 ±0.05 0.95 ±0.06 0.94 ±0.07 0.28 ±0.0 0.27 ±0.0 0.28 ±0.0
AIDS 0.84 ±0.04 0.96 ±0.06 0.84 ±0.04 NA 1.0 ±0.0 NA 0.19 ±0.02 0.20 ±0.03 0.19 ±0.04
ogbg-molhiv 0.99 ±0.03 0.99 ±0.04 0.99 ±0.04 0.801 ±0.149 0.764 ±0.14 0.784 ±0.144 OOM OOM OOM

Similarly, as additional results, we also present the variations in terms of sufficiency (Table N) and
the explanation size (Table O) produced by the methods using three different seeds. In terms of
sufficiency, the methods show stability while varying the seeds. However, the results are drastically
different for explanation size. Table O present the results. We observe that RCEXPLAINER is
consistently the most stable method while CF2 is worse. The worst stability is shown by CLEAR and
this observation is consistent with the previous results.

Table N: Stability of sufficiency produced by counterfactual explainers against the explainer instances
(seeds). The best explainers for each dataset (row) are highlighted in gray, yellow and cyan shading
for seeds 1, 2, and 3, respectively. OOM indicates that the explainer threw an out-of-memory error.

RCExplainer CF2 CLEAR

Dataset / Seeds 1 2 3 1 2 3 1 2 3

Mutagenicity 0.4 ±0.06 0.40 ±0.05 0.41 ±0.05 0.50 ±0.05 0.49 ±0.06 0.52 ±0.05 OOM OOM OOM
Proteins 0.96 ±0.02 0.96 ±0.02 0.96 ±0.02 1.0 ±0.0 1.0 ±0.0 0.98 ±0.02 OOM OOM OOM
Mutag 0.4 ±0.12 0.6 ±0.12 0.55 ±0.1 0.9 ±0.12 0.85 ±0.2 0.9 ±0.12 0.55 ±0.1 0.55 ±0.1 0.65 ±0.12

IMDB-B 0.72 ±0.11 0.72 ±0.11 0.72 ±0.11 0.81 ±0.07 0.82 ±0.08 0.81 ±0.07 0.96 ±0.02 0.96 ±0.02 0.96 ±0.02
AIDS 0.91 ±0.04 0.91 ±0.04 0.91 ±0.04 0.98 ±0.02 1.0 ±0.0 0.99 ±0.01 0.84 ±0.03 0.82 ±0.03 0.83 ±0.04

ogbg-molhiv 0.90 ±0.02 0.88 ±0.01 0.90 ±0.01 0.96 ±0.01 0.97 ±0.00 0.96 ±0.00 OOM OOM OOM

Table O: Stability of explanation size produced by explainers against the explainer instances (seeds).
NA indicates the inability to find a counterfactual. OOM indicates that the explainer threw out-of-
memory error. The best explainers for each dataset (row) are highlighted in gray, yellow and cyan
shading for seeds 1, 2, and 3, respectively.

RCExplainer CF2 CLEAR

Dataset / Seeds 1 2 3 1 2 3 1 2 3

Mutagenicity 1.01 ±0.19 1.0 ±0.0 1.25 ±0.0 2.78 ±0.98 2.85 ±1.07 2.95 ±1.37 OOM OOM OOM
Proteins 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 NA NA 3.0 ±0.0 OOM OOM OOM
Mutag 1.1 ±0.22 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 1.25 ±0.35 1.0 ±0.0 17.15 ±1.62 15.6 ±1.86 19.05 ±1.31

IMDB-B 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 8.57 ±4.99 8.29 ±4.50 9.01 ±5.58 218.62 ±0.0 182.25 ±0.0 181.38 ±0.0
AIDS 1.0 ±0.0 1.0 ±0.0 1.0 ±0.0 5.25 ±0.35 NA 6.0 ±0.0 164.95 ±47.93 162.32 ±45.70 185.29 ±78.92

ogbg-molhiv 1.0 ±0.0 1.0 ±0.0 1.02 ±0.42 10.45 ±4.43 9.69 ±4.18 10.24 ±4.87 OOM OOM OOM

