
Published as a conference paper at ICLR 2025

MCNC: MANIFOLD-CONSTRAINED
REPARAMETERIZATION FOR NEURAL COMPRESSION

Chayne Thrash1, Ali Abbasi1, Reed Andreas1, Parsa Nooralinejad2,
Soroush Abbasi Koohpayegani2, Hamed Pirsiavash2, Soheil Kolouri1

1Department of Computer Science, Vanderbilt University, Nashville, TN, 37235
2Department of Computer Science, University of California, Davis, CA, 95616

chayne.thrash,ali.abbasi,reed.w.andreas,soheil.kolouri@vanderbilt.edu
pnoorali,soroush,hpirsiav@ucdavis.edu

ABSTRACT

The outstanding performance of large foundational models across diverse tasks,
from computer vision to speech and natural language processing, has significantly
increased their demand. However, storing and transmitting these models poses
significant challenges due to their massive size (e.g., 750GB for Llama 3.1 405B).
Recent literature has focused on compressing the original weights or reducing the
number of parameters required for fine-tuning these models. These compression
methods generally constrain the parameter space, for example, through low-rank
reparametrization (e.g., LoRA), pruning, or quantization (e.g., QLoRA) during
or after the model training. In this paper, we present a novel model compres-
sion method, which we term Manifold-Constrained Neural Compression (MCNC).
This method constrains the parameter space to low-dimensional pre-defined and
frozen nonlinear manifolds, which effectively cover this space. Given the preva-
lence of good solutions in over-parameterized deep neural networks, we show that
by constraining the parameter space to our proposed manifold, we can identify
high-quality solutions while achieving unprecedented compression rates across
a wide variety of tasks and architectures. Through extensive experiments in
computer vision and natural language processing tasks, we demonstrate that our
method significantly outperforms state-of-the-art baselines in terms of compres-
sion, accuracy, and/or model reconstruction time. Our code is publicly available at
https://github.com/mint-vu/MCNC.

1 INTRODUCTION

Recent state-of-the-art performance in computer vision (Dosovitskiy et al., 2021; Zhai et al., 2022),
natural language processing (Brown et al., 2020; Touvron et al., 2023), speech (Zhang et al., 2023b;
Baevski et al., 2020), and other fields (Grechishnikova, 2021; Jumper et al., 2021) is often achieved
through large transformer networks (Vaswani et al., 2017) with hundreds of millions to tens of billions
of parameters, trained on vast amounts of data. For example, the Llama 3.1 model (Dubey et al.,
2024) with its 405B parameters requires around 750GB of memory. With the growing size of models
and the shift towards large foundational models, effective compression methods are increasingly vital
to reduce size without significant performance loss, enabling efficient storage, communication, and
deployment on edge devices.

Fine-tuning foundation models for custom tasks and datasets is now the gold standard for producing
high-performing, task-specific models. However, this approach raises concerns about the storage of
these customized models and creates a computational bottleneck when loading task-specific models
and transferring their weights from CPU to GPU. To address these issues, Parameter Efficient Fine-
Tuning (PEFT) methods have gained popularity in recent years. These methods focus on efficiently
compressing the residual weights or parameters needed to adapt foundation models to specific tasks.
For example, LoRA (Hu et al., 2022) imposes low-rank constraints on residual weights, reducing the
number of trainable parameters required for fine-tuning, making it a widely adopted approach.

1

https://github.com/mint-vu/MCNC

Published as a conference paper at ICLR 2025

Target
Model

ℳ: 	𝑘−dimensional manifold on 𝕊!"#

𝛼*
*

𝜙(𝛼)

𝛽𝜙(𝛼)

−𝐿, 𝐿 $ Reparameterization: Δ𝜃ℳ = 𝛽𝜙(𝛼)

Random
Feed-Forward Network

𝜙:ℝ! →	𝕊"#$

Sinusoidal
Activations

𝛼& +

𝛽& ×

𝛽𝜙(𝛼)
Δ𝜃& 𝜃'&

𝜙:ℝ$ →	𝕊!"#

Compression rate: "!%$

Lower Overhead for CPU to GPU Transfer

…

…

…

…

Figure 1: Illustration of our proposed reparameterization technique, Manifold Constrained Network
Compression (MCNC). The parameters θ ∈ Rd are decomposed as θ = θ0 + ∆θ, where θ0 is
fixed and ∆θ = βu represents the learnable residuals. Here, β is the amplitude, and u ∈ Sd−1

is a unit vector on the d-dimensional hypersphere. The unit vector u is generated by mapping a
lower-dimensional vector α ∈ Rk through a nonlinear generator ϕ : Rk → Sd−1, allowing the
learnable perturbation to lie within a k-dimensional subspace wrapped around the hypersphere. The
right panel depicts the model partitioning strategy, where the weights are divided into d-dimensional
chunks, and the corresponding (α, β) pairs are learned for each chunk.

A wide variety of methods have been proposed to compress large models (Tang et al., 2024). These
approaches can generally be grouped into five main techniques: weight sharing, quantization, pruning,
knowledge distillation, and reparameterization. Relevant to our method, the reparameterization
approaches (Hu et al., 2022; Nooralinejad et al., 2023; Girish et al., 2023; Koohpayegani et al., 2024)
aim to reduce the number of parameters or simplify the computations by restructuring the model
weights. This often involves parameterizing the weights through more efficient forms, such as low-
rank matrices (Hu et al., 2022), which can maintain the model’s expressiveness while significantly
reducing computational and memory overhead. In this paper, we introduce a novel non-linear
reparameterization technique for model compression, which achieves unprecedented performance at
extreme compression rates while reducing the CPU-to-GPU transfer time when loading networks.

Our work in this paper draws inspiration from recent reparameterization methods such as PRANC
(Nooralinejad et al., 2023) and NOLA (Koohpayegani et al., 2024). These methods take advantage
of the fact that overparameterized neural networks with d parameters often have a large number
of good solutions (Liu et al., 2022). Hence, by restricting the search for optimal solutions to
random k-dimensional subspaces within the parameter space, where k ≪ d, they provide significant
compression, i.e., d

k , without sacrificing performance. In this paper, we take a different approach
and ask: Could better solutions be found by expanding the complexity of the search space from a
random subspace (Nooralinejad et al., 2023; Koohpayegani et al., 2024) to a k-dimensional nonlinear
manifold that more efficiently captures the structure of the parameter space? Below, we introduce the
core idea of our method through a thought experiment.

Winding a string around a sphere. Consider optimizing a model with parameters θ ∈ Rd, where
θ = θ0 + ∆θ, with θ0 fixed. Using polar decomposition, we express ∆θ = βu, where β ∈ R
is the amplitude and u = ∆θ

∥∆θ∥2
∈ Sd−1 represents the direction on the hypersphere Sd−1. Now,

consider a segment of the real line [−L,L], representing a string of length 2L, wrapped around
Sd−1, parameterizing a one-dimensional manifold with α ∈ [−L,L]. Instead of optimizing in
d-dimensional space, we optimize over the amplitude β and the manifold parameter α. Figure 1
(left panel) illustrates this for d = 3. Extending this, we replace the segment with a k-dimensional
space [−L,L]k, wrapping it around Sd−1 to increase coverage. This reduces the parameter space
from d to k + 1, reparameterizing θ by α and β. To wind such a k-dimensional subspace around
the d-dimensional hypersphere Sd−1, we propose to use a random feedforward neural network
with sinusoidal activations, which we refer to as the ‘random generator.’ Sinusoidal activations are
essential because they introduce periodicity in parameterization, facilitating smoother and more
uniform coverage of the hypersphere and enhancing the differentiability of the generator.

