A Derivation of Optimization Objectives

For a policy 7(a|s) and a dynamics model T'(s'|s, a), its occupancy measure p : S x A — R can be
defined as pI (s,a) = m(s,a) >0 v Pr{s; = s|m, T}, where S and A denote the state and action
space respectively, and Pr{s; = s|m, T’} is the probability of s; = s under policy 7 and dynamics
model T'(s'|s, a) at time-step 4 [1]. The occupancy measure can be interpreted as the distribution
of state-action pairs that an agent encounters when navigating the dynamics model 7" with policy
7 [2]. The primitive objective of unsupervised domain adaptation (UDA) is to minimize the data
distribution in the source domain and the mapped data distribution from the target domain. From the
perspective of policy occupancy measure, it is to learn p(s|o) to minimize
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where 7 and 7° are the data-collecting policies in the target and source domain respectively, 7" and
T# are the dynamics models in the target and source domain respectively, O is the state space in the
target domain (i.e., image observation space in our cross-modal UDA setting), and D is one of a
distribution distance measure (e.g., Kullback-Leibler (KL) Divergence).

Since the occupancy measure depends on 7" and m, the objective implies two assumptions, which
are also the assumptions in our formulations: intuitively, data-collecting policies in the two do-
mains are the same and transition models of the two domains are consistent. Formally, given
an oracle mapping function p*(s|o), 7t(alo) = 7*(alp*(s|o)), Vo € O and p*(s'|T(0|0,a)) =
T5(s'|p*(s]o),a),Yo € O,Va € A are satisfied. Based on the assumptions, the correct mapping
function minimizes D between the state-action distribution in the source domain and the mapped
state-action distribution from the target domain.

However, as shown in Fig. 1 (in the main body), a mapping function minimized D between the
distributions from the two domains cannot guarantee the mapping function is correct. In this work,
we model our objective of domain adaptation based on the decision-making processes of RL to
utilize more information inside the state-action distribution. Taking use of the variational inference
technique, the optimization objective in this setting can be formulated as:

minEys [Dice [as(7* | 7°) || 7" | 7)]].

where 7 denotes a trajectory, the superscripts s and o of 7 indicate the trajectories are from the
source and target domains respectively, p(-) is the ground-truth distribution, g4(-) is the mapping
function that we want to learn, and Dk, computes the KL divergence. 7° contains a trajectory of
observation-action pairs { (01, a1), (02,a2), ..., (or,ar)}, and 7° contains a trajectory of state-action
pairs {(Sl, al), (SQ, ag), vy (ST7 CLT)}.

To maximize the objective, we first transform it into the Evidence Lower BOund (ELBO):

Dk [gg(7° | 7°) || p(7° | 7°)]

_ (7" [ T°)
7E7“_5Nq¢(7-3|7—o) {log p(f's | TO) ]

s (o p(7*,7°)
:E":SN‘N)(TS'TO) |:10g q¢(7— | T ) — log p(T}

=Ess gy (re|ro) [log ge(7° | %) — logp(T",f's)} + logp(79),

where 7° denotes the inference trajectories of g,. The last term p(7°) is a constant with regard to
the parameter ¢, thus can be ignored in the optimization process. The objective can be reduced to
minimizing
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Since the sampled trajectories can be considered as an i.i.d., the first term of expectation can be
further re-written as:
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Since p(7° | 7°) is unknown, we use py(7° | 7%), with parameter 6, as an approximation of the
generation process p(7° | 7°). The maximization objective of the variational inference problem
becomes:

mex Bro |Ersn gy rejro) log o (7 | #9)] = Diclgo (7 | 7°) | p ()] |-
The first term maximizes the reconstruction probability, in order to enforce that the mapped state §
can recover observation o. The second term enforces the alignment of the distributions of the mapped
trajectories g4 (7° | 7°) and the ground-truth trajectories distribution p (7%) in the source domain.

