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AdvQDet: DetectingQuery-Based Adversarial Attacks with
Adversarial Contrastive Prompt Tuning

Anonymous Author(s)
ABSTRACT
Deep neural networks (DNNs) are known to be vulnerable to ad-
versarial attacks even under a black-box setting where the adver-
sary can only query the model. Particularly, query-based black-box
adversarial attacks estimate adversarial gradients based on the re-
turned probability vectors of the target model for a sequence of
queries. During this process, the queries made to the target model
are intermediate adversarial examples crafted at the previous attack
step, which share high similarities in the pixel space. Motivated by
this observation, stateful detection methods have been proposed to
detect and reject query-based attacks. While demonstrating promis-
ing results, these methods either have been evaded by more ad-
vanced attacks or suffer from low efficiency in terms of the number
of shots (queries) required to detect different attacks. Arguably,
the key challenge here is to assign high similarity scores for any
two intermediate adversarial examples perturbed from the same
image. To address this challenge, we propose a novel Adversarial
Contrastive Prompt Tuning (ACPT) method to robustly fine-tune
the CLIP image encoder to extract similar embeddings for any two
intermediate adversarial queries. With ACPT, we further introduce
a detection framework AdvQDet that can detect 7 state-of-the-art
query-based attacks with > 99% detection rate within 5 shots. We
also show that ACPT is robust to 3 types of adaptive attacks.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Adversarial example detection, query-based adversarial attacks,
adversarial contrastive prompt tuning

1 INTRODUCTION
In the past decade, deep neural networks (DNNs) havemade remark-
able achievements across a wide range of fields, such as computer
vision [16, 22], natural language processing [14, 50], and multi-
modal learning [43, 44]. Despite these advancements, studies have
shown that DNNs are extremely vulnerable to small adversarial
perturbations at the inference stage [48], which are input perturba-
tions generated to maximize the prediction error of the model. The
adversarially perturbed inputs are known as adversarial examples
(attacks) and the weakness of DNNs to adversarial attacks is known
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Figure 1: Query-based attack and stateful detection.

as the adversarial vulnerability. This has raised serious security
concerns on the development of DNNs in safety-critical scenarios,
such as autonomous driving [4, 17] and medial diagnosis [20, 35].

An adversary could generate adversarial attacks in either a white-
box or a black-box setting according to the threat model. In the
white-box setting, the adversary has full access to the model’s pa-
rameters and thus can directly compute the adversarial gradients
to generate adversarial examples [36, 48]. In the black-box setting,
however, the adversary can only query the target model to estimate
the adversarial gradients based on the model returns (probabil-
ity vectors or hard labels) [3, 8, 57]. Black-box attacks can also
be achieved by transfer-based attacks, i.e., generating the attacks
based on a surrogate model that is similar to the target model and
then applying the generated adversarial examples to attack the
target model [7, 15, 51]. Compared to white-box attacks, black-box
attacks pose a more practical threat as most commercial models
are kept secret from the users except their APIs. In this work, we
focus on query-based black-box adversarial attacks and study the
detectability of the malicious queries made by these attacks to the
target model.

Existing defense approaches against adversarial attacks can be
categorized into adversarial training methods [36, 55] and adver-
sarial example detection methods [34, 52]. Although adversarial
training has been demonstrated to be one of the most effective de-
fense methods against white-box attacks, it relies on an expensive
min-max training of the model. This reduces its utility on large
models as even standard training could cost millions of dollars [46].
Adversarial example detection methods, on the other hand, were
mostly developed for white-box attacks and thus cannot be applied
to detect the intermediate queries made by a black-box adversary
to the target model.

One inherent weakness of query-based attacks is that they have
to query the target model many times with similar (and partially
adversarial) examples generated during the attack process. And
those similar queries may be easily detected and rejected by the
defender, ideally making the attack fail at the first few attempts.
This is known as the stateful detection against black-box attacks
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[9, 13, 31]. As depicted in Fig.1, by maintaining a list of historical
queries, stateful detection works to find the most similar historical
query to the current query to determine whether the current query
is an adversarial example. If the similarity exceeds a certain thresh-
old, then the current query is detected as an adversarial example.
Here, the length of the list introduces a tradeoff between defense
effectiveness and storage cost, i.e., a longer list will make the de-
fense more reliable and the attack more expensive but incurs more
storage (for each user).

As pixel space detection is sensitive to non-adversarial transfor-
mations (e.g., rotation and translation), Chen et al. [9] proposed
to leverage a pre-trained CNN to extract features and compare
the mean feature similarity between the current query and the
last 50 queries from the same user to identify potential attacks.
This method can be easily bypassed by Sybil attacks in which the
adversary creates multiple fake accounts to evade detection. The
Blacklight detection method [31] computes the feature similarity
(according to the hamming distance) between the current query
and each of the historical queries from all users, and detects if
any similarity score is above a certain threshold. Blacklight is thus
robust to Sybil attacks. However, it has been shown that existing
stateful detection methods all suffer from a poor tradeoff between
the detection rate and false positive rate [24], i.e., their thresholds
set for high detection rate tend to cause a high false positive rate.
This will greatly harm the experience of benign users. Furthermore,
the above detection methods have been bypassed by an adaptive
attack that attempts to generate dissimilar queries using adaptive
step sizes [19].