Contributions. Our specific contributions in this work are:

1. Introducing a novel non-linear reparameterization technique for model compression, which
we term Manifold-Constrained Neural Compression (MCNC). This method restricts the

2

Published as a conference paper at ICLR 2025

optimization of network parameters to a k-dimensional manifold within the original d-
dimensional parameter space, enabling more efficient compression.

2. Demonstrating the effectiveness of our proposed method compared to recent network
compression methods in the literature across vision and natural language processing tasks
and across diverse architectures.

2 RELATED WORK

Our goal in this paper is to train a deep model with a minimal number of parameters, making it more
efficient to communicate models between agents/entities or store on devices with limited memory.
Our compact representation makes no assumptions about the model size, weight distribution, the
number of non-zero parameters, or computational precision, making it orthogonal to methods like
weight-sharing, quantization, pruning, and knowledge distillation. Hybrid approaches could integrate
Manifold Constrained Neural Compression (MCNC) with these techniques. In the following, we
briefly review these methods, which aim to reduce the model size and improve the inference time.

Weight sharing can be enforced through the model architecture, such as with convolutional kernels
(Krizhevsky et al., 2012), recurrent networks (Hochreiter & Schmidhuber, 1997), or other hybrid
architectures (Dehghani et al., 2019). It can also be achieved post-training via clustering mechanisms
(Nowlan & Hinton, 1992; Ullrich et al., 2017) or hashing (Chen et al., 2015; Eban et al., 2020;
Reagan et al., 2018) to bundle the weights of a model into a few shared components. Other notable
weight sharing methods proposed in recent years include (Gao et al., 2019; Plummer et al., 2022;
Shakerinava et al., 2024). Similar to weight sharing methods, MCNC uses a trains weights in a
higher dimensional space using a low dimensional representation. However, MCNC is a general
reparameterization that can be combined with weight-sharing techniques, e.g., layers in the network
can share low-dimensional parameters to enhance compression.

Quantization is a widely used model compression technique that reduces the bit-width needed to rep-
resent model weights and activations. For instance, Rastegari et al. (2016) proposed XNOR-Networks,
where binary operations are used in a network with XNOR gates to approximate convolutions, leading
to a reported 58× speedup and 32× memory savings. The core challenge with these techniques
is that naive quantization of models often results in a significant performance drop. On the other
hand, quantized training/fine-tuning is often formulated as a constrained optimization problem that
requires specialized optimization techniques (Lee et al., 2021). A large body of recent work focuses
on effective quantization methods for large models (Xiao et al., 2023; shkolnik et al., 2020; Yao et al.,
2023; Dettmers et al., 2024). In the extreme case, quantization reduces float32 to binary, achieving
32× compression. In this paper, we target higher compression rates.

Pruning is a primary technique for network compression, as highlighted in several studies (Hassibi
et al., 1993; Kim et al., 2020; Lin et al., 2020; Siems et al., 2021; Tiwari et al., 2021; Hayou et al., 2020;
Wang et al., 2020a; Li et al., 2021; Rastegari et al., 2016; Lee et al., 2021). High compression rates are
achievable through methods like those in (Kusupati et al., 2020b; Isik et al., 2022; Zhang et al., 2022;
Sun et al., 2024), making pruning one of the main methods for network compression. Unstructured
pruning zeros out many parameters, storing only the non-zero weights and their indices. Compression
efficiency could further be improved with coding strategies like Huffman or Run-Length Encoding
(RLE) (Han et al., 2015a). More recently, various works have considered structured/structural pruning
removing entire modules from a network while preserving the performance (Anwar et al., 2017;
Fang et al., 2023). We show that MCNC matches the performance of pruning methods at lower
compression rates while outperforming them at higher rates.

Compression by reparameterization has recently emerged as a powerful method for efficiently
compressing large models. LoRA (Hu et al., 2022) introduced low-rank reparameterization for
fine-tuning large models, inspiring many extensions (Valipour et al., 2023; Zhang et al., 2023a;
Dettmers et al., 2024; Koohpayegani et al., 2024). PRANC (Nooralinejad et al., 2023), closely related
to our work, constraints model weights to a randomly selected low-dimensional subspace. NOLA
(Koohpayegani et al., 2024) combines ideas from PRANC and LoRA, pushing low-rank PEFT below
the classic rank-one limit. NOLA and PRANC assume that good solutions lie on low-dimensional
nonlinear manifolds within the overparameterized model’s parameter space (Liu et al., 2022; Li
et al., 2018), making it likely that a random subspace will intersect this manifold, allowing for viable
solutions within the subspace.

3

Published as a conference paper at ICLR 2025

This paper stems from our curiosity to explore whether a random k-dimensional manifold in a
d-dimensional parameter space (k ≪ d) can be constructed to maximize coverage, thereby increasing
the likelihood of intersecting the manifold of good solutions. Hence, our method can be considered
as a generalization of PRANC (Nooralinejad et al., 2023) and NOLA (Koohpayegani et al., 2024).

Manifold constrained optimization has been employed in various works to constrain model pa-
rameters to a Riemannian manifold in order to induce various geometric characteristics (Fei et al.,
2023). For instance, some methods require that the model parameters reside on or be close to the
Stiefel manifold, i.e., the set of k orthonormal vectors in Rd, to reduce redundant representations
(Ozay & Okatani, 2016; Huang et al., 2018; Wang et al., 2020b). Manifold-constrained optimization
(Absil et al., 2008; Boumal, 2023) in neural networks is gaining significant attention, as evidenced by
recent developments in geometric optimization libraries for deep learning (Meghwanshi et al., 2018;
Kochurov et al., 2020; Luchnikov et al., 2021). In this work, we use a random feed-forward network
with sinusoidal activations to parameterize a low-dimensional manifold within a higher-dimensional
hypersphere. We constrain optimization to this manifold, relying exclusively on standard (stochastic)
gradient descent, avoiding the need for Riemannian optimization.

3 METHOD

At its core, Manifold Constrained Neural Compression (MCNC) relies on two key components: 1)
an explicit nonlinear mapping that wraps a k-dimensional space around a sphere in a d-dimensional
space, where k ≪ d, and 2) partitioning the model’s parameters into d-dimensional segments and
optimizing them in the k-dimensional input space of the nonlinear map. This process would result in
a compression rate of almost d/k.

Notations and Preliminaries. Let θ ∈ Rd denote a partition of the model parameters, which we
aim to optimize. Through polar decomposition, we express θ by its amplitude β = ∥θ∥ and its
direction u = θ/∥θ∥2. Additionally, we denote the d-dimensional unit sphere with Sd−1. Our goal
is to reparameterize u ∈ Sd−1 using significantly fewer parameters than d. To achieve this, we will
employ a ‘generator’ model to explicitly parameterize a k-dimensional manifold that best represents
the d-dimensional hypersphere.

3.1 TRAVERSING A HIGH-DIMENSIONAL SPHERE BY A LOW-DIMENSIONAL MANIFOLD

Rationale. We aim to model a d-dimensional hypersphere using a k-dimensional manifold. For
clarity, let’s examine this concept in a simpler scenario: consider d = 3, corresponding to a sphere,
and k = 1, akin to a string. This familiar setting helps illustrate our objective. Given a string of a
specific length, how can we most effectively cover the surface of the sphere? The answer is intuitive:
simply wrap the string around the sphere. This wrapping acts as a nonlinear operator that takes a
straight line and deforms it around the sphere. Similarly, a k-dimensional input space can be wrapped
via a nonlinear function, i.e., a generator, around a hypersphere in the d-dimension. Next, we discuss
how to formalize this problem.