Stability against GNN architectures: Table P shows the stability of the explainers across different
GNN architectures. Similar to our factual setting (Table 8), we assess the stability by computing
the Jaccard coefficient between the explained predictions of the indicated GNN architecture and the
default GCN model. Unsurprisingly, the stability of the explainer highly depends on the dataset.
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RCEXPLAINER is also the most stable among all the explainers, and the produced high values
indicate that the method is agnostic towards the variations in different message aggregating schemes
of the architectures.

We further look into the stability of the counterfactual methods in terms of sufficiency (Table Q) and
the explanation size (Table R) across different GNN architectures. The sufficiency results (Table
Q) show large variations produced by the same method on the same dataset due to the different
architectures and message passing schemes. For instance, RCEXPLAINER produces sufficiency of
.10 and .93 on the AIDS dataset for GAT and GIN, respectively. In terms of explanation size(Table
R), RCEXPLAINER is stable against different GNN architectures. However, consistent with previous
stability results, CF2 is more unstable than RCEXPLAINER and the worst stability is shown by
CLEAR.

Table P: Stability of counterfactual explainers against the GNN architecture. We report the Jaccard
coefficient of explanations obtained for GAT, GIN and GRAPHSAGE against the explanation provided
over GCN. The higher the Jaccard, the more is the stability. The best explained for each dataset (row)
are highlighted in gray, yellow and cyan shading for architectures GAT, GIN, and GRAPHSAGE,
respectively. GRAPHSAGE is denoted by SAGE. NA indicates one or both of the architectures
were unable to identify a counterfactual for the graphs. OOM indicates that the explainer threw an
out-of-memory error.

RCEXplainer CF2 CLEAR

Dataset / Architecture GAT GIN SAGE GAT GIN SAGE GAT GIN SAGE

Mutagenicity 0.95 ±0.05 0.94 ±0.06 0.95 ±0.03 0.79 ±0.13 0.75 ±0.16 0.84 ±0.10 OOM OOM OOM
Proteins 0.88 ±0.0 NA 0.88 ±0.0 NA NA NA OOM OOM OOM
Mutag 0.94 ±0.0 NA 0.90 ±0.02 NA NA NA 0.86 ±0.0 NA 0.72 ±0.04

IMDB-B 0.99 ±0.01 0.98 ±0.0 0.98 ±0.01 NA 0.93 ±0.0 NA 0.60 ±0.0 0.70 ±0.0 0.76 ±0.0
AIDS 0.89 ±0.03 NA NA 0.74 ±0.0 0.73 ±0.11 0.72 ±0.12 0.25 ±0.04 0.54 ±0.04 0.66 ±0.04

ogbg-molhiv 0.96 ±0.02 0.96 ±0.01 0.96 ±0.02 0.63 ±0.12 0.13 ±0.14 0.61 ±0.16 OOM OOM OOM

Table Q: Stability in terms of sufficiency of counterfactual explainers against the GNN architectures.
OOM indicates that the explainer threw out-of-memory error. The best explainers for each dataset
(row) are highlighted in gray, yellow, cyan, and pink shading for GCN, GAT, GIN, SAGE, respectively.
RCExplainer outperforms other baselines on a majority of the datasets and architectures. CLEAR
also is stable in terms of sufficiency but has a much larger explanation size compared to other
baselines(Refer Table R).

