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1. Introduction
Transfer learning technique is ubiquitously used

for computationally complicated tasks. Using a pre-
trained neural network trained on one training data
set, the information obtained during training is used
on a new data set [1].
In this case, the application of transfer learning

is possible if both data domains (the training and
the test data domain to which training is to be trans-
ferred) have common properties. This approach is
ideologically related to the definition of universality
classes in statistical physics - somemodels, different
from each other, have the same, universal proper-
ties, as a result of which they are united into classes.
In this work, we test the ability of neural networks

to reproduce universal properties of models from
the 2d Ising class. To do so, we train convolutional
neural networks on the task of classifying Ising sam-
ples (snapshots) into ferromagnetic and paramag-
netic phases, in the same way as in [2]. We then test
the pre-trained network on samples of other mod-
els, but from the same universality class. Our main
goal is to test how accurately we can estimate critical
quantities, such as the critical exponent of the corre-
lation length.

2. Methods
2.1 Models and data
We begin by training neural networks

on samples of the Ising model on a square
lattice with periodic boundary conditions:
HI(σ) = −J

∑L
x,y=1 σx,y(σx+1,y + σx,y+1). Val-

ues σx,y = ±1, so the data are black and white
images.
We check transferability of learning on

two other anisotropic models: HD(σ) =

−
∑L

x,y=1 σx,y(Jσx+1,y + Jσx,y+1 + Jdσx+1,y+1)
(diagonal anisotropy) and HO(σ) =

−
∑L

x,y=1 σx,y(Jhσx+1,y + Jvσx,y+1) (orthogonal
anisotropy). Coupling constants J ≡ 1; Jd, Jv, Jh
stands for diagonal/vertical/horizontal interactions,
respectively. Both HD and HO models are in the 2d
Ising universality class, but with different properties
along diagonal or horizontal/vertical directions
compared to the isotropicHI model.
We use the Metropolis algorithm [3] to generate

the data. Each snapshot is generated at a certain
temperature T from range Tc ± 0.3, where Tc is the
critical temperature at which the phase transition
between the ferromagnetic and paramagnetic phase

occurs. The values of the critical temperature are
known from the exact solution [4]. Depending on
whether T is greater or less than Tc, each snapshot
has a label 0 or 1.

2.2 Machine learning details
We apply convolutional neural network (CNN)

with following architecture: Conv2d (N64, K2x2, S1)
[5], MaxPool2d (2×2), ReLU, Linear (64×(L/2−1)×
(L/2−1), 64), ReLU, Linear (64, 1). We use the binary
cross entropy as the loss function, and Adam [6] as
optimization algorithm. All CNNs we train for only 1
epoch so as not to lose the physics of the problem [7].
At the output of the network there is one neuron pi,
giving the probability of the snapshot from the input
to belong to the paramagnetic phase.
Using notations from [1], we define DS =

{(xSi
, ySi

)} as source domain (training data set)
where xSi

is a snapshot of HI isotropic model, ySi

its label of phase, and fS(·) is the source predic-
tive function (CNN). Similarly, DT = {(xTi , yTi)}
is a target domain (testing data sets) where xTi are
snapshots of models HD or HO, with correspond-
ing labels yTi

. Marginal distribution of DS and DT

P (XS) ̸= P (XT ) due to anisotropy in target do-
main data. Transfer learning then formally defined
as fT (·) = fS(·) whenDS ̸= DT .

2.3 Estimated quantities
Each snapshot is characterised by the temper-

ature at which it was generated. There are N
snapshots at each point over the entire temper-
ature range. From the standard deviations of
the forecast distribution pi we construct a func-
tion of the second moments of the forecasts:

D(T ;L)=

√
1
N

N∑
i=1

(pi(T ;L))2−
(

1
N

N∑
i=1

pi(T ;L)

)2

.

For each linear sizeL, the functionD has the form
of a normal distribution with a peak in the vicinity
of the phase transition [8]. Knowing the width σ of
the distributionD, it is possible to extract the critical
exponent from the neural network predictions.
From the theory of critical phenomena, it is

known that correlation length ξ of the Ising model
in critical regime and in the thermodynamic limit
behaving like ξ ∝ (|T − Tc|/Tc)

−1/ν where ν = 1
is the critical exponent of correlation length. From
finite-size scaling hypothesis [8] σ(L) of distribution
D(T ;L) is scalable: σ(L) ∝ AL−1/ν . From this ex-
pression we construct estimates 1/ν∗ and compare
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them with the exact solution.

3. Results
The results obtained are graphically depicted on

theFig. 1 andFig. 2. On theplots, blue squares stands
for relative error |1/ν∗ − 1/ν|/1/ν, orange triangles
stands for relative error of the left half of the same
distributionD(T ;L) (due to the asymmetry of Gaus-
sians), and green stars stands the right half.

Fig. 1: Relative error of correlation length exponent
estimation 1/ν∗,HD model.

Fig. 1 shows results when training CNN on
isotropic data HI and testing on diagonally
anisotropic data HD. Similarly, Fig. 2 shows re-
sults when testing on orthogonally anisotropic data
HO. In both cases the growth of relative error is
noticeable when the ratio of coupling constants
decreases, i.e. the influence of anisotropic interac-
tions on the system increases. Numerically, regions
of strong anisotropy are Jd/J < −0.4 in HD case
and Jv/Jh < 1/2 inHO case.

Fig. 2: Relative error of correlation length exponent
estimation 1/ν∗,HO model.

4. Discussion
In this work, the problem of reproducibility of

universal properties of spin models by the method
of transfer learning was investigated. We set lim-
its of coupling constants where transfer learning re-
produce universal properties in accordance with the
theory.
One possible explanation for this effect is the

presence of oscillations of the correlation function
at strong diagonal anisotropy. The hypothesis about
the occurrence of such an effect requires further in-
vestigation.
Details of diagonal anisotropy can be found in [9].
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