
A Derivation of Optimization Objectives

For a policy π(a|s) and a dynamics model T (s′|s, a), its occupancy measure ρTπ : S ×A → R can be
defined as ρTπ (s, a) = π(s, a)

∑∞
i=0 γ

i Pr{si = s|π, T}, where S and A denote the state and action
space respectively, and Pr{si = s|π, T} is the probability of si = s under policy π and dynamics
model T (s′|s, a) at time-step i [1]. The occupancy measure can be interpreted as the distribution
of state-action pairs that an agent encounters when navigating the dynamics model T with policy
π [2]. The primitive objective of unsupervised domain adaptation (UDA) is to minimize the data
distribution in the source domain and the mapped data distribution from the target domain. From the
perspective of policy occupancy measure, it is to learn p(s|o) to minimize

D
[
ρT

t

πt (o, a) || ρT
s

πs (p (s | o) , a)
]
,∀o ∈ O,∀a ∈ A,

where πt and πs are the data-collecting policies in the target and source domain respectively, T t and
T s are the dynamics models in the target and source domain respectively, O is the state space in the
target domain (i.e., image observation space in our cross-modal UDA setting), and D is one of a
distribution distance measure (e.g., Kullback-Leibler (KL) Divergence).

Since the occupancy measure depends on T and π, the objective implies two assumptions, which
are also the assumptions in our formulations: intuitively, data-collecting policies in the two do-
mains are the same and transition models of the two domains are consistent. Formally, given
an oracle mapping function p∗(s|o), πt(a|o) = πs(a|p∗(s|o)),∀o ∈ O and p∗(s′|T t(o′|o, a)) =
T s(s′|p∗(s|o), a),∀o ∈ O,∀a ∈ A are satisfied. Based on the assumptions, the correct mapping
function minimizes D between the state-action distribution in the source domain and the mapped
state-action distribution from the target domain.

However, as shown in Fig. 1 (in the main body), a mapping function minimized D between the
distributions from the two domains cannot guarantee the mapping function is correct. In this work,
we model our objective of domain adaptation based on the decision-making processes of RL to
utilize more information inside the state-action distribution. Taking use of the variational inference
technique, the optimization objective in this setting can be formulated as:

min
φ

Eτo
[
DKL

[
qφ(τs | τo) || p(τs | τo)

]]
,

where τ denotes a trajectory, the superscripts s and o of τ indicate the trajectories are from the
source and target domains respectively, p(·) is the ground-truth distribution, qφ(·) is the mapping
function that we want to learn, and DKL computes the KL divergence. τo contains a trajectory of
observation-action pairs {(o1, a1), (o2, a2), ..., (oT , aT)}, and τs contains a trajectory of state-action
pairs {(s1, a1), (s2, a2), ..., (sT , aT)}.
To maximize the objective, we first transform it into the Evidence Lower BOund (ELBO):

DKL

[
qφ(τs | τo) || p(τs | τo)

]
=Eτ̂s∼qφ(τs|τo)

[
log

qφ(τ̂s | τo)
p(τ̂s | τo)

]
=Eτ̂s∼qφ(τs|τo)

[
log qφ(τ̂s | τo)− log

p(τ̂s, τo)

p(τo)

]
=Eτ̂s∼qφ(τs|τo)

[
log qφ(τ̂s | τo)− log p(τo, τ̂s)

]
+ log p(τo),

where τ̂s denotes the inference trajectories of qφ. The last term p(τo) is a constant with regard to
the parameter φ, thus can be ignored in the optimization process. The objective can be reduced to
minimizing

min
qφ

Eτo
[
Eτ̂s∼qφ(τs|τo)

[
log qφ(τ̂s | τo)− log p(τo, τ̂s)

]]
.

Since the sampled trajectories can be considered as an i.i.d., the first term of expectation can be
further re-written as:

Eτ̂s∼qφ(τs|τo)
[

log qφ(τ̂s | τo)− log p(τo, τ̂s)
]

=Eτ̂s∼qφ(τs|τo)
[

log
qφ(τ̂s | τo)

p(τo | τ̂s)p(τ̂s)

]
=− Eτ̂s∼qφ(τs|τo)

[
log p(τo | τ̂s)

]
+DKL

[
qφ(τs | τo) || p(τs)

]
.

1

Since p(τo | τ̂s) is unknown, we use pθ(τo | τ̂s), with parameter θ, as an approximation of the
generation process p(τo | τ̂s). The maximization objective of the variational inference problem
becomes:

max
φ,θ

Eτo
[
Eτ̂s∼qφ(τs|τo) [log pθ (τo | τ̂s)]−DKL [qφ (τs | τo) || p (τs)]

]
.

The first term maximizes the reconstruction probability, in order to enforce that the mapped state ŝ
can recover observation o. The second term enforces the alignment of the distributions of the mapped
trajectories qφ (τs | τo) and the ground-truth trajectories distribution p (τs) in the source domain.