Arguably, the key to reliable detection of query-based attacks
is training a robust feature extractor that always produces similar
feature vectors for any two adversarial queries crafted from the
same image, even for adaptive attacks. In light of this, we propose
a simple yet effective framework, Adversarial Contrastive Prompt
Tuning (ACPT), to train reliable feature extractors for accurate
and robust detection of query-based attacks. Specifically, ACPT
finetunes the CLIP image encoder on ImageNet via prompt tuning
using two types of losses: 1) contrastive losses to pull together the
representations of a clean image and all its adversarial counterparts
under data augmentations, and 2) adversarial losses to make it
robust to adaptive attacks. Although only finetuned on ImageNet,
ACPT demonstrates superb zero-shot capability and achieves the
best detection performance across a wide range of datasets.

In summary, our main contributions are:

• We propose a novel Adversarial Contrastive Prompt Tuning
(ACPT) framework that can train robust feature extractors
for stateful detection of query-based attacks.

• We conduct extensive experiments on 5 benchmark datasets
against 7 query-based attacks, and show that ACPT can
achieve an average 97% and 99% detection rates under 3-
shot and 5-shot detection, surpassing the best baseline by
> 48% and > 49%, respectively.

• We also show that ACPT is robust to adaptive attacks cre-
ated by either plugging in an adaptive strategy to existing
attacks or a new adaptive strategy that exploits the CLIP
image encoder backbone to evade the detection.

2 RELATEDWORK
Here, we briefly review related works on query-based attacks and
stateful detection. We also review existing adversarial contractive
learning techniques which are closely related to our adversarial
contraction prompt tuning approach.
Query-based Attacks. These attacks query the target model repet-
itively with adversarial examples generated at intermediate steps to
obtain more information to enhance the attack. Based on the return
type of the target model, query-based attacks can be categorized
into score-based attacks (the target model returns confidence scores)
and decision-based attacks (the target model returns category la-
bels). The zeroth order optimization (ZOO) [8] attack is one classic
score-based attack that exploits finite difference to estimate the
adversarial gradients. Compared to ZOO, the autoencoder-based
ZOOM (AutoZOOM) [49] attack effectively lowers the average
query count required to find successful adversarial examples. IIyas
et al. [25] explored a variant of Natural Evolutionary Strategies
(NES) to estimate the adversarial gradient under more restrictive
threat models. Andriushchenko et al. [1] further introduced a set
of query-efficient score-based black-box attack methods, Square
attack, using a randomized search scheme.

For decision-based attacks, the confidence scores are no longer
accessible to the adversary, which can only use the label information
as a substitute. The Boundary attack [3] and the label-only version
of the NES attack [25] are pioneering works in this field. Cheng
et al. [12] proposed a novel OPT approach to formulate decision-
based attacks as real-valued optimization problems. By using the
gradients sign rather than the raw gradients, Cheng et al. [11]
further introduced a query-efficient Sign-OPT method to overcome
the query limitations faced by all query-based attacks. Another
notable method HopSkipJumpAttack (HSJA) [6] employs unbiased
gradient estimation at the decision boundary to make the attack
more efficient. Following this, an array of decision-based attacks,
such as QEBA [32] and SurFree [37], have been developed to reduce
the number of queries required to attack unseen DNNs, or decrease
the maximum allowed perturbation strength [5].

Table 1: A summary of different stateful detection methods.

Method Encoder Metric Action
SD CNN Encoder 𝐿2 Norm Ban Account
Blacklight Pixel-SHA Hamming Reject Query
PIHA Percept. Hash Hamming Reject Query
Ours ACPT Cosine Return Cache

Stateful Detection. The intuition behind stateful detection is the
fact that query-based attacks need to query the target model many
times with highly similar queries, as part of the exploration process
to find successful adversarial examples. It is thus expected that
malicious queries with high similarities can be easily detected in
either the pixel or representation space. The stateful detection (SD)
method introduced in [9] was the first to examine the users’ his-
torical queries to detect query-based attacks. Specifically, SD first
extracts the feature of the current query (e.g., an image) using an im-
age encoder and then computes the 𝐿2 distance between the query
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Figure 2: An overview of our proposed AdvQDet framework. The current query (e.g., an image) is compared in the embedding
space of the CLIP image encoder (finetuned by our ACPT method) with all past queries to detect whether there exists a similar
historical embedding. Once the query is detected as an attack (i.e., a similar historical embedding is found), a cashed output
from its last queries can be directly returned to avoid returning new information to the adversary.