Formalizing the problem. To traverse a hypersphere using a low-dimensional manifold, we aim
to maximize its coverage. We formalize this problem as follows: Let U([−L,L]k) be the uniform
distribution over the k-dimensional hypercube [−L,L]k, and U(Sd−1) the uniform distribution
over the d-dimensional hypersphere Sd−1. Our goal is to develop a nonlinear mapping that wraps
the k-dimensional hypercube around the d-dimensional hypersphere, maximizing coverage. This
problem can be formalized as finding a nonlinear function ϕ : Rk → Rd that transforms U([−L,L]k)
into U(Sd−1), mapping samples α ∼ U([−L,L]k) to the hypersphere such that ϕ(α) ∼ U(Sd−1).
Hence, we need to have a way to measure the uniformity of the ϕ(α)s. To do that, we measure the
Wasserstein distance (Peyré et al., 2019) between the output probability distribution of ϕ and the
uniform distribution on the hypersphere.

Modeling the generator. We model the generator, ϕ : Rk → Rd, via a feed-forward network. We
consider various activation functions, including the Sigmoid, Rectified Linear Unit (ReLU), and Sine
activation (Sitzmann et al., 2020). First, we ask whether a randomly initialized network can provide
the desired characteristics. Second, we ask whether we can optimize such a generator to provide
maximal space traversal. We note that optimizing such generator model mirrors the challenges of
deep generative modeling, a subject thoroughly investigated in literature (Goodfellow et al., 2014;
Arjovsky et al., 2017; Deshpande et al., 2018). We emphasize that our decision to use the uniform
distribution on Sd−1 as our target distribution stems from an assumption of no prior knowledge about

4

Published as a conference paper at ICLR 2025

Re
LU

Si
ne

Si
gm

oi
d

L = 1 L = 10 L = 50 L = 100 L = 1000 L = 100 L = 1000

Randomly Initialized Optimized

Figure 2: Traversal of a sphere using a 1-dimensional manifold, where ϕ : R → S2 is a multi-layer
perceptron with architecture 1 → 1024 → 1024 → 3 and activation functions Sigmoid, ReLU, or
Sine. The input bound L is absorbed into the first layer’s weights. The left panel displays outputs
of randomly initialized networks for different activations and L values, while the right panel shows
outputs after optimization. Uniformity is quantified using exp(−τW 2

2 (µ̂, ν)), with τ = 10.0 and W2

representing the Wasserstein distance between the network’s output µ̂ and the uniform distribution ν.
the importance of different directions for the downstream task of optimizing a network. Should such
information become available, the target distribution could be adjusted to reflect this knowledge,
allowing for more precise wrapping around areas of greater importance. In this paper, we used the
SWGAN (Deshpande et al., 2018) framework to train the generator due to its simplicity.

As a guiding example for developing our generator, we consider the case where k = 1, d = 3, and ϕ
is modeled as a feed-forward network with the architecture 1 → 1024 → 1024 → 3. Figure 2 shows
the output of ϕ for randomly initialized networks with various activation functions, along with the
outputs after optimization. We evaluate uniformity by reporting exp(−τW 2

2 (µ̂, ν)), where µ̂ is the
output distribution of ϕ and ν represents the uniform distribution on Sd−1. These results are presented
in Figure 2. Interestingly, we observe that for larger values of L, the randomly initialized network
with Sine activations achieves strong coverage of the sphere, with optimization only marginally
improving the coverage. Therefore, in our main results, we use a randomly initialized feed-forward
network with Sine activations as the generator while also conducting an ablation study on the impact
of training the generator. Notably, the random generator can be efficiently stored or communicated
using a scalar random seed, assuming access to a shared pseudo-random number generator (PRNG).

3.2 REPARAMETERIZATION AND MANIFOLD CONSTRAINED OPTIMIZATION

Given a random generator model, ϕ : Rk → Sd−1, we reparameterize a d-dimensional residual vector
as ∆θ = βϕ(α), where β ∈ R and α ∈ Rk, thereby reducing the number of parameters from d to
k + 1. Figure 1 illustrates this concept. Let L : Rd → R denote the loss function for a specific task
of interest, e.g., image classification, where L(θ) is the associated loss with parameter θ. We then
constrain the training of the parameter θ as:

θ∗ =θ0 + β∗ϕ(α∗), (α∗, β∗) = argmin
α,β

L(θ0 + βϕ(α)) (1)

Note that we use θ0 to emphasize that optimization can begin from any random initialization or
pre-trained weights, such as those used in PEFT. This optimization process constrains the model
parameters, θ, to lie on a k-dimensional manifold within Sd−1, which is parameterized by ϕ.

3.3 LEARNING THE DEEP MODEL

We initialize the generator ϕ(.) randomly once and freeze it. Then, given a deep model, we reshape
its parameters to a long vector and then divide that into chunks of size d, and reparameterize each
chunk with k + 1 parameters using the generator ϕ(.). In the case the model size is not divisible by

5

Published as a conference paper at ICLR 2025

Table 1: Comparison of our method with pruning techniques on ViT-Ti and ViT-S models
trained on ImageNet-100. We exclude position embeddings, CLS token, and Layer Normalization
parameters when computing the percentage of model size.

ViT-Ti
Method Percentage of Acc.

Model Size
Baseline 100% 83.5
Magnitude 2015b (Pr. 66.7%)

50%
80.4

PLATON 2022 (Pr. 66.7%) 81.6
MCNC (Ours) 80.0
Magnitude 2015b (Pr. 86.7%)

20%
73.0

PLATON 2022 (Pr. 86.7%) 76.1
MCNC (Ours) 77.1
Magnitude 2015b (Pr. 93.3%)

10%
60.9

PLATON 2022 (Pr. 93.3%) 67.2
MCNC (Ours) 72.9
Magnitude 2015b (Pr. 96.7%)

5%
45.8

PLATON 2022 (Pr. 96.7%) 55.0
MCNC (Ours) 69.1
Magnitude 2015b (Pr. 98.7%)

2%
29.4

PLATON 2022 (Pr. 98.7%) 39.0
MCNC (Ours) 61.3
Magnitude 2015b (Pr. 99.3%)

1%
21.2

PLATON 2022 (Pr. 99.3%) 30.6
MCNC (Ours) 52.9

ViT-S
Method Percentage of Acc.

Model Size
Baseline 100% 83.9
Magnitude 2015b (Pr. 83.3%)

25%
79.8

PLATON 2022 (Pr. 83.3%) 82.2
MCNC (Ours) 82.7
Magnitude 2015b (Pr. 93.3%)

10%
72.0

PLATON 2022 (Pr. 93.3%) 77.4
MCNC (Ours) 80.2
Magnitude 2015b (Pr. 96.7%)

5%
66.0

PLATON 2022 (Pr. 96.7%) 71.1
MCNC (Ours) 76.3
Magnitude 2015b (Pr. 98.7%)

2%
41.5

PLATON 2022 (Pr. 98.7%) 57.6
MCNC (Ours) 66.7

d, the last chunk will have some extra parameters that will be ignored. Finally, we train the model
by optimizing (α, β) for all chunks using Eq 1 to minimize the loss of the deep model on the task
of interest, e.g., image classification. The backpropagation is as simple as calculating the gradient
for model parameters and then using the chain rule to backpropagate through the generator ϕ(.).
Hence, auto-differentiation can be directly used to optimize αs and β without the need for geometric
optimization techniques.