Based on the generation process, we can decompose the first term involving trajectories to multiplica-
tion of terms involving states:
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The result of the decomposition is
T
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where D° denotes the pre-collected dataset in the target domain, ¢ is the timestep and T" denotes
the horizon. 3¢, ag and og are initialized with 0. g (s; | §t—1, at—1, 0¢) is an RNN which outputs
the mean and standard deviation of a Gaussian distribution. A direct computation of the Dkr, term
in Eq. (1) is intractable. Following the idea that the optimization process of GAN is equivalent
to minimizing a certain distance between two distributions [3], we use the optimization objective
of GAN as the alternative of minimizing Dxr, [g (7° | 7°) || p (7%)]. A new discriminator D,,,
parameterized by w, is introduced to maximize

(6,w) = Ererups [DM(TS)} + Eyonpo emgy (r¢]rey | — exp(Dy(77) — 1)]

The derivation of the objective is based the theorem in f-GAN [3]. Please refer to the Sec. 2 and Sec. 3
in the paper for more details. However, D,, is a neural network with a linear activation function,
which can become arbitrarily large. For implementation simplicity and training stability, we choose
to optimize the original objective of GAN, which is equivalent to minimizing the Jensen-Shannon
divergence. The optimization objective is
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where D, is a neural network with a sigmoid activation function. Similarly, we decompose Eq. (2)
into single-step formulation:
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where D? denotes the dataset collected by the pre-trained policy in the source domain. Here D, is
also implemented as an RNN, in which h denotes the hidden state in the RNN rollout. In particular,
the discriminator outputs a tuple (y;, ht) = D,,(S¢, at, ht—1), where y; is the probability of prediction
and h; is the next hidden state. We omit the output of h for brevity. The latter term is the practical
objective of the KL-divergence in Eq. (1) of the mapping function g.

Combining both the aforementioned reconstruction loss and generation loss together, the optimization
objective of the mapping function is:
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s.t. w* = argmax Lp(w, ¢),

where A p is the hyperparameter for the weight controlling. The decoder py and the discriminator D,
are fixed during the training process of the mapping function ¢4. The loss function of the decoder py
is the first term in Eq. (4). Similarly, the mapping function g is fixed during the training process of
the decoder py and discriminator D,,. Instead of training w to converge before training ¢ and 6, we
use a single-step gradient method [3] to train CODAS, as current GAN-based techniques do. The
details of training can be found in Alg. 1.

B A Simple Example of Incorrect Distribution Matching
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Figure B.1: An example of failed distribution matching in GAN. Figures 1(a) and 1(b) are two Gaussian Mixture
Models (GMM). The four transparent circles in the left figure denote the source domain, while the small dots in
the right figure are samples of the target domain, both indicating a four-component GMM. The small dots in the
left figure are the mapped points of a GAN from the target domain, where the color indicates their corresponding
points in the target domain. The target domain is achieved by a linear transformation from the source domain, as
indicated by the x- and y-axis.

Figure B.1 shows an example of wrong mapping using GAN. A Wasserstein GAN is trained to
learn a mapping from the target domain to the source domain. A correct mapping from the target
domain to the source domain should map the sampled dots in the target domain to somewhere in
the transparent circle of the same color. Due to the nature of GANs, the mapping function only
minimizes a distribution distance measure (e.g., Jensen-Shannon divergence) on the distributions of
the two domains.

C Additional Related work

In RL, representation learning aims to transform high-dimensional observations into lower-
dimensional representations. It is widely accepted that learning policies from low-dimensional
states are more sample-efficient than learning from pixels, both empirically [4] and theoretically [5].



Recurrent neural network (RNN) is a common neural network structure to learn state representations.
Early work on deep RL from images [6] uses a two-step learning process to learn a lower-dimensional
state representation. In particular, an auto-encoder is first trained to learn a low-dimensional repre-
sentation. Subsequently, a policy or model is learned based on this representation. Later work on
model-based RL improves representation learning by jointly training the encoder and the dynamics
model end-to-end [7], which is effective in learning useful task-oriented representations.

A recent model-based learning method PlaNet [8] learns state embeddings using variational inference,
which maps sequential image inputs to a subspace in a low-dimensional vector space to learn a
dynamics model more efficiently.

In this work, we also consider the RNN structure for state representation learning and use variational
inference for objective modeling. The key difference between our work and previous works comes
from the setting of the problem, thus the derived objectives are also different. In previous works,
representation learning is used to learn an arbitrary low-dimensional vector representation which is
more sample-efficient for downstream training. In our setting, the target representation is pre-defined.
A mapping function is trained to minimize the distance between the distributions of the mapped states
and the corresponding representation in the simulator.