feature and its 𝑘-nearest neighbors found in historical queries of
the same user. SD is not robust to Sybil attacks where the adversary
creates many fake accounts to distribute the queries and evade user-
wise detection. Unlike SD, the Blacklight [31] detection method
replaces the feature extractor with the Pixel-SHA probabilistic hash
function, which calculates the hash representation for the input
image. By further creating a global hash-table to store the historical
queries of all users, it establishes a lightweight detection module
that can efficiently address the problem of Sybil attacks. Based on
Blacklight, PIHA [13] adopts the perceptual image hashing scheme
as its feature extractor. It has been shown that stateful detection is
also effective against model extraction attacks, which also require
a large number of queries to the target model. For example, the
PRADA [28] method detects model extraction attacks by analyzing
the distribution of consecutive API queries from a user and its devi-
ation from a Gaussian distribution. The SEAT [56] method acquires
a similarity encoder via adversarial training, which enables the
identification of accounts conducting model extraction attacks. A
summary of these methods can be found in Table 1.
Adversarial Contrastive Learning. Contrastive learning (CL)
[10, 21, 40] is a self-supervised representation learning technique
that leverages large-scale unlabeled datasets to train powerful fea-
ture extractors. Recently, the concept of adversarial contrastive
learning (ACL) [18, 23, 26, 29, 33, 53, 54], has been explored as
a robust representation learning technique to combine adversar-
ial training with contrastive learning. Inspired by SimCLR [10],
Jiang et al. [26] introduced an unsupervised robust pre-training
framework that effectively combines adversarial learning with con-
trastive pre-training. To avoid implicit knowledge of invariance
caused by static augmentation, Dynamic Adversarial Contrastive
Learning (DYNACL) [33] employs a dynamic augmentation sched-
ule to bridge the gap between training and test data distributions.

Xu et al. [53] further incorporated causal reasoning and robustness-
aware coreset selection (RCS) to help interpret ACL and improve
its performance.

3 PROPOSED DETECTION FRAMEWORK
We first describe our threat model, formulate the detection problem,
and then introduce the proposed ACPT framework that finetunes
a robust feature extractor for embedding extraction and similarity
calculation. Finally, we devise detection strategies based on the
similarity scores and discuss possible defense actions against the
detected attack queries.

3.1 Threat Model
In this work, we assume a query-based black-box threat model
where the adversary generates adversarial examples to attack a
target model by making multiple queries to the model and using the
model returns to optimize the adversarial examples in an iterative
manner. Here, the defender is the owner of the target model who can
deploy any defense strategies to defend against potential attacks.
In this work, we focus on detection-based defense, which can be
deployed in parallel with other defense strategies. However, the
defender does not know which user is the attacker nor when the
malicious query will arrive. Therefore, the defender may have to
store a large number of historical queries of all users to allow a long-
range detection of malicious queries. As such, there exists a tradeoff
between query storage and detection range. The goal of the defender
is to detect any query-based attacks within a minimum number of
attempts by the attacker, which forms a few-shot detection setting.
Theremay also exist adaptive attacks that exploit adaptive strategies
to evade the detection.

3
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Figure 3: Our proposed ACPT method. It finetunes the CLIP image encoder using two contrastive losses defined on cleanly and
adversarially paired images obtained from the same clean image via data augmentation followed by the PGD attack.

3.2 Problem Formulation
We denote 𝑓𝜃 (x) → 𝑦 as a DNN parameterized by 𝜃 , where x ∈ X
is a clean sample and 𝑦 ∈ Y is its ground-truth label. In image clas-
sification tasks, x represents a clean image and 𝑦 ∈ {𝑦1, 𝑦2, . . . , 𝑦𝑘 }
is its categorization label; whereas in image captioning tasks, x is a
clean image and 𝑦 is its associated caption. Given a clean sample
x ∈ [0, 1]𝑑 and a target model 𝑓𝜃 (·), a query-based adversarial
attack aims to generate an adversarial example x′ that maximizes
the loss of the model as follows:

x′ = argmax
∥x′−x∥∞≤𝜖

ℓ (𝑓 (x′), 𝑦), (1)

where ℓ (·) is the loss function, x′ is an intermediate-step adversarial
example, and 𝜖 is the perturbation budget. An adversarial attack
can either be untargeted as formulated above or targeted toward
a target label 𝑦′. Please note that our work does not differentiate
between targeted and untargeted attacks.

A query-based black-box attack solves the above adversarial opti-
mization problem by estimating the adversarial gradients iteratively
as follows:

x′𝑡+1 = x′𝑡 + 𝜂 sign(�̂�), (2)
where x′𝑡 is the intermediate adversarial example obtained at the
𝑡-th iteration, 𝜂 is the perturbation step size, sign(·) is the sign
function, and �̂� is the estimated gradient based on target model
output 𝑓 (x′𝑡 ) using a black-box optimization method such as finite
difference [8] or NES [25].

For a current query x𝑡 , the task of stateful detection is to de-
termine whether there exists a historical query x𝑘 such that their
similarity exceeds a certain threshold 𝜇. Formally, it is:

𝑑𝑒𝑡 (x𝑡 ) =
{
1, if 𝑠𝑖𝑚(𝐸 (x𝑡 ), 𝐸 (x𝑘 )) > 𝜇, ∃x𝑘 ∈ 𝑄
0, otherwise,

(3)

where 𝑑𝑒𝑡 (·) is the detection function, 𝑠𝑖𝑚(·, ·) is the similarity
function, 𝐸 (·) is an encoder (feature extractor) that extracts the
embedding of x𝑡/x𝑘 , 𝜇 is a threshold hyper-parameter, and 𝑄 is an
embedding bank that stores the embeddings of historical queries
from all users. Here, a 𝑑𝑒𝑡 (·) value of 1 indicates an attack. Note

that 𝐸 (·) is a different model from the target model 𝑓 (·) and is
an adversarially finetuned CLIP [43] image encoder by our ACPT
method.