4 EXPERIMENTS

To demonstrate the performance of our method, we evaluate MCNC under two different settings:

1. Training from scratch for image classification. In this setting, we let θ0 be a randomly
initialized network and optimize using MCNC. Note that since a randomly initialized
network can be communicated using only the random seed, this does not increase the cost
of compression. We show our effectiveness at compressing both Vision Transformer (ViT)
(Dosovitskiy et al., 2021) and ResNet (He et al., 2016) architectures.

2. Parameter Efficient Fine-Tuning of LLMs. In this setting, we instead begin with a pre-
trained θ∗ and optimize the ∆θ via MCNC. We conduct this experiment for LLMs where
fine-tuning of large models has become the norm.

Given that our method is orthogonal to the low-rank parameterization used in LoRA (Hu et al., 2022),
we reparameterize either the original networks or their rank-constrained versions in our experiments.

4.1 TRAINING IMAGE CLASSIFIERS FROM SCRATCH

ImageNet-100 on Vision Transformer Architectures. We begin by evaluating on training Vision
Transformers from scratch on the ImageNet-100 dataset (Tian et al., 2020). We evaluate on both
ViT-Ti and ViT-S (Touvron et al., 2021). We compare MCNC against iterative unstructured pruning
method PLATON (Zhang et al., 2022) as well as the classic Magnitude pruning (Han et al., 2015b).
We report the final compressed model size as a percentage. As unstructured pruning also requires
storing the indices of non-zero values, these must be accounted for when computing the compression
rate. Although this requires storing two values per weight, the number of bits required for each index
can be reduced by storing the distance between each non-zero value (Han et al., 2015a). Therefore,
we assume half-precision for the indices and prune to sparsity rates 50% higher than the desired
compression. We exclude position embeddings, CLS token, and Layer Normalization (Ba et al.,
2016) parameters from all compression methods. We provide hyperparameters used for our method
and baselines in section A.3. Table 1 show our results on ViT-Ti and ViT-S. Our results show that,
particularly for high compression rates, MCNC is more effective than pruning for compression.

6

Published as a conference paper at ICLR 2025

Table 2: Comparison with PRANC and NOLA on ImageNet-100 using ResNet-18 with multiple
compression rates.

Method Ref
Percentage of

Model Size Acc.

Baseline - 100% 82.1

Ours -
50%

80.7± 0.4
Ours w/ LoRA - 79.1± 0.7
Ours -

20%
79.9± 0.3

Ours w/ LoRA - 80.0± 0.2
Ours -

10%
78.0± 0.0

Ours w/ LoRA - 80.3± 0.5
Ours -

5%
75.4± 0.2

Ours w/ LoRA - 79.6± 0.1
PRANC 2023 2023

2%
67.3

Ours - 70.2± 0.1
Ours w/ LoRA - 76.9 ± 0.2
PRANC 2023 2023

1%

61.1
NOLA 2024 2024 64.7
Ours - 63.4± 0.2
Ours w/ LoRA - 71.7 ± 0.3

For ViT-Ti, we outperform pruning by 8% at 10% of the original model size. On ViT-S, although
pruning methods are able to outperform at higher compression rates, we see that our method is able
to maintain high performance as we decrease model size.

ImageNet-100 on ResNet-18. Next, we show that our method works across architectures by training
from scratch on ImageNet-100 using the ResNet-18 (He et al., 2016) architecture. We compare with
other recent network reparameterization methods PRANC (Nooralinejad et al., 2023) and NOLA
(Koohpayegani et al., 2024). Since it was shown in (Koohpayegani et al., 2024) that reparameterizing
LoRA rather than the original model architecture can boost performance, we also show results of
our method in this setting. Results are shown in Table 2. Our method demonstrates a 7% accuracy
improvement over the baselines at 1% of the original model size. In addition, as we reduce the
compression rate we see that we can recover up to 97% of the original model accuracy at 10% of the
size.

CIFAR-10 and CIFAR-100. We compare MCNC on CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) with both pruning methods as well as PRANC (Nooralinejad et al., 2023) and NOLA
(Koohpayegani et al., 2024) under extreme compression rates. We show results on the two datasets
using both ResNet-20 and ResNet-56. For the pruning methods and PRANC, we directly compare
with the results reported in (Nooralinejad et al., 2023). We present results for these experiments in
Table 3. It can be seen that MCNC is able to consistently outperform all other methods while using a
similar number of parameters. In addition, just as NOLA improves upon PRANC with the addition
of LoRA, MCNC gains a boost as well.

4.2 MCNC FOR FINE-TUNING LARGE LANGUAGE MODELS

In this section, we compared the performance of MCNC and NOLA in parameter-efficient fine-tuning.
We conducted fine-tuning experiments on two variants of the LLaMA-2 (Touvron et al., 2023)
language model, LLaMA 7B, and LLaMA 13B, using the Alpaca dataset as our training data (Taori
et al., 2023). We report both training loss and validation loss on the Alpaca dataset. Additionally,
we report MMLU (Massively Multitask Language Understanding) (Hendrycks et al., 2021) 5-shot
accuracy following the standard practice. This benchmark spans 57 tasks across diverse fields such as
computer science, mathematics, law, and history.

Implementation Details: We use the training code from QLoRA (Dettmers et al., 2023) and NOLA
(Koohpayegani et al., 2024) for our experiments. We quantize the original parameters of the language
model to 4-bit and apply and fine-tune the adapter on all layers of the transformer. For NOLA, we
followed the hyperparameters reported in (Koohpayegani et al., 2024). We set the rank to 8 for both
NOLA and our method in LLaMA 7B, and to 16 in LLaMA 13B. In our method, we use a generator
with the following specifications: a 3-layer MLP with an input dimension of 5, an output dimension
of 5000, and a hidden dimension of 32. In NOLA, we use 64 bases for A and B in LLaMA 7B

7

Published as a conference paper at ICLR 2025

Table 3: Comparison of our method with pruning methods as well as PRANC and NOLA. We
include results for our method with and without LoRA applied to each of the layers. As none of the
methods compress BatchNorm parameters, we remove them from all parameter counts.

Method Ref Arch. Dataset # Params Acc.
Baseline - R20 C10 269, 722 88.9
STR 2020a 2023 R20 C10 12, 238 76.0
PRANC 2023 2023 R20 C10 10, 000 81.5
NOLA 2024 2024 R20 C10 11, 500 82.4
MCNC (Ours) w/o LoRA - R20 C10 10, 380 82.3± 0.3
MCNC (Ours) w/ LoRA - R20 C10 9, 640 83.9±0.1

Baseline - R56 C10 853, 018 91.6
DPF 2020 2023 R56 C10 13, 414 47.7
SuRP 2022 2023 R56 C10 10, 834 66.7
STR 2020a 2023 R56 C10 13, 312 67.8
PRANC 2023 2024 R56 C10 5, 000 76.9
NOLA 2024 - R56 C10 5, 000 78.5± 0.1
MCNC (Ours) w/o LoRA - R56 C10 5, 280 78.7± 0.2
MCNC (Ours) w/ LoRA - R56 C10 5, 590 81.5±0.2

Baseline - R20 C100 275, 572 60.8
DPF 2020 2023 R20 C100 10, 770 12.2
SuRP 2022 2023 R20 C100 6, 797 14.5
STR 2020a 2023 R20 C100 10, 673 13.2
PRANC 2023 2023 R20 C100 5, 000 32.3
NOLA 2024 - R20 C100 5, 180 35.6± 0.1
MCNC (Ours) w/o LoRA - R20 C100 5, 110 34.7± 0.2
MCNC (Ours) w/ LoRA - R20 C100 5, 070 36.7±0.2

Baseline - R56 C100 858, 868 64.3
DPF 2020 2023 R56 C100 19, 264 19.1
SuRP 2022 2023 R56 C100 10, 919 14.6
STR 2020a 2023 R56 C100 18, 881 26.0
PRANC 2023 2023 R56 C100 5, 000 33.0
NOLA 2024 - R56 C100 5, 000 36.2± 0.6
MCNC (Ours) w/o LoRA - R56 C100 5, 049 35.2± 0.1
MCNC (Ours) w/ LoRA - R56 C100 5, 015 36.5± 0.8

Table 4: Instruction finetuning for quantized LLaMA-2: We fine-tune LLaMA-2 with the Alpaca
dataset and compare MCNC to NOLA, maintaining the same number of parameters for both. "Gener-
ation GFLOPs" refers to the FLOPs needed to generate the original parameters of the adapter on the
fly. MCNC achieves comparable performance to NOLA while requiring fewer FLOPs for on-the-fly
parameter generation. This efficiency results in faster inference and training for MCNC compared to
NOLA. We use a single RTX 3090 GPU to calculate the throughput. Note that the throughput here
includes both the adapter’s reconstruction and the forward pass through the base model and adapter.

