Sparse Deep Learning: A New Framework Immune
to Local Traps and Miscalibration

Yan Sun Wenjun Xiong
Purdue University Guangxi Normal University & Purdue University
West Lafayette, IN 47906 West Lafayette, IN 47906
sun7480purdue.edu xiong90@purdue.edu

Faming Liang
Purdue University
West Lafayette, IN 47906
fmliang@purdue.edu

1 Proof of Theorem 2.1

Proof. We first define the equivalent class of neural network parameters. Given a parameter vector 3
and the corresponding structure parameter vector -y, its equivalent class is given by

QE(/677) = {(Ba 5’) : Vg(/éa 5’) = (/65 7)a ,U,(B,;)’, CC) = /’L(/Ba Y, m)vvm}7
where v, (-) denotes a generic mapping that contains only the transformations of node permutation
and weight sign flipping. Specifically, we define
Q*E = QE(ﬁ*7’Y*)7

which represents the equivalent class of true DNN model.

Let Bs,(8%) = {B : [B; — Bj| < 0n,¥i € ¥",|B; — Bi| < 200nlog(5732-),¥i ¢ v*}. By
assumption C.1, 3" is generic (i.e. Q(8) contains only reparameterizations of weight sign-flipping
or node permutations as defined in|[Feng and Simon|(2017) and |Fefferman|(1994)) and min;e~~ B;|—
6 > (C —1)8, > b,, then for any 3V 3" ¢ Q3 Bs, (8*VY N Bs, (8°) = 0, and thus
{B:0(B) € Bs,(8%)} = Upeqs, Bs, (B). In what follows, we will first show m(Ugeqs, Bs, (8) |
D,) — 1 asn — oo, which means the most posterior mass falls in the neighbourhood of true
parameter.

Remark on the notation: #(-) is similar to v(-) defined in Section 2.1 of the main text. They both
map the set Q (3, ~) to a unique network. The difference between them is that ||v(3) — 3%|| o may
be arbitrary, but |7(3) — 87 ||oo is minimized. In other words, v((3, 7y) is to find an arbitrary network
in Qg(3,~) as the representative of the equivalent class, while (3, «) is to find a representative in
QE(8,~) such that the distance between (3" and the representative is minimized. In what follows, we
will use 7(3) and 7(+) to denote the connection weight and network structure of 7(3, 7y), respectively.
With a slight abuse of notation, we will use 7(/3); to denote the ith component of 7(3), and use
(), to denote the ith component of 7(-y).

Recall that the marginal posterior inclusion probability is given by
% = / > ey m(11B, Dn)m(BID,)dB = / m(@(y)i = 1|B)m(B|Dn)dB.
v
For the mixture Gaussian prior,

m(v; = 1/8) = !

1+ Ul,n(lf)\n)ei(Zn'é 72% B’

2
n n
O'O,n)\'n

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

5"

J1,n

which increases with respect to |3;]. In particular, if | 3;| > 200,, log(5-5—), then 7(y; = 1(B8) >
) "

For the mixture Gaussian prior,
(8 ¢ Upeqy, Bs, (B) | Dn)

. * |~ O1,n . * |~ *
ST(‘(E'Z ¢ v |V(B)Z‘ > 200,n 1Og($0) | Dn) + W(HZ € v |V(ﬁ)z - /61| > 5n | Dn)
For the first term, note that for a given ¢ ¢ ~*,

T(7(8)i| > 200, log(5 7<) | D) <n((iy): = 118) > 5 | D)

< / 7(#(7); = 1|8)7(8|D,)dB

<2p(en) + 2m(d(pg, Pu=) > €n | Dn) — 0.
Then we have
. * |~ O1,n ~ O1,n
m(3i ¢ ", |5(B)i] > 2000 log(~—") | D)) =r(max [7(8)] > 200, log(~——"~) | D)
>\n00,n igy* nY0,n

<r(max(i(v);i = 118) > 5 | D)
i¢y

<3 w(w(#): = 118) > § | D)
iy

For the second term, by condition C.1 and Lemma 2.1,

W(HZ € 7*7 |D(ﬂ)z - /6:| > 571 | Dn) = ﬂ-(%?ff f/(ﬁ)i - 16’);‘ > 571 | Dn)
:ﬂ(?elgzqﬂ(ﬂ)z - ﬁﬂ > 5n7d(pﬁap/t*) <e€p | Dn)