3.3 AdvQDet Framework
3.3.1 Overview. As illustrated in Figure 2, AdvQDet consists of 2
main components: 1) the ACPT finetuned image encoder and 2) a
similarity calculation module. The detection procedure of AdvQDet
is as follows. For a current query x𝑡 , it first feeds the image into
the ACPT finetuned image encoder to extract its embedding. The
similarity calculation module then compares the embedding with
𝑁 − 1 historical embeddings of the past queries (from all users) to
compute the similarity scores. If any of the𝑁−1 similarity scores say
x𝑘 is above a pre-defined threshold 𝜇, query x𝑡 will be determined
as a potential attack. Instead of rejecting x𝑡 , one plausible defense
action is to just return the cached output for x𝑘 . Note that existing
detection methods employ two types of strategies for embedding
bank𝑄 . The SD method [9] creates a local bank for each user, while
later methods Blacklight [31] and PIHA [13] maintain a global bank
for all users. Our AdvQDet also adopts the global bank strategy
as it is robust to Sybil attacks. Next, we will introduce the two
components in detail.

3.3.2 Adversarial Contrastive Prompt Tuning. As depicted in Figure
3, ACPT adopts a two-stream contrastive prompt tuning paradigm
[26]: a clean stream and a adversarial stream. In the clean stream,
the two augmented views (e.g., x̃𝑖 and x̃𝑗 ) of a clean image x form
a Clean-to-Clean (C2C) pair. The purpose of the clean stream is to
pull together the augmented versions of the same image, making it
robust to different types of image transformations. In the adversarial
stream, the adversarial examples of the two augmented images are
generated using PGD [36] to form an Adversarial-to-Adversarial
(A2A) pair. The purpose of the adversarial stream is to make it
robust to adaptive attacks that exploit adversarial perturbation
to bypass the detection. Together, the two streams robustify the
image encoder against both regular transformations and adversarial

4
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perturbations. Note that the clean stream itself is the standard
SimCLR [10].

To exploit the superb feature extraction capability of large-scale
pre-trained models, we adopt the image encoder of CLIP [43] and
apply ACPT to finetune the encoder on ImageNet. ACPT adopts
visual prompt tuning with learnable prompt tokens concatenated
to the original input tokens. The tuning loss of ACPT is defined as
follows:

ℓ𝑁𝑇 (x̃𝑖 , x̃𝑗 ;𝑝) = − log
exp(𝑠𝑖𝑚(𝐸 (x̃𝑖 , 𝑝), 𝐸 (x̃𝑗 , 𝑝))/𝜏)∑2𝑁

𝑘=1 exp(𝑠𝑖𝑚(𝐸 (x̃𝑖 , 𝑝), 𝐸 (x̃𝑘 , 𝑝))/𝜏)
, (4)

ℓ𝐴𝑁𝑇 (x̃′𝑖 , x̃
′
𝑗 ;𝑝) = − log

exp(𝑠𝑖𝑚(𝐸 (x̃′
𝑖
, 𝑝), 𝐸 (x̃′

𝑗
, 𝑝))/𝜏)∑2𝑁

𝑘=1 exp(𝑠𝑖𝑚(𝐸 (x̃′
𝑖
, 𝑝), 𝐸 (x̃′

𝑘
, 𝑝))/𝜏)

, (5)

ℓACPT = 𝛼ℓ𝑁𝑇 (x̃𝑖 , x̃𝑗 ;𝑝) + (1 − 𝛼)ℓ𝐴𝑁𝑇 (x̃′𝑖 , x̃
′
𝑗 ;𝑝), (6)

where 𝑝 is the prompt token, 𝐸 (·) is the CLIP image encoder,
𝑠𝑖𝑚(·, ·) is the cosine similarity function, 𝜏 is the temperature, and
𝛼 = 0.5 is a hyperparameter balancing the two loss terms.

Comparing the definition of ℓACPT and Eq. (3), onemight find that
ℓACPT directly optimizes the feature similarity between the clean
and adversarial image pairs. This effectively reduces the difference
between variants of the same image in the latent space, making the
detection of query attacks much easier.

3.3.3 Similarity Calculation. Following prior works [13, 31], we
extract and save the embedding of each query image into an em-
bedding bank𝑄 . The embedding bank is maintained globally for all
users so as to be robust to Sybil attacks. Two problems arise with
the embedding bank: 1) the storage cost and 2) the computational
cost. The two costs can be reduced by using the techniques intro-
duced in [9]. Next, we will provide an analysis of the two costs and
show that it is practically feasible to store a global embedding bank
and perform similarity search efficiently.

In terms of the storage cost, each query results in a vector em-
bedding with dimension 𝑑 = 512, which takes 2048 bytes for float32
precision. Suppose there are 1 million users with each user querying
100 times, the storage it takes to store all these query embeddings
is 190.73 GB. By switching to float16 precision, the storage can be
reduced to 95.37 GB.