D Detailed Implementations of CODAS

D.1 Detailed training procedure

The overall computation flow of CODAS at timestep ¢ is illustrated in Fig. D.1. At each timestep ¢,
the visual encoder embeds o, into e; firstly. The mapping function takes a;_1, e¢, §;—1 and hj_; as
input, where h;_; and §,_ are the hidden state and the mapped state of the recurrent network at the
previous timestep respectively, and outputs §; and the current hidden state 4. In the visual decoder,
instead of taking §; and 0,1 as input, it receives $; and e;_; to avoid duplicate computation. Then,
it outputs the reconstructed image o;. Similarly, at each timestep ¢, the discriminator receives mapped
states S; (or source domain states s; that are not shown in Fig. D.1), action a;, and hidden states hf;l
and outputs a label 3, to decide where the states come from.

The pseudo-code of the training procedure is provided in Alg. 1.
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Figure D.1: Illustration of full network structure at timestep ¢. Blue parts denote mapping function gg; the
yellow part denotes reconstruction function pg; the orange part denotes the discriminator D,,; the green part
denotes the pre-trained policy that is fixed during the entire training process.



Algorithm 1 Training Procedure of CODAS

Require: A simulator with oracle dynamics p(s’ | s,a); a policy 7(a | s) pre-trained in the source
domain; pre-collected datasets D° = {70, 75,...} and D* = {75, 75, ...} in the target domain
and the source domain respectively; the number of iterations /V; the number of the discriminator
updates Ip; the number of the deterministic dynamics model updates Ipyy; the number of
the mapping function updates Ir; the number of the reconstruction decoder updates Ig; the
frequency of the deterministic dynamics model copied to embedded-DM Fpyn-

1: Initialize a mapping function g4(8; | 04, @t—1, §:—1), a deterministic dynamics model p, (s, a) a
discriminator D, (s¢, at, hi—1) and a decoder py(6; | §¢, az—1,0¢—1).
2: forn =1to N do

3:  Sample a batch of trajectories {77, 75, ...7¢} from D? in the target domain.
4. For each 77, infer the state trajectories ((51,a1), ..., (87, ar)) using g, to construct the trajec-
tory 7;.
5: fori=1toIpdo
6: Update the discriminator D,, by Eq. (3).
7:  end for
8: fori=1tolIg do
9: Update the decoder py by Eq. (4) with fixed ¢.
10:  end for
11:  Compute the next states for each state-action pair in 77 to construct the dataset D% =

{(8,7(al8), p(5,7(al8))}

12: for i = 1 to Ipyn do

13: Update the deterministic dynamics model p,, by Eq. (8).

14:  end for

15: if n mod FDYN == 0 then

16: Copy the weight of p,, into the embeded-DM structure in p.

17:  endif

18: fori=1to Iy do

19: Update the mapping function p, by Eq. (4) with fixed 6 and the embeded-DM structure.
20:  end for

21: end for

D.2 Implementation Details

In this section, we give several important implementation details in CODAS. All details can be found
in our open-source code that will be released after the final decision of this paper.

Deterministic dynamics model training details For each task, 5000 additional trajectories are
collected in the source domain (i.e., simulator) to train the deterministic dynamics model. In the tasks
of the MuJoCo environment, the collected trajectories are sampled uniformly in the training process.
In the tasks of the Robot Hand Manipulation environment, trajectories are sampled by the pre-trained
policies'. Additional noise is gradually added to the output actions. In particular, the noise is sampled
from U(—e, €), where ¢ is increased from 0 to 0.5 in the process of data collection. We named the

dataset D*'.

We first pre-train the deterministic dynamics model through the dataset D% . In the main loop of
CODAS, when training the deterministic dynamics model, instead of sampling tuples from D* U D?,

we sample tuples from D" U D*,

Trajectory truncation for discriminator The trajectory information empowers the discriminator
with greater capability to discriminate the inputs from the two domains. Without enough data
collected, which might happen in the target domain, the dataset can not capture enough information
about the data distribution. The discriminator tends to overfit some unimportant details of the
trajectories, which makes the training of the mapping function unstable. In our implementation, the
hidden state of the trajectory-input discriminator is periodically reset to alleviate the problem, that is,
h¢ is periodically reset to zeros. Here we introduce a hyperparameter H,. to denote the period.

"https://github.com/aravindr93/hand_dapg
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Empirically, H,cset, 1S set to 10% to 20% of the horizon for each task. The detailed setting can be
found in Tab. 1.