RCEXplainer CF2 CLEAR

Dataset / Architecture GCN GAT GIN SAGE GCN GAT GIN SAGE GCN GAT GIN SAGE

Mutagenicity 0.4 ±0.06 0.38 ±0.04 0.6 ±0.04 0.59 ±0.06 0.50 ±0.05 0.64 ±0.04 0.57 ±0.08 0.62 ±0.03 OOM OOM OOM OOM

Proteins 0.96 ±0.02 0.88 ±0.04 0.3 ±0.05 0.46 ±0.08 1.0 ±0.0 1.0 ±0.0 0.76 ±0.06 0.79 ±0.02 OOM OOM OOM OOM

Mutag 0.4 ±0.12 0.7 ±0.19 1.0 ±0.0 0.45 ±0.19 0.9 ±0.12 0.9 ±0.12 0.45 ±0.33 0.7 ±0.19 0.55 ±0.1 0.8 ±0.19 1.0 ±0.0 0.05 ±0.1

IMDB-B 0.72 ±0.11 0.89 ±0.02 0.54 ±0.06 0.39 ±0.04 0.81 ±0.07 1.0 ±0.0 0.98 ±0.02 0.99 ±0.02 0.96 ±0.02 0.68 ±0.08 0.22 ±0.11 0.32 ±0.11

AIDS 0.91 ±0.04 0.10 ±0.04 0.93 ±0.03 0.86 ±0.05 0.98 ±0.02 0.92 ±0.04 0.96 ±0.01 0.96 ±0.02 0.84 ±0.03 0.80 ±0.04 0.74 ±0.04 0.84 ±0.02

ogbg-molhiv 0.90 ±0.02 0.80 ±0.01 0.56 ±0.01 0.20 ±0.01 0.96 ±0.01 0.96 ±0.01 0.90 ±0.01 0.59 ±0.01 OOM OOM OOM OOM

Table R: Stability of explanation size produced by explainers against different GNN architectures.
OOM indicates that the explainer threw out-of-memory error. NA indicates that the explainer could
not identify a counterfactual for the graphs. The best explainers for each dataset (row) are highlighted
in gray, yellow, cyan, and pink shading for GCN, GAT, GIN, SAGE respectively. RCExplainer
outperforms other counterfactual baselines.

RCEXplainer CF2 CLEAR

Dataset / Architecture GCN GAT GIN SAGE GCN GAT GIN SAGE GCN GAT GIN SAGE

Mutagenicity 1.01± 0.18 1.33± 2.06 1.0± 0.0 1.03± 0.29 2.81± 1.12 3.90± 2.08 5.93± 2.97 3.32± 1.61 OOM OOM OOM OOM
Proteins 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.97± 7.75 3.5± 0.5 4.0± 0.0 2.62± 1.22 2.04± 1.3 OOM OOM OOM OOM
Mutag 1.0± 0.0 NA NA 1.0± 0.0 2.0± 1.07 1.0± 0.0 20.36± 3.94 1.4± 0.8 38.12± 3.41 37.4± 3.61 NA 45.76± 7.94

IMDB-B 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 7.78± 3.98 NA 6.0± 0.0 7.17± 3.89 424.0± 192.26 441.53± 70.97 475.42± 75.76 350.45± 86.62

AIDS 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 NA 4.21± 3.07 2.0± 0.0 3.22± 2.15 222.84± 47.02 667.01± 94.35 212.77± 43.18 201.09± 38.85

Stability to feature noise: Table S presents the impact of feature noise on counterfactual explana-
tions in Mutag and Mutagenicity. We observe that CF2 and CLEAR are markedly more stable than
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RCEXPLAINER in Mutag. This outcome is not surprising, considering that RCEXPLAINER exclu-
sively addresses topological perturbations, while both CF2 and CLEAR accommodate perturbations
encompassing both topology and features. In Mutaganecity, RCEXPLAINER exhibits slightly higher
stability than CF2.

Table S: Stability of counterfactual explainers against feature perturbation on “Mutag” and “Muta-
genecity” datasets. We do not report results for CLEAR on Mutagenicity since it runs out of GPU
memory.