In terms of computational cost, one can use the Automatic Mixed
Precision (AMP) technique to reduce the memory cost and accel-
erate computations without sacrificing the detection performance.
AMP automatically determines the appropriate precision—single
or half—for each operation. When calculating the cosine similarity
between an individual embedding vector and each embedding in
the embedding bank, the computational complexity is 𝑂 (𝑛 × 𝑑),
where 𝑛 is the number of embeddings in the bank and 𝑑 is the di-
mension of the embedding vector. There are established techniques
we can use to speed up high-dimensional similarity search, such
as product quantization (PQ), hierarchical navigable small worlds
(HNSW), and locality sensitive hashing (LSH). Popular similarity
search tools like clip retrieval [2], Faiss [27], and AutoFaiss all
provide efficient solutions for searching over a large-scale vector
database. Here, we conduct an efficiency test to compute the cosine
similarity between two vectors of dimensions (1, 512) and (1𝑚, 512)
using an NVIDIA RTX 3090 GPU, CUDA 11.3, and Pytorch v1.12.0.

It takes 8.29 and 2.63 milliseconds for float32 and float16, respec-
tively. These costs are manageable for an AI company to run a
commercial product/service that supports up to 1 million users.

3.3.4 Defense Action. Once a query is detected to be an attack,
there are a few possible defense actions that can be taken by the
defender: 1) rejecting the query, which is applicable when the false
positive rate is low as otherwise may harm user experience; 2)
limiting the query number and frequency of the user which will
cause the attacker’s attention; 3) returned intentionally perturbed
outputs to the user which still has the risk to leak gradient (or
other) information; 4) banning accounts or blocking IP addresses
which is an aggressive action that should be taken only in extreme
cases; and 5) simply returning the cashed output for the previous
similar query which is a plausible action that does not expose new
information to the user nor harm the user experience.

4 EXPERIMENTS
We evaluated our detection method against 7 state-of-the-art query-
based attacks and 3 types of adaptive attacks. We first describe
our experimental setting and then present the results of 1) defense
effectiveness across different datasets, 2) robustness to adaptive
attacks, and 3) ablation study.

4.1 Experimental Setup
Datasets and Models.We experiment on 5 benchmark datasets:
CIFAR-10 [30], GTSRB [47], ImageNet [45], Flowers [39], Pets
[42]. We utilize ImageNet pre-trained models (such as ResNet20,
ResNet101, and ViT-B/16) and then fine-tune them on the other
four datasets. A summary of these datasets and the corresponding
models can be found in the Appendix.
Attack Configuration. We evaluate against 7 query-based at-
tacks, including Boundary [3], HSJA [6], NESS [25], QEBA [32],
Square [1], SurFree [37], and ZOO [8], as described in Section §2.
We also apply an adaptive strategy called Oracle-guided Adaptive
Rejection Sampling (OARS) [19] to enhance the above query-based
attacks and evaluate against these enhanced attacks. OARS utilizes
an adapting distribution and resampling technique for gradient
estimation, aiming to evade stateful defenses during the generation
of adversarial examples. Throughout the experiment, we execute
each attack until an adversarial example is successfully crafted or
the maximum query limit is reached, whichever occurs first. The
hyperparameters for these attacks are set following the Adversarial-
Robustness-Toolbox(ART) library [38]. For the attacks, we set the
perturbation budget to 𝜖 = 0.05 and limit the query budget to 100,
000. For CIFAR-10 and GTSRB datasets, we randomly choose 1,000
images from their respective test sets, uniformly across all cate-
gories. For ImageNet, Flowers, and Pets datasets, due to the high
computational costs of query-based attacks, we select 100 images
randomly from the validation/test sets.
Defense Configuration. For existing stateful detection methods,
we use their originally proposed configurations, as detailed in Table
1. Specifically, for SD [9] defense, we set the number of neighbors
to 𝑘 = 50 and the detection threshold to 𝜇 = 10. For Blacklight
[31], the quantization step is set to 50, with window sizes of 20 for
CIFAR-10 and 50 for ImageNet. PIHA [13] adopts a block size of
7x7 and a detection threshold of 𝜇 = 0.05.
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Table 2: The ASR (↓), 3/5-shot detection rate (↑) and mean detection counts (↓) of different detection methods against 7 query-
based attacks across 5 datasets. The best and second best results are boldfaced and underscored, respectively.

Dataset Attack
Method

Stateful Detection Method
w/o Defense Blacklight PIHA AdvQDet (Ours)

ASR Query ASR 3/5-shot DR mDC ASR 3/5-shot DR mDC ASR 3/5-shot DR mDC

CIFAR-10

Boundary 100% 591.97 0% 94%/97% 3.23 0% 75%/93% 3.87 0% 100%/100% 3.00
HSJA 100% 265.11 0% 0%/0% 7.28 0% 1%/14% 7.77 0% 76%/100% 2.90
NESS 100% 15144.82 0% 100%/100% 3.00 0% 89%/97% 3.64 0% 98%/98% 2.81
QEBA 100% 316.41 0% 0%/0% 7.28 0% 1%/14% 7.77 0% 76%/100% 2.90
Square 100% 17.37 0% 100%/100% 2.00 28% 61%/64% 2.96 0% 100%/100% 2.00
SurFree 100% 77.13 0% 0%/0% 8.66 0% 3%/10% 8.85 0% 100%/100% 2.00
ZOO 71% 16649.93 0% 100%/100% 2.00 0% 100%/100% 2.00 0% 100%/100% 2.00