LLaMA-2 - 7B (4-bit)

Method Trainable MMLU Train Val Throughput Adapter Model
Parameters Acc Loss Loss (Samples/Sec) Reconstruction GFLOPs

LoRA (rank=1) 2022 2.5M 45.6 0.98 1.06 7.1 -
NOLA 2024 28k 45.5 1.08 1.01 3.1 2.56
MCNC 25k 45.9 1.03 1.01 6.2 1.37

LLaMA-2 - 13B (4-bit)

LoRA (rank=1) 2022 3.9M 54.8 0.94 0.97 4.1 -
NOLA 2024 78k 54.8 1.00 0.96 1.7 17.53
MCNC 77k 55.0 1.00 0.95 3.9 4.22

and 140 bases for LLaMA 13B. These numbers of bases result in the same number of optimized
parameters as our method for each architecture. All other hyperparameters were identical for both
methods except the learning rate; we used lr = 0.001 for NOLA and 0.01 for ours.

Results: The results are presented in Table 4. MCNC has comparable performance to NOLA with
a similar number of parameters. However, MCNC requires 46% fewer GFLOPs for generating

8

Published as a conference paper at ICLR 2025

parameters on the fly compared to NOLA. This efficiency translates into faster inference and training
for MCNC compared to NOLA. As shown in Table 4, MCNC achieves double the throughput
for LLaMA 7B and 2.2 times higher throughput for LLaMA 13B. While it is feasible to generate
parameters offline and merge them with the original weights of the language model, this approach
limits the applications when processing multiple tasks and their corresponding adapters in a batch.
Therefore, in scenarios involving batch processing of tasks, MCNC holds an advantage over NOLA
due to its faster throughput.

4.3 ABLATION STUDIES
In the previous experiments, we’ve shown the effectiveness of our method in training large models
constrained to our low dimensional manifold. However, as the manifold is modeled as a neural
network, the design space of the manifold itself is large. We explore the effect of various design deci-
sions by applying different generator variations to the task of MNIST classification. We intentionally
choose a very small dataset so that we can afford running several experiments. Full details of our
experimental setup are found in section A.4.

Table 5: The impact of MCNC activa-
tion function on MNIST classification.

Activation Function Acc.
None (linear) 81.6± 0.5

ReLU 76.0± 2.8
Leaky ReLU 76.9± 1.6

ELU 81.3± 0.2
Sigmoid 83.7± 0.7

Sine 84.6 ± 0.7

Effect of choice of activation function: In section 3.1,
we show that for k = 1 and d = 3, a randomly initial-
ized MLP with sinusoid activations can effectively cover
Sd−1. For this reason, we selected Sine as our activation
function. It’s worth asking, however, if this coverage is
truly important and whether other activation functions may
actually provide better performance. We explore this in
Table 5 by comparing against ReLU, Leaky ReLU, ELU,
Sigmoid, and no activation function. For the no activation
experiment, we no longer train a separate amplitude as
the magnitude of the inputs directly control the output
magnitudes. Instead, we add this additional parameter as
an additional input to the generator. From the results, it can be seen that many activation function
choices are actively harmful and perform worse than none. Sigmoid and Sine activations are the only
ones that outperform none with Sine performing the best. Importantly, when no activation is used,
our method recovers a variation of PRANC (Nooralinejad et al., 2023).

Table 6: The effect of frequency of first
layer of Sine activations on the accu-
racy of MNIST.

Input Frequency Acc.
1.0 81.9± 0.4
2.0 83.5± 0.2
4.0 85.1± 0.2
8.0 84.7± 0.4
16.0 85.0± 0.4
32.0 85.5± 0.4

Effect of generator input frequency: As shown in Sec-
tion 3.1, the magnitude of the input to the generator, i.e.,
L, controls the number of twists and turns in the manifold.
While this twisting is necessary to effectively cover a high
dimensional space, it is also likely to increase optimiza-
tion difficulty. It’s worth asking then how different settings
of this value affect compression of downstream models.
To test this, we multiply the inputs to the generator by a
constant associated with the frequency and show results in
Table 6. It’s immediately apparent that higher frequencies
are necessary to achieve high performance as a frequency
value of 1.0 performs similarly to a linear generator. Small
increases in frequency greatly increase performance until saturation at 4.0.

Table 7: Impact of increasing model
size with fixed number of compressed
parameters on MNIST classification.

Hidden Size Acc.
16 81.1± 0.3
32 82.5± 1.1
64 84.0± 0.7
128 83.9± 1.3
256 84.6± 0.4
512 85.2± 0.2

Varying model size with fixed number of compressed
parameters: A unique aspect of MCNC is that the total
number of trainable parameters can be fixed regardless of
the number of model parameters by varying its compres-
sion rate. This allows us to study how performance scales
as model complexity increases while the number of train-
able parameters remains the same. As model complexity
increases, the number of good solutions should increase.
Thus, we anticipate that this over-parameterization will
facilitate finding high performing compressed models re-
gardless of the number of trainable parameters. We varied
the MLP hidden size while maintaining the number of
trainable parameters from the previous experiments and
present the results in Table 7. As expected, we see a consistent increase in accuracy as model size

9

Published as a conference paper at ICLR 2025

increases. While smaller architectures can occasionally achieve higher accuracy, the high standard
deviations indicate that their optimization often fails to find good solutions.

Table 8: CPU to GPU transfer time of uncom-
pressed/compressed ViT-S model (100x).

Uncompressed Compressed Speedup
35.5 ms 17.8 ms 2.0x

Speedup of CPU to GPU transfer: By decreas-
ing the overall size of the model, MCNC can
also be used to reduce the time taken to move
large models from CPU to GPU. As long as the
generator is loaded into GPU memory, only the
much smaller set of αs must be transferred from
CPU to GPU and then expanded into the full model using the generator. To show this can result in a
speedup, we compare the time to load ViT-S from CPU to GPU memory with the time to load and
expand the αs associated with a ViT-S compressed by 100x. We perform this experiment 100 times
using an RTX A6000 and report the average timings in Table 8. These results show that, despite
having to complete a forward pass of the generator, we are still able to reduce transfer time by half.

Table 9: Impact of using a random vs. trained generator
on CIFAR10/100 classification with different models.