(a) Mutag

RCExplainer CF2 CLEAR

Noise% / Metric Sufficiency Size Jaccard Sufficiency Size Jaccard Sufficiency Size Jaccard

0 (no noise) 0.4 ± 0.12 1.10 ± 0.22 1.0 ± 0.0 0.90 ± 0.12 1.0 ± 0.0 1.0 ± 0.0 0.55 ± 0.1 17.15 ± 1.62 1.0 ± 0.0

10 1.0 ± 0.0 NA NA 0.6 ± 0.2 2.17 ± 0.31 0.19 ± 0.0 0.55 ± 0.1 16.35 ± 1.68 0.98 ± 0.01
20 0.75 ± 0.22 1.0 ± 0.0 NA 0.25 ± 0.16 1.95 ± 0.80 NA 0.55 ± 0.1 18.1 ± 1.94 0.55 ± 0.01
30 1.0 ± 0.0 NA NA 0.6 ± 0.3 1.0 ± 0.0 0.29 ± 0.0 0.55 ± 0.1 19.1 ± 2.91 0.57 ± 0.02
40 1.0 ± 0.0 NA NA 0.6 ± 0.2 2.8 ± 0.0 0.29 ± 0.0 0.55 ± 0.1 14.7 ± 1.78 0.58 ± 0.02
50 1.0 ± 0.0 NA NA 0.8 ± 0.1 1.5 ± 0.0 NA 0.55 ± 0.1 16.05 ± 2.48 0.54 ± 0.02

(b) Mutagenicity

RCEXplainer CF2

Noise% / Metric Sufficiency Size Jaccard Sufficiency Size Jaccard

0 (no noise) 0.4 ± 0.06 1.01 ± 0.19 1.0 ± 0.0 0.50 ± 0.05 2.78 ± 0.98 1.0 ± 0.0

10 0.43 ± 0.04 1.01 ± 0.19 0.96 ± 0.04 0.49 ± 0.04 2.11 ± 1.06 0.92 ± 0.06
20 0.47 ± 0.06 1.0 ± 0.0 0.95 ± 0.04 0.53 ± 0.06 1.73 ± 0.94 0.86 ± 0.08
30 0.50 ± 0.04 1.0 ± 0.0 0.94 ± 0.04 0.61 ± 0.04 1.68 ± 0.91 0.86 ± 0.09
40 0.52 ± 0.05 1.0 ± 0.0 0.93 ± 0.06 0.54 ± 0.05 1.47 ± 0.73 0.87 ± 0.09
50 0.49 ± 0.05 1.0 ± 0.0 0.93 ± 0.06 0.67 ± 0.01 1.54 ± 1.06 0.86 ± 0.08
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Figure K: Necessity of various factual explainers against the explanation size. The necessity increases
with the removal of the explanations.
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D NECESSITY: RESULTS FOR SEC. 4.3

For necessity, we remove explanations from graphs and measure the ratio of graphs for which the
GNN prediction on the residual graph is flipped. We expect that removing more explanations will
lead to more necessity; however, we do not necessarily expect necessity to be higher because our
factual explainers are not trained to make the residual graph counterfactual. Fig. K presents the
necessity performance on six datasets for all factual methods with varying explanation sizes from
1 to 10. The trend aligns with our expectations, as the removal of more explanations increases the
necessity. The value of necessity varies between datasets. Proteins and IMDB-B datasets have graphs
with larger sizes (in terms of the number of edges), which aligns with the small necessity score. On
the other hand, datasets with relatively smaller graphs have higher necessity scores. Note that our
factual methods do not optimize residual graphs to be counterfactuals; this might be another reason
for the low values.

E REPRODUCIBILITY: RESULTS FOR SEC. 4.3

Reproducibility can be measured two different ways. (1) Retraining using only explanation graphs
called Reproducibility+, (2) retraining using only residual graphs called Reproducibility−. Both
metrics is a ratio of an GNN accuracy compared to the original GNN accuracy. We provide the math
definitions in Table 3. In our figures, we separated SubgraphX to an independent table, because we
could only obtain explanations of test graphs for SubgraphX (refer to our disclaimer in Sec. A.4)
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Figure L: Reproducibility+ of factual explainers against size. Performance tends to rise with more
edges in the explanations; however, a small number of edges does not guarantee a performance of 1.0.