+ 71—(?6121([7(8): — B;| > 5md(p,87p,u*) > é€n | Dn)
<m(A(€n,0n) | Dn) + 7(d(pg,pu~) 2 €n | Dn) — 0.
Summarizing the above two terms, we have m(Ugeq+ Bs, (B) | Dn) — 1

Let @, = |Q%] be the number of equivalent frue DNN model. By the generic assumption of 3, for
any 8"V, 3*@ ¢ Q% Bs, (8*Y) N Bs, (8*®) = 0. Then in Bs, (3*), the posterior density of

v(8) is @, times the posterior density of 3. Then for a function f(-) of (3), by changing variable,
/ FEO)=@(B)D.)dB) = Qu [
7(B)€Bs,, (B*)

Bs, (B7)
Thus, we only need to consider the integration on By, (3"). Define

f(B)m(B|Dn)dB.

B = B~ Ty WV (BB, Vie
7 0, VZ ¢ 7*
We will first prove that for any real vector £,

. Vvt (#(8)=B) (i D.\di
E(e\/ﬁtT(D(ﬁ)iﬁ) |Dn7B5 (ﬁ*)) 5:fB5n(/6*)e ﬂ-(V(ﬂ)‘ n) V(IB)

fBén (B*) m((8)| Dy,)dr(B)
fBgn 8% e\/ﬁtT (B*:é) enln (ﬁ)’]‘r(ﬁ)dﬁ

T oy @ 7(B)B
:e%tTVtJroP*(l).

(D

For any 3 € B;, (3"), we have
VAT (B = By-))| < Viku| o200 0 log(+2—) = o(1),

>\nUO n

n(lp(8) — N =1In>" Bi(hi(B))| < nK, M2aonlog(/\01’") = o(1).

n00,n
'Le"y ’
l hen, we ha\/e

Vit (B = B) =vnt" (B — By + By — B +Vn Y W (B)thi(B7))

Her @)
L)+ V> (B =Bt +vn > b (B%)thi(B7),
iev* i,JEY*

nln(B8) = nln(B7) =n(ln(B) _ln(ﬁ'y*)+l (ﬁa,) (B*))

1€EY* i,jEY*

+ 22 hak(B)B; - BB, - B8y~ Bi).

i,5,k€Ev*
(3)
where 3 is a point between B and 3. Note that for 3 € Bs, (8), [8; — B;| < n S %F%’ we

have § >, -y cr- hij, (B)(B; — B;)(B; = B) (B, — Br) = o(1).
Let 8% be network parameters satisfying ﬂz(-t) =08+ ﬁ D jert kI (B*)t;,Vi € v* and ﬂz('t) =

B;,Vi ¢ v*. Note that ﬁ D iens (B < W < 6, for large enough n, |8\ | < 26,
Vi € v*. Thus, we have

1l (BY) — 0l (8%) =n(ln(BY) — 1,(B%)) + 1 (ﬂ“)) — 1l (87))
—o(1) +n Y (B = BW(B) +5 D hiy(B)B - BB - B))

ev* 1,jEY*
=o(1) +n Y (B, — B})hi +— > i (BB - B;)(B; — B])
[ISe%s 1,JEY*
VYD GRS (B Bty S (8,
i,jEY* Sl 1,JEY*
=o(1) + VAt (B = B) + nla(B) —nln(87) + 3 3 W@)it

L,JEY"
4)
where the last equality is derived by replacing appropriate terms by \/nt” (8 — 3) and nl,,(3) —

nl,(B") based on (2)) and (3)), respectively; and the third equality is derived based on the following
calculatlon

2 Z hi s (BB —) (B8 - B87)

z]E'y
=5 > hi (BB, ﬂ+—2h““ 1t)(8; 6+—Zhﬂ’“
1, EY* ke~/ ke'y
Z hz] /6 /8)(63_6 +2X Z hz] thk tkﬁ ﬁ)
zje'y zge'y ke'y
v 3 a8 XA Y e
1,jEY* ke-y kG'y

5 2 hig(B)B = BD(B; = B) + Vi Y (Bi - ﬂt+fzh” tj,

zJE'y iey* 1,JEY*

(&)

where the second and third terms in the last equality are derived based on the relation
Ziew* h27](,3*)hlk(,3*) = 04,k where 6j,k =1 lf] = k, 5j,k =0 lf_] ;é k.