Soft value clipping on s and § Large errors on state prediction including 5 and § also affect the
stability of the training of the mapping function. In our implementation of CODAS and the baseline
algorithms, for each output of 5 and 3, we clip it into a range of [Syin — A, Smax + A, where Smin

and Spax are the minimal and maximal values in D% and A = B(Smax — Smin) With 8 = 0.05 in all
of the tasks. The clip operation would also stop the gradient when training. Therefore, we use a soft
clip operation in our implementation. In particular, given a state s, the soft clip is:

$ = Smin — A + softplus((Smax + A — softplus(Smax + A — 8)) — Smin — A),

where softplus(z) = log(1 + ). For each output of § and § in the training and deploying process,
the soft clip operation will be followed.

State Normalization The value range of states in the tasks varies. For example, some dimensions
have a range larger than 100, while others have a range smaller than 1. The varied range of state
space makes the training of the mapping function unstable. For CODAS and the compared baseline

algorithms, we normalize the states with the mean and the standard deviation computed from DY

D.3 Hyperparameters

The detailed network structure and hyperparameters are listed in Tab. 1.

Table 1: Hyperparameters for CODAS

Type | Name | Value (MuJoCo)  Value (Robot)
Ip 1
Ipyn 5
General Fpyn 1
Ir 1
Iv 5
Hidden layers [512, 512, 512]
. Activation function tanh
Dynamics Model Learning rate 1x 1074
Minibatch size 1024
. [256, 256, 256, [2048, 256, 256,
Hidden layers 256, 256] 256, 256]
Discriminator Activation function tanh
1serim Learning rate 5x107°
RNN type GRU
RNN layers [128]
H reset 100 20
Encoder
C | Conv (4, 4, 32), Conv (4, 4, 64),
onv layers Conv (4, 4, 128), Conv (4, 4, 256)
MLP hidden layers [256, 256, 256, 256, 256]
Mapping Function | Activation function leaky relu
RNN Cell
RNN type GRU
RNN layers [128, 128]
o 1.0




Table 1: Hyperparameters for CODAS (continued)

Type | Name | Value (MuJoCo)  Value (Robot)
Visual Decoder
Hidden layers [256, 256, 1024]
Decony layers Deconv (4, 4, 128), Deconv (4, 4, 64),
Mapping Function Deconv (4, 4, 32)
Train
AD 20
Learning rate 1x 1074 5x107°
Trajectories per iteration 10 20

E Experimental Setting

(a) Inverted Pendulum (b) Inverted Double Pendulum (c) Half Cheetah

o D

Figure E.2: Examples of rendered images of Robot Hand Manipulation environments

CODAS and baseline algorithms are evaluated in six tasks of the MuJoCo environment [9], including
InvertedPendulum, InvertedDoublePendulum, HalfCheetah, Hopper, FixedSwimmer, and Walker2d.
We also evaluate our method in four tasks of the Robot Hand Manipulation environment [10], includ-
ing hammer, door, relocate, and pen. The illustration of these tasks can be found in Figs. E.1 and E.2.



We treat the simulated observations as low dimensional simulation states s and rendered images as
real images. The dimension of state and action for each task is listed in Tab. 2.

In HalfCheetah, Hopper, FixedSwimmer, and Walker2d, images are collected by “track camera”.
In InvertedPendulum and InvertedDoublePendulum, images are collected by “default camera”. All
images are resized to [64, 64, 3] without any further pre-processing techniques in all tasks. Examples
of rendered images are shown in Fig. E.1. In Robot Hand Manipulation tasks, the original states used
cannot fully reset the simulator. Thus we modify the state space to a “full-state space”, which can
fully simulate the next state from any given state. This full-state space is regarded as the state space
of the source domain. The mapping function is trained to map the images from the target domain
to the full-state space. The images are also rendered via the full states. However, the pre-trained
DAPG policies take original states as inputs. For policy deployment, we first map an image from the
target domain to a full state, then recover an original state from the mapped full state through the
simulator. the recovered state is fed into the pre-trained policy to output an action. The source code
of the modified environments will be released along with the source code of CODAS.

Policies are trained via PPO [11] and DAPG [12] for the MuJoCo environment and the Robot Hand
Manipulation environment respectively. The policies are regarded as the pre-trained policies in
the source domain. For each task, we use the same policy to collect trajectories in the simulator
and render the corresponding images for each state. The collected image dataset is regarded as the
pre-collected dataset in the target domain. The image dataset contains 600 episodes. In the MuJoCo
environment, each episode is truncated to a maximum length of 500 for better computation efficiency.
In the Robot Hand Manipulation environment, we keep the original maximum length (i.e., 100 in the
pen task and 200 in other tasks). The evaluations of all methods are done based on this truncated
dataset.