Arch. Dataset Acc. Random Acc. Trained
R20 C10 82.3 ± 0.3 82.4 ± 04

R56 C10 78.7 ± 0.2 79.2 ± 02
R20 C100 34.7 ± 0.2 36.1 ± 0.6

R56 C100 35.2 ± 0.1 36.7 ± 0.5

Effect of training on the generator:
In Section 3.1, we demonstrated that
training a generator only slightly im-
proves its coverage of the hypersphere.
To further investigate the impact of
using trained generators, we applied
MCNC with both random and trained
generators on CIFAR-10/100. The re-
sults presented in Table 9 show consis-
tent but only marginal improvements
in accuracy when using trained gen-
erators. Given the advantages of random generators, including: 1) easy scalability to different
compression rates, 2) storage and communication efficiency (only requiring a random seed), and 3)
potential cryptographic benefits, we used random generators for our main experiments.

5 CONCLUSION AND LIMITATIONS
Leveraging the prevalence of viable solutions in training overparameterized deep models, we have
developed a nonlinear reparameterization method aimed at exploring local minima within a low-
dimensional manifold of the parameter space. This approach utilizes a generator model that maps a
low-dimensional uniform distribution to a high-dimensional uniform distribution, effectively wrapping
the low-dimensional input subspace around the high-dimensional hypersphere. Through extensive
experiments in computer vision and NLP tasks, we demonstrate that our method, MCNC, significantly
outperforms state-of-the-art baselines in terms of accuracy and/or model reconstruction time. We
believe this technique can enhance the storage and deployment of large models, which are integral to
the recent advancements in AI, thus facilitating more democratized access to AI tools. However, this
may result in negative impacts by putting AI in the hands of many non-sophisticated adversaries.

Limitations: We have not fully explored the optimal generator model configuration, including its
architecture, loss function, and types of regularizers, and their effects on the downstream optimization.
Moreover, due to computational constraints, we have not shown the effect of MCNC in training large
language models from scratch, which may reveal the most important impact of MCNC.

ACKNOWLEDGEMENT

This work was partially supported by DARPA under Contract No. HR00112190135 and
HR00112290115 and NSF grants 1845216 and 2339898, and NSF CAREER Award 2339898.

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
Princeton University Press, 2008. 4

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):1–18,
2017. 3

10

Published as a conference paper at ICLR 2025

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017. 4

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450. 6

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020. 1

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023. 4

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. 1

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. In International conference on machine learning, pp. 2285–2294.
PMLR, 2015. 3

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7. 3

Ishan Deshpande, Ziyu Zhang, and Alexander G Schwing. Generative modeling using the sliced
wasserstein distance. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3483–3491, 2018. 4, 5

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023. 7

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024. 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy. 1, 6

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024. 1

Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, and
Miguel A Carreira-Perpinán. Structured multi-hashing for model compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11903–11912, 2020.
3

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16091–16101, June 2023. 3

Yanhong Fei, Xian Wei, Yingjie Liu, Zhengyu Li, and Mingsong Chen. A survey of geometric
optimization for deep learning: From euclidean space to riemannian manifold. arXiv preprint
arXiv:2302.08210, 2023. 4

11

http://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Published as a conference paper at ICLR 2025

Shangqian Gao, Cheng Deng, and Heng Huang. Cross domain model compression by structurally
weight sharing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8973–8982, 2019. 3

Sharath Girish, Kamal Gupta, Saurabh Singh, and Abhinav Shrivastava. Lilnetx: Lightweight
networks with EXtreme model compression and structured sparsification. In The Eleventh Inter-
national Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=NVZvalzCLg. 2

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014. 4

Daria Grechishnikova. Transformer neural network for protein-specific de novo drug generation as a
machine translation problem. Scientific reports, 11(1):321, 2021. 1

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.
3, 6

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015b. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf. 6

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993. 3

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust pruning at initializa-
tion. arXiv preprint arXiv:2002.08797, 2020. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 6, 7

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021. 7

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 3

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9. 1, 2, 3, 6, 8

Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang Wang, and Bo Li. Orthogonal weight
normalization: Solution to optimization over multiple dependent stiefel manifolds in deep neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. 4

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015. 17

Berivan Isik, Tsachy Weissman, and Albert No. An information-theoretic justification for model
pruning. In International Conference on Artificial Intelligence and Statistics, pp. 3821–3846.
PMLR, 2022. 3, 8

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021. 1

12

https://openreview.net/forum?id=NVZvalzCLg
https://openreview.net/forum?id=NVZvalzCLg
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Published as a conference paper at ICLR 2025

Woojeong Kim, Suhyun Kim, Mincheol Park, and Geunseok Jeon. Neuron merging: Compensating
for pruned neurons. Advances in Neural Information Processing Systems, 33:585–595, 2020. 3

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980. 17

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
arXiv preprint arXiv:2005.02819, 2020. 4

Soroush Abbasi Koohpayegani, Navaneet K L, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing LoRA using linear combination of random basis. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=TjfXcDgvzk. 2, 3, 4, 7, 8, 17

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
7

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012. 3

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International
Conference on Machine Learning, pp. 5544–5555. PMLR, 2020a. 8

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Proceedings of
the International Conference on Machine Learning, July 2020b. 3

Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-wise gradient
scaling. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6448–6457, 2021. 3

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=ryup8-WCW. 3

Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye, Mengdi Wang, Fei Chao, Fan Yang, Jincheng
Ma, Qi Tian, and Rongrong Ji. Towards compact cnns via collaborative compression. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6438–6447,
2021. 3

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model
pruning with feedback. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJem8lSFwB. 3, 8

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022. 2, 3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7. 17

Ilia Luchnikov, Alexander Ryzhov, Sergey Filippov, and Henni Ouerdane. Qgopt: Riemannian
optimization for quantum technologies. SciPost Physics, 10(3):079, 2021. 4

Mayank Meghwanshi, Pratik Jawanpuria, Anoop Kunchukuttan, Hiroyuki Kasai, and Bamdev Mishra.
Mctorch, a manifold optimization library for deep learning. arXiv preprint arXiv:1810.01811,
2018. 4

13

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=ryup8-WCW
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Published as a conference paper at ICLR 2025

Parsa Nooralinejad, Ali Abbasi, Soroush Abbasi Koohpayegani, Kossar Pourahmadi Meibodi, Rana
Muhammad Shahroz Khan, Soheil Kolouri, and Hamed Pirsiavash. PRANC: Pseudo random
networks for compacting deep models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 17021–17031, 2023. 2, 3, 4, 7, 8, 9, 17

Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weight-sharing. Neural
Computation, 4(4):473–493, 1992. 3

Mete Ozay and Takayuki Okatani. Optimization on submanifolds of convolution kernels in cnns.
arXiv preprint arXiv:1610.07008, 2016. 4

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019. 4

Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, and Kate Saenko. Neural parameter
allocation search. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=srtIXtySfT4. 3

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016. 3

Brandon Reagan, Udit Gupta, Bob Adolf, Michael Mitzenmacher, Alexander Rush, Gu-Yeon Wei,
and David Brooks. Weightless: Lossy weight encoding for deep neural network compression. In
International Conference on Machine Learning, pp. 4324–4333. PMLR, 2018. 3

Mehran Shakerinava, Motahareh MS Sohrabi, Siamak Ravanbakhsh, and Simon Lacoste-Julien.
Weight-sharing regularization. In International Conference on Artificial Intelligence and Statistics,
pp. 4204–4212. PMLR, 2024. 3

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202. 20

moran shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yury Nahshan, Alex Bron-
stein, and Uri Weiser. Robust quantization: One model to rule them all. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5308–5317. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3948ead63a9f2944218de038d8934305-Paper.pdf. 3

Julien Niklas Siems, Aaron Klein, Cedric Archambeau, and Maren Mahsereci. Dynamic pruning of a
neural network via gradient signal-to-noise ratio. In 8th ICML Workshop on Automated Machine
Learning (AutoML), 2021. 3