By rearranging the terms in (4)), we have

/ exp{v/ntT (8 — B) + nln(8)}r(8)dB3
Bs,, (B*)

—exp{ 3 S HI(E)bt +o(1) / et) (3)dp.

i,jEY* Bs, (B™)
For 3 € Bs, (8%),i € v*, by Assumption C.1, there exists a constant C' > 2 such that

rnHtHooM
Vn

-1
e — log <M)
205, 201, 00,nAn

al,n(l—An)e%ﬁ— B2 1

207, <
~Y
UO,nAn Tn

V

1871 > 18, — > 87| - 26, > (C —2)d, >

SIF

vV

Then we have

It is easy to see that the above formula also holds if we replace B,Et) by 3,. Note that the mixture
Gaussian prior of 3, can be written as

L
_)\n 767 20%,n (1 —+ Ul,n(l — An)e(%én%%n),@?> .
V 271'0'171” JO,n)\n

Since |3; — ,Bgt)| <o S ﬁ, |8, +ﬁ§t)| < 2B, + 36, S En,and 5— < %);bg@), we

1,n n

m(B;)

have

n Hy log(n) + log(L)
B = BB+ 8") = == = ol

by the condition C; > 2/3 and H,, log(n) + log(L) < n'~¢. Thus, % = [licq- ;E(Bﬂ(,))) =
1+ 0(1), and
nl, (B i, (B®
[e ngis 1+ ov) [B (50) 4
Bs,, (B") BYEB;s, (B) (6)
=(1+ 0(1))Cnm(B"Y € B5,(8") | D),
where Cy is the normalizing constant of the posterior. Note that ||3) — B||sc < 6,, we have

(8% € Bs, (B8") | D,) — w(B € Bs, (3*) | Dy). Moreover, since -3 dien RS (B)tit; —
1T V't, we have

e\/ﬁtT(Bflé)enhn (6)7‘[‘(5)dﬁ

_ fBan(ﬁ*)
fBén (B*) enhnB)7(B)dB

Combining the above result with the fact that 7(7(3) € By, (8%) | D»n) — 1, by section 1 of |Castillo
and Rousseau| (2015)), we have

w[Vn(#(8) = B) | Da] = N(0, V).

We will then show that ﬁ will converge to 3%, then essentially we can replace ﬁ by 3" in the above

result. Let @+ = {3 : 3, = 0,Vi ¢ "} be the parameter space given the model v*, and let ﬁ,y*
be the maximum likelihood estimator given the model ~*, i.e.

T
LVt opx (1).

T (o A *
E(e\/ﬁt (#(B)-B) | Dy, Bs, (B%))

=€

B, = arg Snax, 1n(B).

Given condition C.3 and by Theorem 2.1 of [Portnoy|(1988), we have | |,537 =B = O(y/==) = o(1).
Note that hi(B,y*) =0as B,Y* is maximum likelihood estimator. Then for any i € ~*, \h (B89 =

hi(By) = hi(BY) = | X jeqe hig (B)(By); — B7)] < M||B4- = B[l1 = O(/Z).
Then for any 4, j € v*, we have Y-, h*J (8")h;(B") = O(\/g) = o(1). By the definition of {3,

we have B8 — 3* = o(1). Therefore, we have

mlVn(#(B) = B%) | Dn] ~ N(0, V).