Table 2: Dimension of state and action for each task

Task Name | State Dimension | Action Dimension

Hopper 11 3
Walker2d 17 6
HalfCheetah 17 6
Swimmer 9 2
InvertedPendulum 4 1
InvertedDouble 11 1
pen 45 24
hammer 46 26
relocate 39 30
door 39 28

E.1 Implementation Details of Dynamics Mismatch and Policy Mismatch
E.1.1 Implementation Details of Dynamics Mismatch

To create dynamics mismatches between the target domain and the source domain, we modify the
friction setting in the environment configuration of the Hopper task. Specifically, the friction in the
source domain is set to 1.2/1/6/2.0 times the friction in the target domain when creating a dynamics
model. When training the mapping function, we regard the simulator with modified friction as the
source domain dynamics model and keep the simulator with default friction as the target-domain
dynamics model.

E.1.2 Implementation Details of Policy Mismatch

In the main body, the policy mismatch is quantified by the performance degradation. In fact, the
policy mismatch is created via adding noise to the action taken by the data-collecting policy in the
target domain. When collecting a dataset in the target domain, for each timestep, we feed the data-
collecting policy with the observed state, then the noise ¢, is sampled from a Gaussian distribution
€a ~ N (0,0) and added to the action taken by the policy. The noisy action is finally taken by the
agent to interact with the environment. Such noisy actions lead to performance degradation of the



policy. The 77% and 46% relative performances correspond to Gaussian distributions of ¢ = 0.4 and
0.8, respectively.

F Extra Experimental Results

F.1 Performance of the sub-optimal policies trained with RL in the two domains

Table 3 shows the mean value and standard deviation of the un-discounted cumulative return of
100 trajectories collected by the optimal policy trained on states using PPO. The maximum episode
length is set to 1000. Full training curves of policies trained on state space are provided in Fig. F.1.
The performance of policies trained on state space matches the public benchmark results. > For the
MuJoCo environment, policies are trained for 1000000 timesteps using the PPO2 implementation
from stable_baselines®. For each iteration, 2048 transitions are sampled from the environment, and
the policy is updated for 32 epochs with a mini batchsize of 32.

Figure F.1 also provides training curves of the policy trained on images. We modify the network
structure of the actor and critic to adapt PPO to image input. In all tasks, the policies perform poorly.
The final performance of image input is calculated at 3.0 x 10° timestep, when the value loss has
converged. As far as we know, there is no public performance benchmark of the optimal policy
trained on MuJoCo images.

In this work, we argue that using RL methods to train a policy with an image-based simulator is
usually harder [4] than with a state-based simulator. The results show that the performances of
policies with image input are consistently worse than those with state input. The results demonstrate
that the setting of cross-modal domain adaptation is more cost-efficient from the policy training
perspective.

Table 3: Performance of the optimal policy on state space

Tasks \ Return
Hopper 2097 £ 411
Swimmer 325 + 5
Walker2d 3669 + 587
InvertedPendulum | 775.5 &+ 319
HalfCheetah 1580 + 35

InvertedDouble 5201 + 1029

As shown in [12], traditional RL algorithms struggle to solve the Robot Hand Manipulation environ-
ments directly. We use the policies trained with DAPG [12] as the pre-trained policies. The results of
DAPG policies in the four Robot Hand Manipulation tasks can be found in Tab. 4.

Table 4: Performance of DAPG in Robot Hand Manipulation environment
Task |  Return

hammer-v0 | 8381 £+ 7471
pen-v0 3275 £ 1763
door-v0 2916 + 431

relocate-vQ | 4356 £ 759

F.2 Training Curves of the Discriminator

For all of the baseline algorithms, we use the same hyperparameters (can be found in Tab. 1) for the
discriminator training. At the end of each epoch, we evaluated the averaged predicted probabilities to
the mapped states. For each input, the higher probability means the discriminator regards the input as
a real sample with a higher probability. We give the predicted results of the discriminator in Fig. F.2.