Based on the generation process, we can decompose the first term involving trajectories to multiplica-
tion of terms involving states:

qφ(τs | τo) =

T∏
t=1

qφ(st | st−1, ot, at−1), ot, at−1 ∼ τo,

p(τo | τs) =

T∏
t=1

p(ot | ot−1, st, at−1), st, at−1 ∼ τs,

Eτo
[
Eτ̂s∼qφ(τs|τo)

[
log p(τo | τ̂s)

)]
=Eτo

[
Eτ̂s∼qφ(τs|τo)

[T∑
t=1

log p(ot | ŝt, at−1, ot−1)
]]

=Eτo
[T∑
t=1

(Eŝt∼qφ(ŝt|ŝt�1,at�1,ot)

[
log p(ot | ŝt, at−1, ot−1)

]]
.

The result of the decomposition is

max
φ,θ

Eτo∼Do
[T∑
t=1

Eŝt∼qφ(st|ŝt�1,at�1,ot)

[
log pθ(ot | ŝt, at−1, ot−1)

]
−DKL [qφ(τs | τo) || p(τs)]

]
,

(1)

where Do denotes the pre-collected dataset in the target domain, t is the timestep and T denotes
the horizon. ŝ0, a0 and o0 are initialized with 0. qφ(st | ŝt−1, at−1, ot) is an RNN which outputs
the mean and standard deviation of a Gaussian distribution. A direct computation of the DKL term
in Eq. (1) is intractable. Following the idea that the optimization process of GAN is equivalent
to minimizing a certain distance between two distributions [3], we use the optimization objective
of GAN as the alternative of minimizing DKL [qφ (τs | τo) || p (τs)]. A new discriminator Dω,
parameterized by ω, is introduced to maximize

LD(φ, ω) = Eτs∼Ds
[
Dω(τs)

]
+ Eτo∼Do,τ̂s∼qφ(τs|τo)

[
− exp(Dω(τ̂s)− 1)

]
.

The derivation of the objective is based the theorem in f-GAN [3]. Please refer to the Sec. 2 and Sec. 3
in the paper for more details. However, Dω is a neural network with a linear activation function,
which can become arbitrarily large. For implementation simplicity and training stability, we choose
to optimize the original objective of GAN, which is equivalent to minimizing the Jensen-Shannon
divergence. The optimization objective is

min
φ

max
ω

Eτs∼Ds
[

log (Dω(τs))
]

+ Eτo∼Do,τ̂s∼qφ(τs|τo)
[

log
(
1−Dω(τ̂s)

)]
, (2)

where Dω is a neural network with a sigmoid activation function. Similarly, we decompose Eq. (2)
into single-step formulation:

min
φ

max
ω
LD(ω, φ) = min

φ
max
ω

Eτs∼Ds
[T∑
t=1

logDω(st, at, ht−1)
]

+Eτo∼Do
[T∑
t=1

Eŝt∼qφ(st|ŝt�1,at�1,ot) log
(
1−Dω(ŝt, at, ht−1)

)]
,

(3)

2

where Ds denotes the dataset collected by the pre-trained policy in the source domain. Here Dω is
also implemented as an RNN, in which h denotes the hidden state in the RNN rollout. In particular,
the discriminator outputs a tuple (yt, ht) = Dω(st, at, ht−1), where yt is the probability of prediction
and ht is the next hidden state. We omit the output of h for brevity. The latter term is the practical
objective of the KL-divergence in Eq. (1) of the mapping function qφ.

Combining both the aforementioned reconstruction loss and generation loss together, the optimization
objective of the mapping function is:

max
φ,θ

Eτo∼Do
[T∑
t=1

Eŝt∼qφ(st|ŝt�1,at�1,ot)

[
log pθ(ot | ŝt, at−1, ot−1)

−λD log
(
1−Dω�(ŝt, at, ht−1)

)]]
,

s.t. ω∗ = arg max
ω

LD(ω, φ),

(4)

where λD is the hyperparameter for the weight controlling. The decoder pθ and the discriminator Dω

are fixed during the training process of the mapping function qφ. The loss function of the decoder pθ
is the first term in Eq. (4). Similarly, the mapping function qφ is fixed during the training process of
the decoder pθ and discriminator Dω. Instead of training ω to converge before training φ and θ, we
use a single-step gradient method [3] to train CODAS, as current GAN-based techniques do. The
details of training can be found in Alg. 1.