2 Proof of Theorem 2.2

Proof. The proof of Theorem 2.2 can be done using the same strategy as that used in proving Theorem
2.1. Here we provide a simpler proof using the result of Theorem 2.1. The notations we used in this
proof are the same as in the proof of Theorem 2.1. In the proof of Theorem 2.1, we have shown
that 7(2(8) € Bs, (8%) | Dn) — 1. Note that (3, zo) = n(P(3), xo). We only need to consider
B € Bs, (8%). For B € Bs, (3"), we have

\/E(M(/@7 wo) - /’L(/B*> $0))
:\/’E(:U’(lga ZCO) - ,LL(,B,Y*) mo) + [L(lj(ﬁ *)7 (130) - .u’(/@*a CCO))
Since B € B;,(8%), fori ¢ v*, |B;] < 200,, log(5" ILn »—); and for i € v*, [#(B); — B <6 S

,n

Therefore,

‘\/’E/J,(ﬁ,xo) - (~y* amO | - |\/>Z /8 1223 ,6,2130))| < \/>K MZGO nlOg(

igy*

) = o(1),

)\nUO n

where p; (83, xo) denotes the first derivative of (3, o) with respect to the ith component of 3, and
3 denotes a point between 3 and 3.,-. Further,

w((By-), x)— (ﬁ* o)

_IZ ,Uz(/B b i) +\/>Z Z 17 Mt](ﬁva)((/8) _/6;)
—fz (7(B pi(B", o) + o(1),

where 11, ; (3, xo) denotes the second derivative of 1(3, xo) with respect to the ith and jth com-

ponents of 3 and 3 is a point between 7(3) and 3*. Summarizing the above two equations, we
have

\/ﬁﬂ(ﬁamO) —M(,B*7-’BQ \/>Z /J“Z(ﬁ*vxo) +O(1)
1Ev*
By Theorem 2.1, 7[/n(7(8) — B%) | Dy] ~ N(0,V), where V' = (v;;), and v; ; = E(h"I(8))
if 7,7 € v* and 0 otherwise. Then we have 7[\/n(u(3, o) — u(B", o)) | Dn] ~ N(0,X), where

¥ = Ve (B, 20)"H 'V (B, @) and H = E(=V2.1,(8"))

3 Theory of Prior Annealing: Proof of Theorem 3.1

Our proof follows the proof of Theorem 2 in |Chen et al.[(2015). SGLD use the first order integrator
(see Lemma 12 of |Chen et al.|(2015) for the detail). Then we have

E(w(BYT)) =p(8) + Ly (B7) + O(eF)
)

=(B") + etwt w(ﬁ(“) + el (BY) + 0(e).
Note that by Poisson equation, L1(3) = — [&(B)7(B|Dn,n*, 05 ,,)d3. Taking expectation
on both sides of the equation, summing over t =0,1,... ,T -1, and d1v1d1ng €T on both sides of

the equation, we have

1

:T—6<E<w<5m)> $(8) - = Z E(6:(8)) + O(e).

To characterize the order of 0, = L; — L, we first study the difference of the drift term

Vlog(n (89D, 0, 0010)) = Vlog(x(B | Da. 0, 05,)
—Zwog (pgeo (1, :)) Zwog (pao (i, 9i,))
i=1 _] 1
+ 1V log(m(BV|An, 063 01.0)) = 1"V log(m(B |\, 75 00.0).
Use of the mini-batch data gives an unbiased estimator of the full gradient, i.e.
n n m
E(Y Viog(pgen (@i ui) = — > Viog(pgo (i;,9:,))) = 0.
i=1 j=1
For the prior part, let p(c) denote the density function of N (0, o). Then we have
Viog(n(BY N, o), 01,0))

- (1= A)p(ai) Y Anp(01,0) B
(1= A)p(o) + Aap(010) 00 (1= A)p(08)) + Aap(o10) Thin

)

)
and thus E|V log(7(8 1t)|/\n7 0'0 1 01m))] < %. By Assumption 5.2, we have
0,n

E(In®V 1og(r(8 A, o), 01.0)) — 17V 1og(w(BY |\, 5 10 71.0))])
:]E(‘n(t)vIOg(W(IB(t)‘)‘nvg(()tZwULn)) _n*VIOg((ﬁ(t |)‘nﬂ00 n 01, n))')
+E(|n*V 1og(m(89 |\, 050, 01.0)) — 07V 1og(m(B8Y Ay 750y 01,0))])