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020. 4

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PxoFut3dWW. 3

Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhijun Tu, Kai Han, Hailin Hu, and Dacheng Tao. A survey
on transformer compression. arXiv preprint arXiv:2402.05964, 2024. 2

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023. 7

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer Vision –
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI,
pp. 776–794, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-58620-1. doi: 10.1007/
978-3-030-58621-8_45. URL https://doi.org/10.1007/978-3-030-58621-8_45.
6

14

https://openreview.net/forum?id=srtIXtySfT4
https://openreview.net/forum?id=srtIXtySfT4
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://proceedings.neurips.cc/paper_files/paper/2020/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://openreview.net/forum?id=PxoFut3dWW
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.1007/978-3-030-58621-8_45

Published as a conference paper at ICLR 2025

Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak K Gupta. Chipnet: Budget-aware
pruning with heaviside continuous approximations. arXiv preprint arXiv:2102.07156, 2021. 3

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers amp; distillation through attention. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/touvron21a.html.
6, 17

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 1, 7

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compression.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=HJGwcKclx. 3

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-efficient
tuning of pre-trained models using dynamic search-free low-rank adaptation. In Proceedings of
the 17th Conference of the European Chapter of the Association for Computational Linguistics, pp.
3274–3287, 2023. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 1

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020a. 3

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal convolutional neural
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11505–11515, 2020b. 4

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and efficient post-training quantization for large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 38087–38099. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/xiao23c.html. 3

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn, and Yuxiong He. A comprehensive study on
post-training quantization for large language models. arXiv preprint arXiv:2303.08302, 2023. 3

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In International
Conference on Computer Vision (ICCV), 2019. 17

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022. 1

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=r1Ddp1-Rb. 17

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In International Conference on Machine Learning, pp. 26809–26823. PMLR, 2022.
3, 6

15

https://proceedings.mlr.press/v139/touvron21a.html
https://openreview.net/forum?id=HJGwcKclx
https://openreview.net/forum?id=HJGwcKclx
https://proceedings.mlr.press/v202/xiao23c.html
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb

Published as a conference paper at ICLR 2025

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2023a. URL https://openreview.
net/forum?id=lq62uWRJjiY. 3

Yu Zhang, Wei Han, James Qin, Yongqiang Wang, Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li,
Vera Axelrod, Gary Wang, et al. Google USM: Scaling automatic speech recognition beyond 100
languages. arXiv preprint arXiv:2303.01037, 2023b. 1

A APPENDIX

A.1 EXAMPLE CODE FOR APPLYING MCNC

Below, we include PyTorch code which shows how to create a linear layer which is reparameterized
using MCNC.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from math import ceil
5

6 class MCNC_Linear(nn.Linear):
7 def __init__(
8 self,
9 generator,

10 in_features,
11 out_features,
12 bias=True):
13 """
14 Reparameterizes a linear layer with MCNC.
15

16 Args:
17 generator (nn.Module): The frozen generator network.
18 in_features (int): Number of input features.
19 out_features (int): Number of output features.
20 bias (bool): If True, includes a bias term.
21 """
22 super(MCNC_Linear, self).__init__(
23 in_features,
24 out_features,
25 bias)
26 self.weight.requires_grad = False
27 self.generator = generator
28

29 # Get input and output dimensionality of Generator
30 self.k = self.generator.get_input_size()
31 self.d = self.generator.get_output_size()
32

33 # Calculate number of Generator inputs to cover the weights
34 total_uncompressed_params = torch.numel(self.weight)
35 n_gen_inputs = int(ceil(total_uncompressed_params / self.d))
36

37 # Initialize learnable MCNC parameters
38 alpha_init = torch.zeros(n_gen_inputs, self.k)
39 self.alpha = torch.nn.Parameter(alpha_init, requires_grad=True)
40

41 beta_init = torch.ones(n_alpha, 1)
42 self.beta = torch.nn.Parameter(beta_init, requires_grad=True)
43

44 def forward(self, x):
45 """
46 Forward pass reparameterizing weights with MCNC.
47

16

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

Published as a conference paper at ICLR 2025

48 Args:
49 x (torch.Tensor): Input data.
50

51 Returns:
52 torch.Tensor: Output of the linear layer.
53 """
54 # Reparameterize weight with MCNC
55 gen_out = self.generator(self.alpha) * self.beta
56 w = gen_out.view(self.weight.shape) + self.weight
57 return F.linear(x, w, self.bias)

A.2 RECOMMENDED SETTINGS FOR MCNC

Table 10: Recommended hyperparameter defaults for MCNC.

Setting Recommendation
Input Dimension 9

of layers 3
Width 1000

Input Frequency 4.5
Weight Initialization U([− 1

n ,
1
n])

Optimizer Adam
Learning Rate 5-10x larger than uncompressed model

A.3 DETAILS ON COMPRESSING IMAGE CLASSIFIERS

Generator architecture When training from scratch with MCNC, we use the same Generator
configuration as listed in Table 10 and set d such that we achieve the desired compression. All linear
layers in our generator do not include a bias so that we guarantee a zero initialization by setting our
inputs to zero.

ViT hyperparameters The baseline models used for pruning are trained for 800 epochs using the
AdamW (Loshchilov & Hutter, 2019) optimizer. We set batch size to 1024 with initial learning
rate of 0.001 and use a cosine learning rate scheduler. We use the same augmentations oulined in
(Touvron et al., 2021) for ImageNet. For all pruning methods, we search for the best learning rate in
{5e− 4, 1e− 4, 8e− 5} per compression rate. We train for 20 epochs and set the parameters of the
cubic sparsity scheduler to ti = 1000, tf = 12000. For PLATON, we set β1 = 0.85 and β2 = 0.95.
In addition, for each compression rate we run both with and without MixUp (Zhang et al., 2018) and
CutMix (Yun et al., 2019) augmentations and take the best results. We use the AdamW (Loshchilov
& Hutter, 2019) optimizer and a cosine learning rate scheduler. For MCNC, we train for 800 epochs
with a cosine learning rate scheduler using the Adam (Kingma & Ba, 2015) optimizer. Learning rates
and whether Mixup/Cutmix are used for each method are shown in Tables 11 and 12. For pruning
methods, we set batch size to 128 and use 256 for MCNC on ViT-Ti and 512 for MCNC on ViT-S.

ResNet hyperparameters For all experiments, we use the same set of data augmentations as in
PRANC (Nooralinejad et al., 2023). Likewise, we exclude BatchNorm (Ioffe & Szegedy, 2015)
parameters from our compression and do not consider them when computing the compression rate.
When applying MCNC to ResNet architectures, we train for 400 epochs with a learning rate of 0.01
using the Adam (Kingma & Ba, 2015) optimizer. We decay the learning rate by 0.5 if the loss has
not improved in 4 epochs. When applying LoRA to a convolutional layer with kernel size k and
input and output channels c1 and c2, we reshape it be of size kc1 × kc2 and create low rank matrices
A ∈ Rkc1×r, B ∈ Rr×kc2 . When applying LoRA, we use rank 64 as in (Koohpayegani et al., 2024)
and do not attempt to find the optimal rank.

