
6 Data Collection420

In all experiments, we use a legged Boston Dynamics Spot robot and collect robot experi-421

ences on eight different types of terrain around the university campus that we labeled as mulch,422

pebble sidewalk, cement sidewalk, grass, bushes, marbled rock, yellow bricks, and423

red bricks. The data is collected through human teleoperation (by the first and second authors)424

such that each trajectory contains a unique terrain throughout, with random trajectory shapes. Note425

that STERLING does not require a human expert to teleoperate the robot to collect robot experience426

nor does it require the experience to be gathered on a unique terrain per trajectory. We follow this427

data collection approach since it is easier to label the terrain for evaluation purposes. STERLING428

can also work with random trajectory lengths, with multiple terrains encountered along the same429

trajectory, without any semantic labels such as terrain names, and any navigation policy can be used430

for data collection. We record 8 trajectories per terrain, each five minutes long, and use 4 trajectories431

for training and the remaining for validation.432

7 Planning at Deployment433

Figure 5: An overview of the cost infer-
ence process for local planning at deployment.
The constant-curvature arcs (yellow) are over-
layed on the BEV image, and the terrain cost
Jterrain(�) is computed on patches extracted
along all arcs. White is high cost and black is
low cost.

Fig. 5 provides an overview of the cost infer-434

ence process for local planning at deployment.435

To evaluate the terrain cost Jterrain(�) for the436

constant-curvature arcs, we overlay the arcs on437

the bird’s eye view image, extract terrain patches438

at states along the arc, and compute the cost ac-439

cording to Eq. 2. We compute the visual repre-440

sentation, utility value, and terrain cost of all im-441

ages at once as a single batch inference. Since the442

visual encoder and the utility function are rela-443

tively lightweight neural networks with about 0.5444

million parameters, we are able to achieve real-445

time planning rates of 40 Hz using a laptop-grade446

Nvidia GPU.447

8 Additional Experiments448

In this section, we detail additional experiments449

performed to evaluate STERLING-features against450

baseline approaches.451

8.1 Preference Alignment Evaluation452

In addition to the evaluations of STERLING-453

features with baseline approaches in five environ-454

ments as shown in Sec. 4, we utilize Env. 6 to455

further study adherence to operator preferences.456

We hypothesize that the discriminative features457

learned using STERLING is sufficient to learn the458

preference cost for local planning. To test this459

hypothesis, in Env. 6 containing three terrains as460

shown in Fig. 6, the operator provides two differ-461

ent preferences 6(a) and 6(b). While bush is the least preferred in both cases, in 6(a), sidewalk is462

more preferred than grass and in 6(b), both grass and sidewalk are equally preferred. We see463

in Fig. 6 that using STERLING features, the planner is able to sufficiently distinguish the terrains464

and reach the goal while adhering to operator preferences. Although SE-R [5] adheres to operator465

preference in 6(b), it incorrectly maps grass to bush, assigning a higher cost and taking a longer466
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Figure 6: Trajectories traced by different approaches for the task of preference-aligned off-road
navigation. Shown here are two different preferences expressed by the operator in the same
environment—in 6 (a), sidewalk is more preferred than grass which is more preferred than bush,
and in 6 (b), grass and sidewalk are equally preferred and bush is least preferred. We see that
without retraining the terrain features, in both cases (a) and (b), STERLING optimally navigates to
the goal while adhering to operator preferences.

route to reach the goal. On the other hand, RCA [16] fails to adhere to operator preferences since it467

directly assigns traversability costs using inertial features.468

8.2 Evaluating Self-Supervision Objectives469

Figure 7: Ablation study depicting classification
accuracy (value closer to 1.0 is better) from terrain
representations learned using different approaches
and objectives. The combined objective (VI +
MM) proposed in STERLING achieves the highest
accuracy, indicating that the learned representa-
tions are sufficiently discriminative of terrains.

In this subsection, we investigate the effec-470

tiveness of STERLING at learning discrimina-471

tive terrain features and compare with base-472

line unsupervised terrain representation learn-473

ing methods such as Regularized Auto-Encoder474

(RAE) and SE-R [5]. STERLING uses multi-475

modal correlation (LMM ) and viewpoint in-476

variance (LV I ) objectives for self-supervised477

representation learning, whereas, SE-R and RAE478

use soft-triplet-contrastive loss and pixel-wise479

reconstruction loss, respectively. Additionally,480

we also perform an ablation study on the two481

objectives in STERLING to understand their482

contributions to learning discriminative terrain483

features. To evaluate different visual represen-484

tations, we perform unsupervised classification485

using k-means clustering and compare their rel-486

ative classification accuracies with manually la-487

beled terrain labels. For this experiment, we488

train STERLING, SE-R, and RAE on our training set and evaluate on a held-out validation set. Fig.489

7 shows the results of this study. We see that STERLING-features using both the self-supervision490

objectives perform the best among all methods. Additionally, we see that using a non-contrastive491

representation learning approach such as VICReg [26] within STERLING performs better than con-492

trastive learning methods such as SE-R, and reconstruction-based methods such as RAE. This study493

shows that the proposed self-supervision objectives in STERLING indeed help learn discriminative494

terrain features.495
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