Size (#edges in the explanation)

Datasets 1 2 3 4 5 6 7 8 9 10

Mutagenicity 1.11± 0.02 1.07± 0.03 1.08± 0.02 1.05± 0.02 1.05± 0.02 1.05± 0.02 1.03± 0.02 1.01± 0.02 0.97± 0.02 1.02± 0.02
Mutag 0.86± 0.43 0.43± 0.53 0.76± 0.5 1.08± 0.0 0.11± 0.32 0.22± 0.43 1.08± 0.0 0.86± 0.43 0.97± 0.32 1.08± 0.0

IMDB-B 1.07± 0.16 1.1± 0.17 1.05± 0.15 1.08± 0.06 1.09± 0.08 1.07± 0.08 1.05± 0.06 1.06± 0.06 1.02± 0.05 1.05± 0.09
AIDS 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.01 1.0± 0.01 0.99± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.0
NCI1 1.05± 0.04 1.09± 0.03 1.09± 0.03 1.08± 0.02 1.09± 0.02 1.09± 0.02 1.07± 0.03 1.07± 0.03 1.05± 0.03 1.04± 0.04

Table T: Reproducibility+ in SubgraphX. Since we use small number of graphs for SubgraphX, the
variance of the results are very high, thus unreliable.
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Figure L and Table T illustrate the Reproducibility+ performance of seven factual methods against the
size of explanations for six datasets. Reproducibility increases with more edges in the explanations
for the most cases, as expected. However, reaching a score of 1.0 is challenging even when selecting
the most crucial edges. This suggests that explanations do not capture the full picture for GNN
predictions.

Figure M and Table U illustrate the Reproducibility− performance of seven factual methods against
the size of explanations for six datasets. Reproducibility remains high even when the most crucial
edges from the graphs are removed. This demonstrates that the explainers hardly capture the real
cause of the GNN predictions.
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Figure M: Reproducibility− of factual explainers against size. Even when the most crucial edges are
taken out, the performance still remains close to 1.0.

Size (#edges in the explanation)

Datasets 1 2 3 4 5 6 7 8 9 10

Mutagenicity 1.06± 0.03 1.01± 0.02 1.01± 0.02 1.01± 0.03 1.0± 0.03 1.0± 0.03 1.01± 0.03 0.99± 0.03 1.0± 0.03 0.99± 0.03
Mutag 1.08± 0.0 1.08± 0.0 0.97± 0.32 1.08± 0.0 0.97± 0.32 0.97± 0.32 1.08± 0.0 1.08± 0.0 1.08± 0.0 1.08± 0.0

IMDB-B 0.82± 0.28 0.96± 0.14 0.86± 0.27 0.85± 0.28 0.86± 0.28 0.82± 0.28 0.84± 0.27 0.85± 0.28 0.85± 0.28 0.86± 0.28
AIDS 1.0± 0.0 1.0± 0.01 1.0± 0.01 1.0± 0.0 1.0± 0.0 1.0± 0.01 0.99± 0.01 1.0± 0.01 1.0± 0.01 1.0± 0.01
NCI1 0.9± 0.06 0.91± 0.05 0.89± 0.07 0.93± 0.07 0.92± 0.07 0.92± 0.06 0.91± 0.05 0.9± 0.04 0.91± 0.05 0.92± 0.05

Table U: Reproducibility− in SubgraphX. Since we use small number of graphs for SubgraphX, the
variance of the results are very high, thus unreliable.