Zhttps://spinningup.openai.com/en/latest/spinningup/bench.html
3https://stable-baselines.readthedocs.io/en/master/
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Figure F.1: Training curves of policy on state-space and image-space environments.
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As can be found in Fig. F.2, all of the discriminators are converged to near 0.5. Since the discrimina-
tors are trained with the same hyperparameters, the results indicate that all the mapping functions
have mapped the image data distribution to a state distribution which is indistinguishable for the dis-
criminator to the real state distribution sampled from the simulator. However, the correct distribution
matching is not equivalent to the correct image-to-state mapping. Therefore, these methods only
considering the distribution mapping is easy to fail to find a correct mapping, while CODAS finds
a mapping function with both smaller and more stable RMSE error and has better deployed-policy

performance.
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F.3 Training Curves of Behavior Cloning

Behavior cloning is simply training the policy network via supervised training. The policy is trained
for 200000 iterations, in which a batch of 128 image-action pairs are uniformly sampled from the
dataset for each iteration. The dataset is the same as the one used to train CODAS. An adam optimizer
with a learning rate being le — 5 is used to update the policy network with hidden sizes being [256,
256, 128]. The loss is defined as the mean squared error between the actions taken by the policy
network and the policy. The training curves of behavior cloning (BC) are shown in Fig. F.3. The
results show BC performs well in HalfCheetah, but is unstable in the other tasks. This indicates that
the dataset is not large enough to learn a correct mapping from images to actions directly.

0- . 000 -0
0 400 a0 1200 1600 2000 o 400 1600 2000 0 400 800 1200 1600 2000
iteration

0 800 1200
iteration iteration

(a) Inverted Pendulum (b) Inverted Double Pendulum (c) HalfCheetah

retun

L -0 000
o 400 800 1200 1600 2000 o 400 a0 1200 1600 2000 0 400 1600 2000
iteration

iteration

800 1200
iteration

(d) Hopper (e) Swimmer (f) Walker2d

Figure F.3: Training curves of behavior cloning.

F.4 Robustness to the Initial State Distribution Mismatching
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Figure F.4: Illustration of the performance in Hopper task when the initial state distributions are mismatched.
In Hopper tasks, the initial state is generated by a constant state with additional perturbations from a
uniform distribution U (—«, «v), where o = 0.005 in the original tasks.

We further test the robustness (without oracle) to the initial state distribution mismatching by setting
the initial inferred state to zero and increasing in the source domain.

As can be seen in Fig. F.4, the performance of CODAS remains unchanged when « is doubled to
0.01. When « is increased to 0.1, CODAS can still reach a reward ratio of around 0.6, which is 82%
of the original performance. The results prove that, without an oracle initial state mapping, CODAS
is still robust to a stochastic initial state distribution under the current model design. However, if the
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initial state is indeed highly stochastic (e.g., @ = 0.5), an oracle initial state mapping may help the
performance.

F.5 Robustness to the Datasize
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Figure E.5: [llustration of the performance in Hopper task when the size of the dataset is decreased.

We conducted experiments in the Hopper task to test the requirement of CODAS of target domain
data for the better integrity of this work. The results can be seen in Fig F.5. In summary, CODAS
generally keeps a similar performance when the data size decreases to 450 episodes. When the data
size is 300, the reward ratio is still around 0.57. When the data size is 150, the reward ratio drops
to 0.4. The results prove that this cross-modal domain adaptation setting and our method CODAS
are possible to use fewer real samples when employed as a sim2real approach. However, with too
few real samples, the correctness of the mapping function degrades. The results are as expected: To
optimize an objective of distribution divergence minimization, it is inevitable to collect enough data
to represent a distribution. Without enough data, the gradient given by the discriminator will mislead
the training of the mapping function.

