A Lower bounds

In this section, we show the following lower bound:

Theorem A.1. Any algorithm for Euclidean (k, {)-clustering with a finite approximation ratio has
average sensitivity Q(k/n).

We note that, for algorithms that select k centroids only from the input X (and not from R? \ X),
there is a trivial lower bound of Q(k/n) because when one of the centroids is deleted, which happens
with probability Q(k/n), the algorithm must change its output. Theorem shows that the same
lower bound applies even for algorithms that may select centroids from R* \ X.

Proof of Theorem[A.1] Let A be an algorithm with a finite approximation ratio. Let X =
{z1,...,2,} be a set of points in R™ such that x1, ...,z are all distinct and zy11 = T2 =
- = x,. Then for any X with 1 < i < k, the set Z; := {@1,...,Ti_1,Tit1,...,Tps1} is the
unique optimal solution, which gives the objective value zero. Hence to have a finite approximation
ratio, the algorithm A must output Z; on X (). Let p; be the probability that the algorithm A outputs
Z; on X. Then, the average sensitivity of A on X is
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B Proof of Lemma 3.5

The following useful lemma is implicit in the proof of Lemma 2.3 of [15].

Lemma B.1. For ¢, B,B’ > 0, let X and X' be sampled from the uniform distributions over

[B, (1+ €)B] and [B’, (1 + €) B’], respectively. Then, we have
B/

)
B

1
drv (X, X') < ~ €
€

Proof of Lemma[3.5] We now analyze the size of the coreset. As we mentioned, the approximation
ratio of D-SAMPLING is O(2°logk). Also, we have EY .y sx,z(z) < 22+30(log” k)k =
0(2%klog® k) by Lemma Hence by the choice of m, the size of C is at most
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Next, we analyze the average sensitivity. Let X = {x1,...,2,}. Let Zand Z (*) be the outputs of D*-
SAMPLING on X and X (), respectively. Then by Theorem we have (1/n) 31 drv(Z,20)) =

O(k/n). Let (C,w) and (C®,w®) be the coresets constructed for X and X (¥, respectively. We
have
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Now, we bound the second term. Let p(z) and p(*) () denote the probability of sampling x from X
and X (), respectively, in (one iteration of) CORESET. Conditioned on that Z = Z(¥) = = Z, we have
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Then, we have
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Hence, the second term of () is O(Emz/n).
Now we bound the third term of (). By Lemma[B.1] it can be bounded by
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where the last equality is by (7). By combining above, the average sensitivity of the algorithm is
given as
k
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By combining the above and (), the claim follows. O

C Consistent transformation

In this section, we show that the general transformation discussed in Section [3|can be used to design
consistent algorithms in the random-order model. To this end, we first prove the following.

Lemma C.1. Let A be the algorithm of Lemma[3.5] Then, the probability transportation for A with
average sensitivity as in Lemma[3.3]is computable.

Proof. Let us fix a set X of n points in R% and i € [n]. Then, given a coreset (C*), w(?)) for X (),
we need to compute a coreset (C, w) for X. We apply the probability transportation used in the
proof of Theorem to compute a set Z of k points for X from a set Z(9) of k points for X ®).
If Z # Z", then we compute the coreset (C,w) by running CORESET. If Z = Z® | then we
recompute points (and weights) added to C' by applying LAZYSAMPLING on each point in C'*), This

provides a probability transportation, and we can observe that all the conditions of Definition {f.T) are
satisfied. O

Theorem C.2. Let A be an a-approximation algorithm for Euclidean (k,{)-clustering. Then for
any €, > 0, there exists an algorithm for consistent Euclidean (k, £)-clustering in the random-order
model such that (i) it outputs (1 + €)a-approximation with probability at least 1 — 0 at each step,

and (ii) its inconsistency is
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Proof. We combine Lemma[4.2]and Lemma- [C.1] The approximation guarantee is clearly satisfied.
The inconsistency of the algorlthm isk->, |, O(E|C|/et) = klogn - O(E|C|/e), and hence the
claim holds. O
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D Dynamic transformation

We show that the consistent transformation discussed in Section [C]can be implemented in such a
way that the amortized update time in the random-order model is small. Specifically, we show the
following:

Theorem D.1. Let A be an a-approximation algorithm for Euclidean (k, £)-clustering with time
complexity T'(n,d, k, ). Then for any €,§ > 0, there exists an algorithm for dynamic Euclidean
(k, 0)-clustering in the random-order model that (i) outputs (1 + €)a-approximation with probability
at least 1 — 6, and (ii) its amortized update time is

T(m,d, k, ¢
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where m = O ({ik (dk’ﬂ + log %))

Proof. The consistent transformation has two components, that is, D!-SAMPLING and coreset
construction.

We use the dynamic algorithm of Theorem to run the D’-SAMPLING part and hence the amortized
update time of this part is O(dk + (k + logn)klogn).

For the coreset construction part, we maintain a coreset (C,w) and a sequence S storing
s(x1), ..., s(z;), where s(z) is the upper bound on the sensitivity of x as in the proof of Lemma[3.5]
We maintain a binary tree on S as with dynamic version of D*-SAMPLING. When the output of
D*-SAMPLING changes after z; arrives, we recompute (C,w) and the sequence S from scratch.
When the output of D*-SAMPLING does not change, we append s(z;) to S, and then update the
coreset (C, w) using LAZYSAMPLING.

Now we analyze the amortized update time of the coreset construction part. At each step we need
O(|C|logn) time to update (C,w). Also, when the output of D*-sampling changes, we need
additional O(tlogt) time to reconstruct a binary tree over S. Finally, when (C,w) is updated,
we need to recompute an optimal solution for C, which takes T'(|C|, d, k, £) time. Recalling that
|C| < mby Lemma in expectation, the total computational time is bounded as

O(|C|logn) n+20(k> (tlogt) +ano(|c|> Cdké)]
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Combined with the amortized time of dynamic D‘-SAMPLING, the claim holds. O
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