M
) |7I(t) - 77*| + U*M|00,n - Ug,n|'
0,n

By Assumption 5.1, E(¢)(3"))) < cc. Then

1 T— 1 T-1 .
LS Beu(a®)) = 0 (T S0 =+l - US,nI)> .
t=0 t=0

Note that by assumption 5.1, |(¢(81)) — ¢(8?))] is bounded. Then

1 o (D =]+ oS — opa)
(Z¢Xt /(b 7(B|Dnyn* Uon)>:O<T€+ s T +

4 Construct Confidence Interval

Theorem 2.2 implies that a faithful prediction interval can be constructed for the sparse neural
network learned by the proposed algorithms. In practice, for a normal regression problem with
noise N (0,0) to construct the predlctlon interval for a test point xo, the terms o2 and ¥ =
V(8% o) H V. u(B*, o) in Theorem 2.2 need to be estimated from data. Let D,, =
(:c(i) Ly)i=1,... » be the training set and 1(/3, -) be the predictor of the network model with parameter
3. We can follow the following procedure to construct the prediction interval for the test point x:

Run algorithm 1, let ﬁ) be an estimation of the network parameter at the end of the algorithm
and 4 be the correspoding network structure.

Estimate o2 by

1 n .))
52 — — @y _)2
52 = =3 (u(B, 2) — y).

=1

Estimate 3 by))))
S = V(B 20)" (=V51n(8)) ' Vau(B, zo).

Construct the prediction interval as

(u(ﬁ,xo) —1.964/ %2 + 62, u(B, z0) + 1.964/ %z + &2> .

Here, by the structure selection consistency (Lemma 2.2) and consistency of the MLE for the learnt
structure [Portnoy| (1988)), we replace 3" and ~v* in Theorem 2.2 by (3 and 4.

If the dimension of the sparse network is still too high and the computation of 3 becomes prohibitive,
the following Bayesian approach can be used to construct confidence intervals.

e Running SGMCMC algorithm to get a sequence of posterior samples: ,8(1), RN ﬁ(m).

Estimating 0% by 62 = L 3" | (y(— p(9)2, where

Zu ar:() i i=1,.

Estimate the prediction mean by

= o o020

Estimate the prediction variance by

. 1 & , A .
V=0 ;w(ﬂ“% @0) — 1) + 62,

Construct the prediction interval as

(1 —1.96VV, i+ 1.96VV).

S Prior Annealing

In this section, we give some graphical illustration of the prior annealing algorithm. In practice,
the negative log-prior puts penalty on parameter weights. The mixture Gaussian prior behaves like
a piecewise Lo penalty with different weights on different regions. Figure |l|shows the shape of a
negative log-mixture Gaussian prior. In step (iii) of Algorithm 1, the condition 7 (v, = 1|3;) > 0.5
splits the parameters into two parts. For the 3,’s with large magnitudes, the slab component
N(0, a%’n) plays the major role in the prior, imposing a small penalty on the parameter. For the 3,’s
with smaller magnitudes, the spike component N (0, ag’n) plays the major role in the prior, imposing
a large penalty on the parameters to push them toward zero in training.

Figure [2{shows the shape of negative log-prior and 7 (v, = 1|3;) for different choices of a&n and

An. As we can see from the plot, o’&n plays the major role in determining the effect of the prior.
Let o be the threshold in step (iii) of Algorithm 1 of the main body, i.e. the positive solution to
m(v; = 1|8;) = 0.5. In general, a smaller cr%m will result in a smaller .. If a very small ag,n is used

304

254

= N
@ S

Negtive Log Prior
-
15

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 1: Negative logarithm of the mixture Gaussian prior.

in the prior from the beginning, then most of 3,’s at initialization will have a magnitude larger than «
and the slab component N (0, a%n) of the prior will dominate most parameters. As a result, it will
be difficult to find the desired sparse structure. Following the proposed prior annealing procedure,
we can start with a larger aan, i.e. a larger threshold o and a relatively smaller penalty for those

|B;] < . As we gradually decrease the value of U&n, a decreases, and the penalty imposed on the
small weights increases and drives them toward zero. The prior annealing allows us to gradually
sparsify the DNN and impose more and more penalties on the parameters close to 0.