B A Simple Example of Incorrect Distribution Matching

2 0 2

2

0

2

(a) Source domain

1 0 1 2

1

0

1

2

(b) Target domain

Figure B.1: An example of failed distribution matching in GAN. Figures 1(a) and 1(b) are two Gaussian Mixture
Models (GMM). The four transparent circles in the left figure denote the source domain, while the small dots in
the right figure are samples of the target domain, both indicating a four-component GMM. The small dots in the
left figure are the mapped points of a GAN from the target domain, where the color indicates their corresponding
points in the target domain. The target domain is achieved by a linear transformation from the source domain, as
indicated by the x- and y-axis.

Figure B.1 shows an example of wrong mapping using GAN. A Wasserstein GAN is trained to
learn a mapping from the target domain to the source domain. A correct mapping from the target
domain to the source domain should map the sampled dots in the target domain to somewhere in
the transparent circle of the same color. Due to the nature of GANs, the mapping function only
minimizes a distribution distance measure (e.g., Jensen-Shannon divergence) on the distributions of
the two domains.

C Additional Related work

In RL, representation learning aims to transform high-dimensional observations into lower-
dimensional representations. It is widely accepted that learning policies from low-dimensional
states are more sample-efficient than learning from pixels, both empirically [4] and theoretically [5].

3

Recurrent neural network (RNN) is a common neural network structure to learn state representations.
Early work on deep RL from images [6] uses a two-step learning process to learn a lower-dimensional
state representation. In particular, an auto-encoder is �rst trained to learn a low-dimensional repre-
sentation. Subsequently, a policy or model is learned based on this representation. Later work on
model-based RL improves representation learning by jointly training the encoder and the dynamics
model end-to-end [7], which is effective in learning useful task-oriented representations.

A recent model-based learning method PlaNet [8] learns state embeddings using variational inference,
which maps sequential image inputs to a subspace in a low-dimensional vector space to learn a
dynamics model more ef�ciently.

In this work, we also consider the RNN structure for state representation learning and use variational
inference for objective modeling. The key difference between our work and previous works comes
from the setting of the problem, thus the derived objectives are also different. In previous works,
representation learning is used to learn an arbitrary low-dimensional vector representation which is
more sample-ef�cient for downstream training. In our setting, the target representation is pre-de�ned.
A mapping function is trained to minimize the distance between the distributions of the mapped states
and the corresponding representation in the simulator.

D Detailed Implementations of CODAS

D.1 Detailed training procedure

The overall computation �ow of CODAS at timestept is illustrated in Fig. D.1. At each timestept,
the visual encoder embedsot into et �rstly. The mapping function takesat � 1, et , ŝt � 1 andhs

t � 1 as
input, wherehs

t � 1 andŝt � 1 are the hidden state and the mapped state of the recurrent network at the
previous timestep respectively, and outputsŝt and the current hidden statehs

t . In the visual decoder,
instead of takinĝst andot � 1 as input, it receiveŝst andet � 1 to avoid duplicate computation. Then,
it outputs the reconstructed imageôt . Similarly, at each timestept, the discriminator receives mapped
stateŝst (or source domain statesst that are not shown in Fig. D.1), actionat , and hidden stateshd

t � 1
and outputs a label̂yt to decide where the states come from.

The pseudo-code of the training procedure is provided in Alg. 1.

Figure D.1: Illustration of full network structure at timestept. Blue parts denote mapping functionq� ; the
yellow part denotes reconstruction functionp� ; the orange part denotes the discriminatorD ! ; the green part
denotes the pre-trained policy that is �xed during the entire training process.

4

Algorithm 1 Training Procedure of CODAS

Require: A simulator with oracle dynamicsp(s0 j s; a); a policy� (a j s) pre-trained in the source
domain; pre-collected datasetsDo = f � o

1 ; � o
2 ; :::g andDs = f � s

1 ; � s
2 ; :::g in the target domain

and the source domain respectively; the number of iterationsN ; the number of the discriminator
updatesI D ; the number of the deterministic dynamics model updatesI DYN ; the number of
the mapping function updatesI M ; the number of the reconstruction decoder updatesI R ; the
frequency of the deterministic dynamics model copied to embedded-DMFDYN .

1: Initialize a mapping functionq� (ŝt j ot ; at � 1; ŝt � 1), a deterministic dynamics modelp' (s; a) a
discriminatorD ! (st ; at ; ht � 1) and a decoderp� (ôt j ŝt ; at � 1; ot � 1).

2: for n = 1 to N do
3: Sample a batch of trajectoriesf � o

1 ; � o
2 ; :::� o

k g from Do in the target domain.
4: For each� o

i , infer the state trajectories((ŝ1; a1); :::; (ŝT ; aT)) usingq� to construct the trajec-
tory �̂ s

i .
5: for i = 1 to I D do
6: Update the discriminatorD ! by Eq. (3).
7: end for
8: for i = 1 to I R do
9: Update the decoderp� by Eq. (4) with �xed � .