ImageNet

Boundary 100% 5776.94 4% 16%/19% 238.21 8% 0%/0% 228.88 0% 100%/100% 3.00
HSJA 74% 79621.63 0% 0%/0% 8.51 0% 0%/1% 9.56 0% 83%/100% 3.86
NESS 99% 13276.7 0% 100%/100% 3.07 10% 19%/21% 266.88 0% 99%/100% 2.51
QEBA 59% 55173.28 0% 0%/0% 8.51 0% 0%/1% 9.56 0% 83%/100% 3.86
Square 100% 108.2 0% 100%/100% 2.00 30% 22%/24% 9.1 0% 100%/100% 2.00
SurFree 100% 534.95 0% 0%/0% 9.02 0% 0%/1% 9.68 0% 100%/100% 2.04
ZOO 75% 9986.08 0% 100%/100% 2.00 0% 99%/99% 4.26 0% 100%/100% 2.00

GTSRB

Boundary 100% 1908.37 0% 100%/100% 3.03 0% 81%/93% 3.97 0% 100%/100% 3.00
HSJA 100% 1808.87 0% 0%/0% 7.29 0% 11%/56% 6.47 0% 100%/100% 2.56
NESS 49% 51501.31 0% 100%/100% 3.00 0% 50%/77% 5.16 0% 95%/96% 4.84
QEBA 100% 780.26 0% 0%/0% 7.29 0% 11%/56% 6.47 0% 100%/100% 2.58
Square 100% 2577.15 0% 100%/100% 2.00 7% 71%/71% 3.68 0% 100%/100% 2.00
SurFree 75% 225.77 0% 0%/5% 7.84 0% 16%/51% 6.56 0% 100%/100% 2.00
ZOO 42% 18708.50 0% 100%/100% 2.00 0% 100%/100% 2.00 0% 100%/100% 2.00

Flowers

Boundary 96% 5118.87 15% 6%/9% 297.24 25% 0%/0% 375.63 0% 100%/100% 3.00
HSJA 56% 59574.49 0% 0%/0% 8.67 0% 0%/0% 9.26 0% 99%/100% 3.77
NESS 95% 17092.08 0% 100%/100% 3.01 6% 53%/64% 101.58 0% 99%/99% 2.56
QEBA 100% 54968.15 0% 0%/0% 8.67 0% 0%/0% 9.26 0% 99%/100% 3.77
Square 99% 324.59 0% 100%/100% 2.00 29% 48%/50% 5.49 0% 100%/100% 2.00
SurFree 99% 1704.45 0% 0%/0% 9.98 0% 0%/0% 10.71 0% 100%/100% 2.00
ZOO 87% 9197.09 0% 100%/100% 2.00 0% 98%/99% 2.07 0% 100%/100% 2.00

Pets

Boundary 95% 7958.55 3% 16%/18% 245.19 2% 0%/0% 197.13 0% 100%/100% 3.00
HSJA 97% 2277.19 0% 0%/0% 8.61 0% 0%/1% 9.45 0% 100%/100% 3.61
NESS 94% 23424.64 0% 100%/100% 3.07 12% 6%/10% 425.60 0% 100%/100% 2.00
QEBA 97% 1061.13 0% 0%/0% 8.61 0% 0%/1% 9.45 0% 100%/100% 3.61
Square 100% 148.85 0% 100%/100% 2.00 8% 14%/14% 10.45 0% 100%/100% 2.00
SurFree 100% 754.22 0% 0%/0% 10.88 0% 0%/2% 11.08 0% 100%/100% 2.03
ZOO 86% 7919.80 0% 100%/100% 2.00 0% 100%/100% 2.00 0% 100%/100% 2.00

Average 90% 17671.10 1% 49%/50% 27.12 5% 32%/39% 51.03 0% 97%/99% 2.66

Implementation Details. For our AdvQDet, we finetune the CLIP
image encoder using ACPT for 20 epochs with a batch size of
𝑏𝑠 = 1024 and a learning rate of 0.04 on ImageNet. To generate a
batch of positive pairs for finetuning, we sample 𝑏𝑠 images from the
training set and then follow SimCLR to obtain two augmented views
(x̃𝑖 , x̃𝑗 ). We apply PGD attack to craft the adversarial views (x̃′

𝑖
, x̃′

𝑗
)

with a perturbation budget of 8/255 for 5 steps. After obtaining
the four views (x̃′

𝑖
, x̃′

𝑗
, x̃𝑖 , x̃𝑗 ), we fine-tune the prompt token by

minimizing the adversarial contrastive loss described in Section
§3.3.2. There are 𝐾 = 20 learnable prompt tokens, optimized by
SGD and adjusted by cosine annealing. For detection, we set a

similarity threshold of 𝜇 = 0.95 for low-resolution datasets CIFAR-
10 and GTSRB, and 𝜇 = 0.9 for high-resolution datasets ImageNet,
FLowers, and Pets.
Performance Metrics. We consider three performance metrics:
1) attack success rate (ASR), which is the percentage of successful
adversarial examples under the attack budget; 2) 3/5-shots (queries)
detection rate (DR) which is the successful detection rate when
the defender sees 3/5 of the queries (i.e., a clean query followed by
a sequence of adversarial queries), and 3) mean detection counts
(mDC) which calculates the average number of queries required
for the defender to detect each attack.
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Table 3: The ASR(↓) and mean detection counts (↑) of different detection methods against 6 enhanced query-based attacks by
the OARS adaptive strategy. The results are shown for CIFAR-10 and ImageNet datasets with the best results are boldfaced.