6 Experimental Setups

6.1 Simulated examples

Prior annealing We follow simple implementation of Algorithm given in section 3.1. We run
SGHMC for T' = 80000 iterations with constant learning rate ¢; = 0.001, momentum 1—« = 0.9 and
subsample size m = 500. We set A, = le — 7,07, = le — 2, (0}%")? = e — 5, (0§"%)? = le — 6
and 77 = 5000, T, = 20000, T35 = 60000. W% fet temperature 7 = 0.1 for ¢ < T3 and for ¢ > T3,

we gradually decrease temperature 7 by 7 = T After structure selection, the model is fine tuned

for 40000 iterations. The number of iteration setup is the same as Sun et al.[(2021).

Other Methods Spinn, Dropout and DNN are trained with the same network structure using
SGD with momentum. Same as our method, we use constant learning rate 0.001, momentum 0.9,
subsample size 500 and traing the model for 80000 iterations. For Spinn, we use LASSO penalty and
the regularization parameter is selected from {0.05, 0.06, . ..,0.15} according to the performance
on validation data set. For Dropout, the dropout rate is set to be 0.2 for the first layer and 0.5 for
the other layers. Other baseline methods BART50, LASSO, SIS are implemented using R-package
randomForest, glmnet, BART and SIS respectively with default parameters.

6.2 CIFAR10

We follow the standard training procedure as in|Lin et al.|(2020), i.e. we train the model with SGHMC
for 7' = 300 epochs, with initial learning rate ¢ = 0.1, momentum 1 — o = 0.9, temperature
7 = 0.001, mini-batch size m = 128. The learning rate is divided by 10 at 150th and 225th epoch.
We follow the implementation given in section 3.1 and use 77 = 150,75 = 200,75 = 225, where
T’s are number of epochs. We set temperature 7 = 0.01 for ¢ < T3 and gradually decrease 7 by
T = 9 fort > Ty We set o, = 0.04 and (a")* = 10 x (o7!)* and use different o', A,
for different network size and target sparsity level. The detailed settings are given below:

.
5

Negtive Log Prior
o

)

—— 01=0.04,03=15e-5A,=1e-8

—— 03=0.04,03=15e—5A,=1e—-7

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

Ply=1IB)

—— 01=0.04,03=15e-5A,=1e-8

—— 03=0.04,03=15e-5A,=1e -6

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

Figure 2: Negative log-prior and 7 (~ = 1|3) for different choices of Ug,n and \,.

ResNet20 with target sparsity level 20%: (08%’1)2 =15e—5)\, =1le—8

ResNet20 with target sparsity level 10%: (a(ﬁ‘ﬁ‘l’i)2 =6e—5 M\, =1le—9

ResNet32 with target sparsity level 10%: (aﬁﬁf)z =3e—5)\,=2—9

ResNet32 with target sparsity level 5%: (Ugﬁfl)2 =le—4,\, =2e—8

References

Castillo, I. and Rousseau, J. (2015). Supplement to “a bernstein—von mises theorem for smooth
functionals in semiparametric models”. Annals of Statistics, 43(6):2353-2383.

Chen, C., Ding, N., and Carin, L. (2015). On the convergence of stochastic gradient mcmc algorithms
with high-order integrators. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 2, pages 2278-2286.

Fefferman, C. (1994). Reconstructing a neural net from its output. Revista Matemdtica Iberoameri-
cana, 10(3):507-555.

Feng, J. and Simon, N. (2017). Sparse-input neural networks for high-dimensional nonparametric
regression and classification. arXiv preprint arXiv:1711.07592.

Lin, T., Stich, S. U., Barba, L., Dmitriev, D., and Jaggi, M. (2020). Dynamic model pruning with
feedback. In International Conference on Learning Representations.

Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the
number of parameters tend to infinity. The Annals of Statistics, 16(1):356-366.

Sun, Y., Song, Q., and Liang, F. (2021). Consistent sparse deep learning: Theory and computation.
Journal of the American Statistical Association, page in press.

10

	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Theory of Prior Annealing: Proof of Theorem 3.1
	Construct Confidence Interval
	Prior Annealing
	Experimental Setups
	Simulated examples
	CIFAR10