10: end for
11: Compute the next states for each state-action pair in� s

i to construct the datasetD ŝ =
f (ŝ; � (ajŝ); p(ŝ; � (ajŝ))g

12: for i = 1 to I DYN do
13: Update the deterministic dynamics modelp' by Eq. (8).
14: end for
15: if n mod FDYN == 0 then
16: Copy the weight ofp' into the embeded-DM structure inp� .
17: end if
18: for i = 1 to I M do
19: Update the mapping functionp� by Eq. (4) with �xed � and the embeded-DM structure.
20: end for
21: end for

D.2 Implementation Details

In this section, we give several important implementation details in CODAS. All details can be found
in our open-source code that will be released after the �nal decision of this paper.

Deterministic dynamics model training details For each task, 5000 additional trajectories are
collected in the source domain (i.e., simulator) to train the deterministic dynamics model. In the tasks
of the MuJoCo environment, the collected trajectories are sampled uniformly in the training process.
In the tasks of the Robot Hand Manipulation environment, trajectories are sampled by the pre-trained
policies1. Additional noise is gradually added to the output actions. In particular, the noise is sampled
from U(� �; �), where� is increased from0 to 0:5 in the process of data collection. We named the
datasetDs0

.

We �rst pre-train the deterministic dynamics model through the datasetDs0
. In the main loop of

CODAS, when training the deterministic dynamics model, instead of sampling tuples fromDs [D ŝ,
we sample tuples fromDs0

[D ŝ.

Trajectory truncation for discriminator The trajectory information empowers the discriminator
with greater capability to discriminate the inputs from the two domains. Without enough data
collected, which might happen in the target domain, the dataset can not capture enough information
about the data distribution. The discriminator tends to over�t some unimportant details of the
trajectories, which makes the training of the mapping function unstable. In our implementation, the
hidden state of the trajectory-input discriminator is periodically reset to alleviate the problem, that is,
hd is periodically reset to zeros. Here we introduce a hyperparameterH reset to denote the period.

1https://github.com/aravindr93/hand_dapg

5

Empirically,H reset is set to 10% to 20% of the horizon for each task. The detailed setting can be
found in Tab. 1.

Soft value clipping on �s and ŝ Large errors on state prediction including�s andŝ also affect the
stability of the training of the mapping function. In our implementation of CODAS and the baseline
algorithms, for each output of�s andŝ, we clip it into a range of[smin � � ; smax + �] , wheresmin

andsmax are the minimal and maximal values inDs0
and� = � (smax � smin) with � = 0 :05 in all

of the tasks. The clip operation would also stop the gradient when training. Therefore, we use a soft
clip operation in our implementation. In particular, given a states, the soft clip is:

s smin � � + softplus((smax + � � softplus(smax + � � s)) � smin � �) ;

wheresoftplus(x) = log(1 + ex). For each output of�s andŝ in the training and deploying process,
the soft clip operation will be followed.

State Normalization The value range of states in the tasks varies. For example, some dimensions
have a range larger than 100, while others have a range smaller than 1. The varied range of state
space makes the training of the mapping function unstable. For CODAS and the compared baseline
algorithms, we normalize the states with the mean and the standard deviation computed fromDs0

.

D.3 Hyperparameters

The detailed network structure and hyperparameters are listed in Tab. 1.

Table 1: Hyperparameters for CODAS

Type Name Value (MuJoCo) Value (Robot)

General

I D 1
I DYN 5
FDYN 1
I R 1
I M 5

Dynamics Model

Hidden layers [512, 512, 512]
Activation function tanh
Learning rate 1 � 10� 4

Minibatch size 1024

Discriminator

Hidden layers
[256, 256, 256,

256, 256]
[2048, 256, 256,

256, 256]
Activation function tanh
Learning rate 5 � 10� 5

RNN type GRU
RNN layers [128]
H reset 100 20

Mapping Function

Encoder

Conv layers
Conv (4, 4, 32), Conv (4, 4, 64),

Conv (4, 4, 128), Conv (4, 4, 256)
MLP hidden layers [256, 256, 256, 256, 256]
Activation function leaky relu

RNN Cell
RNN type GRU
RNN layers [128, 128]
� 1.0

6

	Derivation of Optimization Objectives
	A Simple Example of Incorrect Distribution Matching
	Additional Related work
	Detailed Implementations of CODAS
	Detailed training procedure
	Implementation Details
	Hyperparameters

	Experimental Setting
	Implementation Details of Dynamics Mismatch and Policy Mismatch
	Implementation Details of Dynamics Mismatch
	Implementation Details of Policy Mismatch

	Extra Experimental Results
	Performance of the sub-optimal policies trained with RL in the two domains
	Training Curves of the Discriminator
	Training Curves of Behavior Cloning
	Robustness to the Initial State Distribution Mismatching
	Robustness to the Datasize
	Extended Results in Robot Hand Manipulation Tasks
	Computational Resources

	Further Discussion about cross-modal unsupervised domain adaptation

