A Lower bounds

In this section, we show the following lower bound:

Theorem A.1. Any algorithm for Euclidean (k, ℓ) -clustering with a finite approximation ratio has average sensitivity $\Omega(k/n)$.

We note that, for algorithms that select k centroids only from the input X (and not from $\mathbb{R}^d \setminus X$), there is a trivial lower bound of $\Omega(k/n)$ because when one of the centroids is deleted, which happens with probability $\Omega(k/n)$, the algorithm must change its output. Theorem A.1 shows that the same lower bound applies even for algorithms that may select centroids from $\mathbb{R}^d \setminus X$.

Proof of Theorem A.1. Let A be an algorithm with a finite approximation ratio. Let $X = \{x_1, \ldots, x_n\}$ be a set of points in \mathbb{R}^n such that x_1, \ldots, x_{k+1} are all distinct and $x_{k+1} = x_{k+2} = \cdots = x_n$. Then for any $X^{(i)}$ with $1 \le i \le k$, the set $Z_i := \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k+1}\}$ is the unique optimal solution, which gives the objective value zero. Hence to have a finite approximation ratio, the algorithm A must output Z_i on $X^{(i)}$. Let p_i be the probability that the algorithm A outputs Z_i on X. Then, the average sensitivity of A on X is

$$\frac{1}{n} \sum_{i=1}^{n} d_{\text{TV}}(A(X), A(X^{(i)})) \ge \frac{1}{n} \sum_{i=1}^{k} d_{\text{TV}}(A(X), A(X^{(i)})) \ge \frac{1}{n} \sum_{i=1}^{k} (1 - p_i)$$

$$\ge \frac{1}{n} (k - 1) = \Omega\left(\frac{k}{n}\right).$$

B Proof of Lemma 3.5

The following useful lemma is implicit in the proof of Lemma 2.3 of [15].

Lemma B.1. For $\epsilon, B, B' > 0$, let X and X' be sampled from the uniform distributions over $[B, (1+\epsilon)B]$ and $[B', (1+\epsilon)B']$, respectively. Then, we have

$$d_{\text{TV}}(X, X') \le \frac{1+\epsilon}{\epsilon} \left| 1 - \frac{B'}{B} \right|.$$

Proof of Lemma 3.5. We now analyze the size of the coreset. As we mentioned, the approximation ratio of D^ℓ -SAMPLING is $O(2^\ell \log k)$. Also, we have $\mathbf{E} \sum_{x \in X} s_{X,Z}(x) \leq 2^{2\ell+3} O(\log^2 k) k = O(2^{2\ell} k \log^2 k)$ by Lemma 3.4. Hence by the choice of m_Z , the size of C is at most

$$O\left(\frac{2^{2\ell}k\log^2k}{\epsilon^2}\left(dk(\log(2^{2\ell}k\log^2k)) + \log\frac{1}{\delta}\right)\right) = \widetilde{O}\left(\frac{2^{2\ell}k}{\epsilon^2}\left(dk\ell + \log\frac{1}{\delta}\right)\right) \tag{5}$$

Next, we analyze the average sensitivity. Let $X=\{x_1,\ldots,x_n\}$. Let Z and $Z^{(i)}$ be the outputs of D^ℓ -SAMPLING on X and $X^{(i)}$, respectively. Then by Theorem 2.1, we have $(1/n)\sum_{i=1}^n d_{\mathrm{TV}}(Z,Z^{(i)})=O(k/n)$. Let (C,w) and $(C^{(i)},w^{(i)})$ be the coresets constructed for X and $X^{(i)}$, respectively. We have

$$\frac{1}{n} \sum_{i=1}^{n} d_{\text{TV}}((C, w), (C^{(i)}, w^{(i)}))$$

$$= \frac{1}{n} \sum_{i=1}^{n} d_{\text{TV}}(Z, Z^{(i)}) + \frac{1}{n} \sum_{i=1}^{n} \int d_{\text{TV}}(\{(C, w) \mid Z = \tilde{Z}\}, \{(C^{(i)}, w^{(i)}) \mid Z^{(i)} = \tilde{Z}\}) d\tilde{Z}$$

$$= O\left(\frac{k}{n}\right) + \frac{1}{n} \sum_{i=1}^{n} \int d_{\text{TV}}(\{C \mid Z = \tilde{Z}\}, \{C^{(i)} \mid Z = \tilde{Z}\}) d\tilde{Z}$$

$$+ \frac{1}{n} \int \int \sum_{i=1}^{n} d_{\text{TV}}(\{w \mid C = \tilde{C}, Z = \tilde{Z}\}, \{w^{(i)} \mid C^{(i)} = \tilde{C}, Z^{(i)} = \tilde{Z}\}) d\tilde{C}d\tilde{Z}. \tag{6}$$