F VISUALIZATION OF EXPLANATIONS

In Figs. N and O, we engage in a visual analysis of the explanations provided by various GNN
explainers. The graphs presented in these figures represent mutagenic molecules sourced from the
Mutag dataset. Several insights emerge from this analysis.
Factual: The mutagenic attribute of the molecule in Fig. N stems from the presence of the NO2

group attached to the benzene ringYing et al. (2019b); Debnath et al. (1991). As a result, the optimal
explanation entails pinpointing this specific benzene ring in conjunction with the NO2 group. Notably,
we observe that while certain explainers identify fragments of this subgraph, with CF2 achieving the
highest overlap, many also highlight bonds originating from regions outside the authentic explanatory
context. Adding to the intrigue, the explanation offered by RCEXPLAINER stands out due to its
compactness, resulting in commendable statistical performance. However, this succinct explanation
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lacks meaning in the eyes of a domain expert. Consequently, a pressing need arises for real-world
datasets endowed with ground truth explanations, a resource that the current field unfortunately lacks.
Counterfactuals: Fig. O illustrates two molecules, with Molecule 1 (top row) being identical to
the one shown in Fig. N. The optimal explanation involves eliminating the NO2 component, a task
accomplished solely by CF2 in the case of Molecule 1. While the remaining explanation methods
can indeed alter the GNN prediction by implementing the changes described in Figure O, two critical
insights emerge. First, statistically, RCEXPLAINER is considered a better explanation than CF2 since
its size is 1 compared to 3 of CF2. However, our interaction with multiple chemists clearly indicated
their preference towards CF2 since eliminates the entire NO2 group. Second, chemically infeasible
explanations are common as evident from CLEAR for both molecules and CF2 in molecule 2. Both
fail to adhere to valency rules, a behavior also noted in Sec. 4.4.

Figure N: Visualization of factual explanations on a mutagenic molecule from the Mutag dataset. The
explanations contain the edges highlighted in red.

Figure O: Visualization of counterfactual explanations on Mutag dataset. Edge additions and deletions
are represented by green and red colors respectively.

G ADDITIONAL EXPERIMENTS ON SPARSITY METRIC

Counterfactual explainers: Sparsity is defined as the proportion of edges from the graph that is
retained in the counter-factual Yuan et al. (2022); a value close to 1 is desired. In node classification,
we compute this proportion for edges in the N ℓ

v , i.e., the ℓ-hop neighbourhood of the target node v.
We present the results on sparsity metric on node and graph classification tasks in Table V and W,
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respectively. For node classification, we see CF-GNNEXPLAINER continues to outperform (Table
V). The results are consistent with our earlier results in Table 6. Similarly, Table W shows that
RCExplainer continues to outperform in the case of graph classification (earlier results show a similar
trend in Table 5).

Factual explainers: For experiments with factual explainers, we report results of the necessity
metric on varying degrees of sparsity (Recall Fig. K). Note that size acts as a proxy for sparsity in this
case. This is because sparsity only involves the normalized size where it is normalized by the number
of total edges. So sparsity can be obtained by normalizing all perturbation sizes in the plots to get
the sparsity metric. For counterfactual explainers, we do not supply explanation size as a parameter.
Hence, computing the sparsity of the predicted counterfactual becomes relevant.

Table V: Results on sparsity of counterfactual explainers for node classification. CF-GNNExplainer
consistently produces the best results that are shown in gray.

Method/Dataset Tree-Cycles Tree-Grid BA-Shapes

CF-GNNEXPLAINER 0.93 ±0.02 0.95 ±0.03 0.99 ±0.00
CF2 0.52 ±0.14 0.58 ±0.14 0.99 ±0.00

Table W: Results on sparsity of counterfactual explainers for graph classification. Best results are
shown in gray. RCEXPLAINER consistently outperforms the other methods.