F.6 Extended Results in Robot Hand Manipulation Tasks

The training curves of CODAS in four hand-manipulation tasks are given in F.6. We also show the
RMSE and predicted probabilities of discriminator in Fig. F.7 and Fig. F.8 respectively. As shown
in Fig. F.6, CODAS yields reasonable mapping functions for policy deployment in three out of the
four tasks. The results demonstrate the capacity of the mapping function learned by CODAS to
complex environments. However, in Fig. F.8, we found that the predictions of discriminators in these
tasks tend to be smaller than 0.5, which contradicts the results in MuJoCo tasks. It means that the
discriminator indeed can distinguish distributions of mapped states and simulation states to some
degree, but the mapping function can not learn from it. Although the performance of the deployed
policies has not been significantly affected in door, pen, and hammer tasks, this phenomenon indicates
the mapping function trained with CODAS can not align well from the images space to the state
space. It is reasonable since the complexity of learning the mapping function is higher in Robot
hand-manipulation tasks because of their larger state space (see Tab.2). CODAS fails to produce a
correct mapping in the relocate task, and the prediction probability of the discriminator is the smallest
among the four tasks. We think that the failure comes from the goal-conditioned nature of the task,
in which the robot arm grasps a ball and takes it to a randomly initialized target location in every
trajectory. The goal-conditioned nature further increases the complexity of data distribution. To
learn a better mapping function, a larger dataset is necessary to capture enough information of the
distribution.

F.7 Computational Resources
Each CODAS experiment is trained on a single Nvidia GTX 2080Ti. Training CODAS in a MuJoCo

tasks takes about 3 days to converge while training CODAS in a Robot Hand Manipulation task takes
about 7 days to converge.
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Figure F.6: Reward ratios in Robot Hand Manipulations tasks. The mean value is plotted by the solid lines.
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Figure F.7: Root mean squared error between mapped states and ground-truth states in Robot Hand Manipulations
tasks. The solid lines denote the mean value.

G Further Discussion about cross-modal unsupervised domain adaptation

In this paper, we propose the cross-modal unsupervised domain adaptation setting in RL as a cost-
efficient setting for real-world applications. However, here exist practical applications that have a
great number of unstructured shapes of 3D objects. In these applications, it is harder to construct
a state-based simulator than an image-based simulator. Therefore, in these applications, directly
learning from an image-based simulator can be a better choice. On the other hand, there are also
many real-world applications that the robots make decisions in enclosed environments. For example,
to solve the Rubik’s Cube task with a physical robot hand, the state is represented by a vector of the
face angles, cube pose, and fingertip locations [13]; to solve the object grasping task with a Baxter
robot, the state is represented by a vector of positions of the target object and joint angles of the
robotin [14]. In these applications where state space can be easily designed by human experts, the
image-to-state UDA pipeline is valuable.

Technique selection should be analyzed case by case. For example, in environments with a simple
image-to-action mapping, behavioral cloning of the policy is more efficient. In environments where
robots need to face many unstructured objects or unknown obstacles, images can better capture
the necessary information to train a policy. It is better to use an image-to-image UDA pipeline to
solve the sim2real problems. Based on that, this paper gives a new possibility to solve the sim2real
problems, which is suited for the applications that informative state space is easy to design while
constructing a renderable simulator and train image-based policies are more costly.
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Figure F.8: Predicted probabilities of discriminator on mapped states in Robot Hand Manipulations tasks. The
solid lines denote the mean value.

13



References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction (Second
Edition). MIT Press, 2018.

[2] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016.

[3] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural
samplers using variational divergence minimization. In NIPS, 2016.

[4] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning
for Atari. In ICLR, 2020.

[5] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In COLT, 2020.

[6] David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
NeurlPS, 2018.

[7] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw images. In NIPS, 2015.

[8] Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In /ICML, 2019.

[9] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In /ROS, 2012.

[10] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine,
and Vikash Kumar. ROBEL: robotics benchmarks for learning with low-cost robots. In CoRL,
2019.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[12] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In RSS, 2018.

[13] OpenAl, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.

[14] Fangyi Zhang, Jiirgen Leitner, Zongyuan Ge, Michael Milford, and Peter Corke. Adversarial
discriminative sim-to-real transfer of visuo-motor policies. International Journal of Robotics
Research, 38(10-11), 2019.

14



	Derivation of Optimization Objectives
	A Simple Example of Incorrect Distribution Matching
	Additional Related work
	Detailed Implementations of CODAS
	Detailed training procedure
	Implementation Details
	Hyperparameters

	Experimental Setting
	Implementation Details of Dynamics Mismatch and Policy Mismatch
	Implementation Details of Dynamics Mismatch
	Implementation Details of Policy Mismatch


	Extra Experimental Results
	Performance of the sub-optimal policies trained with RL in the two domains
	Training Curves of the Discriminator
	Training Curves of Behavior Cloning
	Robustness to the Initial State Distribution Mismatching
	Robustness to the Datasize
	Extended Results in Robot Hand Manipulation Tasks
	Computational Resources

	Further Discussion about cross-modal unsupervised domain adaptation