Now, we bound the second term. Let p(x) and $p^{(i)}(x)$ denote the probability of sampling x from X and $X^{(i)}$, respectively, in (one iteration of) CORESET. Conditioned on that $Z = Z^{(i)} = \tilde{Z}$, we have

$$\sum_{i=1}^{n} \sum_{x \in X^{(i)}} |p(x) - p^{(i)}(x)| = \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \left| \frac{s_{X,\tilde{Z}}(x)}{S_{X,\tilde{Z}}} - \frac{s_{X^{(i)},\tilde{Z}}(x)}{S_{X^{(i)},\tilde{Z}}} \right| \\
= \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \frac{s_{X,\tilde{Z}}(x)(S_{X,\tilde{Z}} - S_{X^{(i)},\tilde{Z}})}{S_{X,\tilde{Z}}S_{X^{(i)},\tilde{Z}}} = \sum_{i=1}^{n} \sum_{x \in X^{(i)}} \frac{s_{X,\tilde{Z}}(x) \cdot s_{X,\tilde{Z}}(x_i)}{S_{X,\tilde{Z}}S_{X^{(i)},\tilde{Z}}} = \sum_{i=1}^{n} \frac{s_{X,\tilde{Z}}(x_i)}{S_{X,\tilde{Z}}S_{X^{(i)},\tilde{Z}}} = 1.$$
(7)

Then, we have

$$\frac{1}{n} \sum_{i=1}^{n} d_{\text{TV}}(\{C \mid Z = \tilde{Z}\}, \{C^{(i)} \mid Z = \tilde{Z}\}) = \frac{m_{\tilde{Z}}}{n} \sum_{i=1}^{n} \left(p(x_i) + \sum_{x \in X^{(i)}} |p(x) - p^{(i)}(x)| \right) = O\left(\frac{m_{\tilde{Z}}}{n}\right).$$

Hence, the second term of (6) is $O(\mathbf{E} m_Z/n)$.

Now we bound the third term of (6). By Lemma B.1, it can be bounded by

$$\frac{\mathbf{E} \, m_Z}{n} \sum_{i=1}^n \left(\sum_{x \in X^{(i)}} \min \left\{ p(x), p^{(i)}(x) \right\} \cdot \frac{1+\epsilon}{\epsilon} \left| 1 - \frac{p^{(i)}(x)}{p(x)} \right| \right)$$

$$\leq \frac{\mathbf{E} \, m_Z}{n} \sum_{i=1}^n \left(\sum_{x \in X^{(i)}} \frac{1+\epsilon}{\epsilon} \left| p(x) - p^{(i)}(x) \right| \right) = O\left(\frac{\mathbf{E} \, m_Z}{\epsilon n}\right),$$

where the last equality is by (7). By combining above, the average sensitivity of the algorithm is given as

$$O\left(\frac{k}{n}\right) + O\left(\frac{\mathbf{E}\,m_Z}{n}\right) + O\left(\frac{\mathbf{E}\,m_Z}{\epsilon n}\right) = O\left(\frac{m}{\epsilon n}\right).$$

By combining the above and (5), the claim follows.

C Consistent transformation

In this section, we show that the general transformation discussed in Section 3 can be used to design consistent algorithms in the random-order model. To this end, we first prove the following.

Lemma C.1. Let A be the algorithm of Lemma 3.5. Then, the probability transportation for A with average sensitivity as in Lemma 3.5 is computable.