Dataset Attack Method
Stateful Detection Method

w/o defense SD Blacklight PIHA AdvQDet
ASR Query ASR mDC ASR mDC ASR mDC ASR mDC

CIFAR-10

Boundary-OARS 100% 610.31 100% 51.00 100% 3.17 94% 4.01 0% 3.00
HSJA-OARS 100% 439.78 100% 51.00 100% 7.28 93% 7.77 0% 2.90
NESS-OARS 100% 969.14 53% 51.00 97% 596.50 97% 381.78 0% 3.00
QEBA-OARS 100% 457.14 100% 51.00 98% 7.28 93% 7.77 0% 2.90
Square-OARS 100% 183.64 100% 51.00 98% 64.94 100% 83.85 0% 3.20
SurFree-OARS 100% 170.52 65% 51.41 92% 8.66 61% 8.85 0% 2.00

ImageNet

Boundary-OARS 100% 5743.65 N/A N/A 37% 194.75 39% 208.10 0% 3.00
HSJA-OARS 100% 1908.77 N/A N/A 93% 9.00 98% 9.56 0% 3.86
NESS-OARS 100% 5207.24 N/A N/A 89% 282.51 55% 428.31 0% 3.01
QEBA-OARS 100% 1040.41 N/A N/A 73% 8.51 100% 11.00 0% 3.86
Square-OARS 99% 840.77 N/A N/A 83% 40.88 99% 70.87 0% 2.53
SurFree-OARS 100% 1519.29 N/A N/A 87% 9.02 100% 9.68 0% 2.04

Average 99% 1590.89 86.33% 51.07% 87.25 102.71 85.75% 102.63 0% 2.94

4.2 Main Results
We compare our AdvQDet method with 7 existing stateful detection
methods. For a fair comparison, we adopt the same defense pipline
for all methods. I.e., we detect each query based on the historical
queries from all users, with only the similarity score is computed
by different detection methods. The detection performance results
are reported in Table 2, where the 3-4 columns report the results
of no defense. It is evident that, although most attacks can achieve
a high ASR (nearly 100%) in the absence of detection, they often
require a large number of queries to succeed. According to the
results, the Square attack is the most efficient and effective attacks
as it requires the minimum number of queries and achieves an ASR
of 100% across all datasets.

For the detection methods, our AdvQDet achieves the best aver-
age performance of 0% ASR, 97%/99% 3/5-shot detection rate, and
an average of 2.66 query counts for successful detection, surpassing
existing methods Blacklight and PIHA by a huge margin. Moreover,
AdvQDet demonstrates the best performance and almost 100% 3/5-
shot detection rates in most scenarios. However, it is not always
the best, for example, the Blacklight detection method works better
against the NESS attack than AdvQDet in terms of 3/5-shot detec-
tion rates. This is because NESS attack uses a large Gaussian noise
distribution to estimate the adversarial gradients which tend to
cause large distortion to the query images and thus the features.
However, Blacklight extracts the hashing of the image which is
relatively robust to large perturbations. However, Blacklight fails
badly against HSJA, QEBA, and SurFree attacks with almost 0%
3/5-shot detection rates. It is worth mentioning that AdvQDet is
very close to Blacklight against NESS but can detect the attacks
within fewer queries.

Although query-based attacks generally require many queries
while detention only needs a few queries, there are still attacks
that can bypass existing detection methods Blacklight and PIHA.
For example, the Square, NESS, and Boundary attacks on high

resolution datasets ImageNet, Flowers, and Pets. By contrast, not a
single existing query-based attack can evade our detection, leaving
an ASR of 0% in all scenarios. Efficiency is another advantage of
our AdvQDet method, i.e., it only takes 2.66 queries on average to
detect all 7 attacks. Note that, the first query made by most attacks
is a clean image, the second query is often an initialized image with
Gaussian noise, and the third query is an adversarial query. This
means that our method can detect most of the attacks based on the
first two queries, for example, against HSJA and QEBA attacks.

4.3 Robustness Against Adaptive Attacks
Here, we evaluate the robustness of our method to adaptive attacks
where the attackers are aware of our detection pipeline. Particularly,
we consider three adaptive attacks: 1) using OARS [19] adaptive
strategy to boost existing attacks; 2) the attacker knows the back-
bone (CLIP image encoder) of our AdvQDet; and 3) white-box
attacks where the attacker knows every detail of our detector (but
the target model is still black-box).
OARS Adaptive Attack. OARS employs step size adaptation and
resampling mechanisms to evade stateful detection. We boost exist-
ing attacks including Boundary, HSJA, NESS, QEBA, Square, and
SurFree using the OARS adaptive strategy. We did not consider the
ZOO attack as its adaptive strategy is not compatible with OARS
and it is also omitted from the OARS paper [19]. The robustness
results on CIFAR-10 and ImageNet datasets are shown in Table 3. It
is clear that when there is no defense, all adaptive attacks achieve
an ASR of ≥ 99 with the query number increase significantly on
high resolution images (ImageNet).