A.4 ABLATION EXPERIMENTAL SETUP

Unless stated otherwise, all ablation experiments follow the same experimental setup. In general,
we compress an MLP with two hidden layers and hidden size 256 compressed to only 0.2% of the
original parameters. We choose such an extreme compression so that the problem is difficult enough

17

Published as a conference paper at ICLR 2025

Table 11: Hyperparameters for compressing ViT-Ti

Method Percentage of Model
Size

Learning Rate Mixup/Cutmix
Augmentations

Magnitude 50% 0.0005 ✓
PLATON 50% 0.0005 ✓
MCNC 50% 0.001 ✓

Magnitude 20% 0.0005 ×
PLATON 20% 0.0005 ×
MCNC 20% 0.001 ✓

Magnitude 10% 0.0005 ×
PLATON 10% 0.0005 ×
MCNC 10% 0.01 ×

Magnitude 5% 0.0005 ×
PLATON 5% 0.0005 ×
MCNC 5% 0.01 ×

Magnitude 2% 0.0005 ×
PLATON 2% 0.0005 ×
MCNC 2% 0.01 ×

Magnitude 1% 0.0005 ×
PLATON 1% 0.0005 ×
MCNC 1% 0.01 ×

Table 12: Hyperparameters for compressing ViT-S

Method Percentage of Model
Size

Learning Rate Mixup/Cutmix
Augmentations

Magnitude 25% 0.0005 ✓
PLATON 25% 0.0005 ✓
MCNC 25% 0.002 ✓

Magnitude 10% 0.0005 ✓
PLATON 10% 0.0005 ×
MCNC 10% 0.002 ✓

Magnitude 5% 0.0005 ×
PLATON 5% 0.0005 ×
MCNC 5% 0.005 ✓

Magnitude 2% 0.0005 ×
PLATON 2% 0.0005 ×
MCNC 2% 0.005 ×

to see variations in design decisions. Note that while the reported numbers of ∼ 85% accuracy are
low for MNIST classification, training a linear classifier with ℓ1 regularization and sparsifying to a
similar number of parameters results in ∼ 79% accuracy. The default architecture of our generator
has an input size of 9, two hidden layers of size 1, 000, and an output size of 5, 000. Note that
9+1
5,000 = 0.002. For each experiment, we search for the best learning rate in {0.1, 0.01, 0.001} and
report results averaged across three trials.

18

Published as a conference paper at ICLR 2025

Table 15: The effect of generator hidden
size on the accuracy of MNIST.

Generator Width Acc.
64 83.5± 0.8
128 84.3± 0.4
256 84.3± 0.2
512 84.7± 0.8

1024 84.5± 0.5
2048 85.0± 0.7

Table 16: The effect of generator depth on the accu-
racy of MNIST.

of Layers
Accuracy

w/o Residual Conn.
Accuracy

w/ Residual Conn.
2 83.7± 0.9 N/A
3 84.9± 0.8 83.9± 0.5
4 85.2± 0.1 84.0± 0.3
5 85.2± 0.8 84.0± 0.5

A.5 ADDITIONAL ABLATION EXPERIMENTS

Table 13: Impact of varying generator
input and output size with a fixed com-
pression rate on MNIST classification.

k d Acc.
1 1000 69.3± 1.8
3 2000 78.4± 0.2
7 4000 83.2± 0.7
15 8000 84.9± 0.2
31 16000 85.8 ± 0.2

Impact of varying k and d with fixed compression rate:
The ratio of k to d determines its compression rate. Here,
we multiply the input and output size of the random gen-
erator by an increasing constant factor keeping the com-
pression rate fixed. The results are presented in Table
13. It is evident that a k value close to 1 leads to poor
performance. As each generator input has an associated
amplitude, the amplitude uses a larger percentage of the
learnable parameters for smaller values of k. As k in-
creases, the amplitude uses a much smaller percentage of
the parameter budget, increasing the generator’s ability to
model complex functions.

Table 14: The effect of generator weight
initialization on the accuracy of MNIST. We
vary the scale of each distribution by multi-
plying the variance by c.

Initialization c Acc.
Uniform 0.5 85.1 ± 0.2
Uniform 1.0 84.6± 0.0
Uniform 2.0 83.2± 0.9
Uniform 4.0 80.6± 1.6
Uniform 8.0 80.1± 0.8

Normal 0.5 81.8± 0.5
Normal 1.0 81.6± 0.2
Normal 2.0 82.1± 0.9
Normal 4.0 81.9± 0.2
Normal 8.0 82.0± 1.0

Effect of Generator weight initialization By repre-
senting our manifold as a randomly initialized neural
network, it is able to easily be communicated using
only a random seed. However, the space of possible
random initialization schemes is large, and it is not
clear what method of initialization would be most ef-
fective. To study this, we initialize generators where
the weights are generated from both normal and uni-
form distributions with multiplying the variance of
the distribution by a factor of c. As this multiplica-
tion also implicitly controls the input frequency, we
always let c = 1 for the first layer. We present re-
sults of this experiment in Table 14. It’s clear from
these results that drawing weights from a uniform
distribution provides better performance than a nor-
mal distribution. In addition, results are higher when
the variance is smaller. We note, however, that these
results are likely intertwined with the selection of frequency in the first layer.

Effect of generator width and depth It’s unclear how architecture variations in the generator of
MCNC affect compression performance. To see the effect of generator hidden size, we construct
generators with three layers and vary the hidden dimension and show results in Table 15. While
accuracy initially improves, it quickly saturates suggesting there is not a benefit to infinitely increasing
width. Likewise, we study the effect of depth by constructing generators with a hidden size of 1000
and varying the number of layers. In addition, we experiment with the effect of residual connections
as it’s possible that increased depth causes our optimization to experience vanishing or exploding
gradients. We present the results in Table 16. Similarly, we see an improvement when extending
beyond a single hidden layer.

A.6 COMPUTATION OF RECONSTRUCTION FLOPS FOR LLAMA-2 7B AND 13B

For Llama-2-7b, note that the model is composed of 32 layers. Each transformer layer can then be
decomposed into 7 linear layers which we apply our method to:

19

Published as a conference paper at ICLR 2025

1. 4 linear layers in the self-attention block each of size 4096× 4096

2. 3 linear layers in the MLP block. Each has size 4096 × 11008. Note that the third layer
comes from the gate of the SwiGLU activation function (Shazeer, 2020)

We use rank 8 for both NOLA and our method which gives 11 matrices of size 4096 × 8 and 3
matrices of size 11008× 8. Assuming we can compute the flops to generate each of these matrices
then the total flops would be:

32 ∗ (11 ∗ FLOPS(4096× 8) + 3 ∗ FLOPS(11008× 8))

For NOLA, we use 64 basis so:

FLOPS(4096× 8) = 2 ∗ 64 ∗ 4096 ∗ 8 = 4.19MFLOPS
FLOPS(11008× 8) = 2 ∗ 64 ∗ 11008 ∗ 8 = 11.27MFLOPS

Giving us a total of: 32 ∗ (11 ∗ 4.19 + 3 ∗ 11.27) = 2.56GFLOPS

For MCNC, each run of the generator requires 2 ∗ (5 ∗ 32 + 32 ∗ 32 + 32 ∗ 5000) opera-
tions. The number of forward passes necessary for each matrix is:

ceil(
4096× 8

5000
) = 7

ceil(
11008× 8

5000
) = 18

We also need to multiply each 5000 dimensional output by a single scalar, so the total number of
operations is:

FLOPS(4096× 8) = 7 ∗ 2 ∗ (5 ∗ 32 + 32 ∗ 32 + 32 ∗ 5000) + 7 ∗ 5000 = 2.29MFLOPS
FLOPS(11008× 8) = 18 ∗ 2 ∗ (5 ∗ 32 + 32 ∗ 32 + 32 ∗ 5000) + 18 ∗ 5000 = 5.89MFLOPS

Giving us a total of: 32 ∗ (11 ∗ 2.29 + 3 ∗ 5.89) = 1.37GFLOPS

For Llama-2-13b, the computation is the same except:

1. there are 40 layers
2. hidden dimension is 5120
3. intermediate size is 13824
4. LoRA rank is 16

20