Method/Dataset Mutagenicity Mutag Proteins AIDS IMDB-B ogbg-molhiv

RCExplainer 0.96 ±0.00 0.94 ±0.01 0.94 ±0.02 0.91 ±0.00 0.98 ±0.00 0.96 +- 0.00
CF2 0.90 ±0.01 0.94 ±0.0 NA 0.99 ±0.01 0.89 ±0.04 0.62 ±0.05

CLEAR OOM 0.88 ±0.07 OOM 0.66 ±0.04 0.87 ±0.06 OOM

H TAGEXPLAINER VARIANTS

TAGExplainer has two stages. We define TAGExplainer (1) as when we apply only the first stage and
get explanations, whereas TAGExplainer (2) applies both stages. Figure P compares performance of
these two variants.

I FACTUAL EXPLAINERS ON OGBG-MOLHIV

Figure R demonstrates a new dataset OGBG-Molhiv for three factual explainers. On this dataset,
three factual methods are close to each other in terms of sufficiency performance.

J EXISTING BENCHMARKING STUDIES ON GNN EXPLAINABILITY

GraphFrameX Amara et al. (2022) and GraphXAI Agarwal et al. (2023) represent two notable
benchmarking studies. While both investigations have contributed valuable insights into GNN
explainers, certain unresolved investigative aspects persist.

• Inclusion of counterfactual explainability: GraphFrameX and GraphXAI have focused on factual
explainers for GNNs. Prado-Romero et al. (2023) has discussed methods and challenges, but
benchmarking on counterfactual explainers remains underexplored.

• Achieving Comprehensive coverage: Existing literature encompasses seven perturbation-based
factual explainers. However, GraphFrameX and GraphXAI collectively assess only GnnEx-
plainer Ying et al. (2019b), PGExplainer Luo et al. (2020), and SubgraphX Yuan et al. (2021).

• Empirical investigations: How susceptible are the explanations to topological noise, variations
in GNN architectures, or optimization stochasticity? Do the counterfactual explanations provided
align with the structural and functional integrity of the underlying domain? To what extent do
these explainers elucidate the GNN model as opposed to the underlying data? Are there standout
explainers that consistently outperform others in terms of performance? These are critical empirical
inquiries that necessitate attention.
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Figure P: Sufficiency of TAGExplainer variants against size. Applying the second stage does not help
much for TAGExplainer.
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though there is no clear winner method, GNNEXPLAINER and RCEXPLAINER appear among the
top performers in the majority of the datasets. We omit those methods for a dataset that throw an
out-of-memory (OOM) error and are not scalable.
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Figure R: Sufficiency of the factual explainers against the explanation size for ogbg-molhiv dataset.
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Figure S: Flowchart of our recommendations of explainers in different scenarios. Note that “F”, “CF”,
“NC”, “GC”, and “*” denote factual, counterfactual, node classification, graph classification, and
generalized tasks respectively.

K RECOMMENDATIONS IN PRACTICE

The choice of the explainer depends on various factors and we make the following recommendations.

• For counter-factual reasoning, we recommend RCExplainer for graph classification and
CF-GNNExplainer for node classification.

• For factual reasoning, if the goal is to do node or graph classification, we need to first decide if
we need an inductive reasoner or transductive. While an inductive reasoner is more suitable we
want to generalize to large volumes of unseen graphs, transductive is suitable for explaining single
instances. In case of inductive, we recommend RCExplainer, while for transductive GNNExplainer
stands out as the method of choice. These two algorithms had the highest sufficiency on average.
In addition, RCExplainer displayed stability in the face of noise injection.
– For different task generalization beyond node and graph classification, one can consider using

TAGExplainer.
– In high-stakes applications, we recommend RCExplainer due to consistent results across

different runs and robustness to noise.

• For both types of explainers, the transductive methods are slow. So, if the dataset is large, it is
always better to use an inductive explainer over transductive ones.

While the above is a guideline, we emphasize that there is no one-size-fits-all benchmark for selecting
the ideal explainer. The choice depends on the characteristics of the application in hand and/or the
dataset. The above flowchart takes these factors into account to streamline the decision process. We
have now added a flowchart to help the user in selecting the most appropriate. This recommendation
has now also been added as a flowchart (Fig. S).
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