Our AdvQDet is robust to OARS adaptive attacks and can suc-
cessfully detect all 6 adaptive attacks within an average of 3 shots
while reducing the ASR to 0%. The SD detection method however
fails on ImageNet as its feature extractor is dataset-dependent and
thus is not applicable to ImageNet images. Since SD requires the
last 50 queries to detect the current, the mean detection counts are

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, 28 October - 1 November 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

all above 50. The Blacklight and PIHA have both been bypassed
by all adaptive attacks, where the ASR jumps up to 37% - 100%.
Interestingly, Blacklight is more susceptible to adaptive attacks on
low-resolution dataset CIFAR-10 while PIHA is more vulnerable on
both low and high-resolution datasets CIFAR-10 and ImageNet.
The Backbone is Compromised. Here, we test when the attacker
knows the CLIP image encoder used in AdvQDet (but not the vi-
sual prompt token). In this case, the attacker can white-box attack
the CLIP image encoder while query attacking the target model.
Specifically, the attacker adopts an alternating optimize strategy to
first perform one step (query) black-box attack and then 10 steps
of white-box PGD attack. As shown in Figure 4, AdvQDet is also
robust to this adaptive attack, maintaining a high similarity score
for the first 50 steps of queries. Moreover, AdvQDet becomes more
robust when we increase the token length of ACPT.
White-box Attack. In this case, we follow a similar adaptive
pipeline as in the above backbone adaptive attack setting, but the at-
tacker directly attacks our ACPT-tuned image encoder. The results
are also presented in Figure 4. The result indicates that AdvQDet
is moderately robust to white-box attacks with a slightly reduced
similarity score, and increasing the token length of ACPT can ef-
fectively increase the chance of the attack being detected. Note
that in both experiments, the detection is deemed to be successful
whenever the similarity score is above the threshold which occurs
within the first 5 queries. We also observed that white-box attacks
against our AdvQDet took roughly 100x more queries to converge.
These results suggest that with ACPT, we can have a reliable query
attack detector with good effectiveness, efficiency, and robustness.
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Figure 4: The similarity score of the first 50 queries for back-
bone adaptive attacks (“BAA-x”) and white-box attacks (“WB-
x") on ImageNet, with x denoting the token length. The black
dashed line marks the detection threshold.

4.4 Further Analysis
Effect of Prompt Token Length. Here, we analyze the impact
of prompt token length of ACPT on the detection performance,
with varying token lengths 𝐾 ∈ [0, 30]. Note that when 𝐾 = 0,
the ACPT-tuned encoder degenerates to the vanilla CLIP image
encoder. As depicted in Figure 5, our AdvQDet can reliably dis-
tinguish between benign and adversarial queries, assigning high
average similarity scores (close to 1 almost everywhere) to adversar-
ial queries. The difference is more pronounced as the token length
of ACPT increases.
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Figure 5: The average similarity score of the first 50 benign
and adversarial queries under varying prompt token length
(“ACPT-x" with x denoting the token length) on ImageNet.

5 LIMITATION
As a stateful detection method, our AdvQDet also faces certain
limitations that deserve further research. Notably, it cannot defend
against transfer-based attacks as they do not need querying the
target model. This limitation can potentially be addressed by incor-
porating white-box adversarial example detection methods into the
pipeline of AdvQDet. The storage and computational costs mark
another limitation of AdvQDet. More effective partitioning and ac-
celeration techniques can be developed in future work to facilitate
the industrial deployment of AdvQDet. On the other hand, besides
its effectiveness, efficiency, and robustness, AdvQDet has the poten-
tial to be applied to detect multimodal query-based attacks against
vision language models (VLMs) like GPT-4V [41]. Although there
is still much room for improvement, we believe AdvQDet offers a
reliable solution for detecting query-based adversarial attacks.

6 CONCLUSION
In this paper, we proposed a novel stateful detection framework to
detect query-based black-box adversarial attacks. Our work is moti-
vated by the observation that query-based attacks launch multiple
visually similar queries to the target model, which might be easily
detected by a robust feature extractor (image encoder). To this end,
we propose an efficient tuning-based method called Adversarial
Contrastive Prompt Tuning (ACPT) to robustify the CLIP image en-
coder on ImageNet. The ACPT-tuned serves as a general-purpose
encoder for the detection of query-based attacks, and demonstrates
strong zero-shot generalization capability across different datasets.
With ACPT, we introduce the AdvQDet framework that extracts
and saves the embeddings of the query images and maintains a
global embedding bank for all users. AdvQDet computes the embed-
ding similarity between the current query and all historical queries
to identify whether the query is malicious (similar to an existing
one). We demonstrated the effectiveness, efficiency, and robustness
of AdvQDet against existing query-based attacks, adaptive attacks,
and even white-box attacks. Our work showcases the possibility
of achieving strong and consistent defense against query-based
adversarial attacks.
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