Proof. Let us fix a set X of n points in \mathbb{R}^d and $i \in [n]$. Then, given a coreset $(C^{(i)}, w^{(i)})$ for $X^{(i)}$, we need to compute a coreset (C, w) for X. We apply the probability transportation used in the proof of Theorem 4.3 to compute a set Z of k points for X from a set $Z^{(i)}$ of k points for $X^{(i)}$. If $Z \neq Z^{(i)}$, then we compute the coreset (C, w) by running CORESET. If $Z = Z^{(i)}$, then we recompute points (and weights) added to C by applying LAZYSAMPLING on each point in $C^{(i)}$. This provides a probability transportation, and we can observe that all the conditions of Definition 4.1 are satisfied.

Theorem C.2. Let A be an α -approximation algorithm for Euclidean (k,ℓ) -clustering. Then for any $\epsilon, \delta > 0$, there exists an algorithm for consistent Euclidean (k,ℓ) -clustering in the random-order model such that (i) it outputs $(1+\epsilon)\alpha$ -approximation with probability at least $1-\delta$ at each step, and (ii) its inconsistency is

$$\widetilde{O}\left(\frac{2^{2\ell}k^2\log n}{\epsilon^3}\left(dk\ell+\log\frac{1}{\delta}\right)\right).$$

Proof. We combine Lemma 4.2 and Lemma C.1. The approximation guarantee is clearly satisfied. The inconsistency of the algorithm is $k \cdot \sum_{t=1}^n O(\mathbf{E} |C|/\epsilon t) = k \log n \cdot O(\mathbf{E} |C|/\epsilon)$, and hence the claim holds.

D Dynamic transformation

We show that the consistent transformation discussed in Section C can be implemented in such a way that the amortized update time in the random-order model is small. Specifically, we show the following:

Theorem D.1. Let A be an α -approximation algorithm for Euclidean (k,ℓ) -clustering with time complexity $T(n,d,k,\ell)$. Then for any $\epsilon,\delta>0$, there exists an algorithm for dynamic Euclidean (k,ℓ) -clustering in the random-order model that (i) outputs $(1+\epsilon)\alpha$ -approximation with probability at least $1-\delta$, and (ii) its amortized update time is

$$O\left(dk + \left(k(k + \log n) + \frac{mT(m, d, k, \ell)}{\epsilon}\right) \log n\right),$$

where
$$m = \widetilde{O}\left(\frac{2^{2\ell}k}{\epsilon^2}\left(dk\ell + \log\frac{1}{\delta}\right)\right)$$
.

Proof. The consistent transformation has two components, that is, D^{ℓ} -SAMPLING and coreset construction.

We use the dynamic algorithm of Theorem 5.1 to run the D^{ℓ} -SAMPLING part and hence the amortized update time of this part is $O(dk + (k + \log n)k \log n)$.

For the coreset construction part, we maintain a coreset (C,w) and a sequence S storing $s(x_1),\ldots,s(x_t)$, where s(x) is the upper bound on the sensitivity of x as in the proof of Lemma 3.5. We maintain a binary tree on S as with dynamic version of D^ℓ -SAMPLING. When the output of D^ℓ -SAMPLING changes after x_t arrives, we recompute (C,w) and the sequence S from scratch. When the output of D^ℓ -SAMPLING does not change, we append $s(x_t)$ to S, and then update the coreset (C,w) using LAZYSAMPLING.

Now we analyze the amortized update time of the coreset construction part. At each step we need $O(|C|\log n)$ time to update (C,w). Also, when the output of D^ℓ -sampling changes, we need additional $O(t\log t)$ time to reconstruct a binary tree over S. Finally, when (C,w) is updated, we need to recompute an optimal solution for C, which takes $T(|C|,d,k,\ell)$ time. Recalling that $|C| \leq m$ by Lemma 3.5, in expectation, the total computational time is bounded as

$$\begin{split} \mathbf{E} &\left[O(|C|\log n) \cdot n + \sum_{t=1}^{n} O\left(\frac{k}{t}\right) O(t\log t) + \sum_{t=1}^{n} O\left(\frac{|C|}{\epsilon t}\right) \cdot T(|C|, d, k, \ell) \right] \\ &= O\left(\left(m + k + \frac{mT(m, d, k, \ell)}{\epsilon}\right) \cdot n\log n\right) \\ &= O\left(\left(k + \frac{mT(m, d, k, \ell)}{\epsilon}\right) n\log n\right). \end{split}$$

Combined with the amortized time of dynamic D^ℓ -SAMPLING, the claim holds.