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1 DATASETS AND MODELS
We evaluate Blacklight, PIHA, and our ACPT methods on 5 bench-
mark datasets: CIFAR-10, GTSRB, ImageNet, Flowers, and Pets. The
training phase was performed with 3090 GPUs, utilizing PyTorch
with the Adam optimizer for 100 epochs. Table 1 summarizes the 5
image classification tasks used in our experiments.

Table 1: A summary of the datasets and the corresponding
models used in our experiments.

Dataset Model Dimension Category Top-1 Acc.

CIFAR-10 ResNet20 32×32×3 10 91.73%
GRSRB ResNet34 32×32×3 43 94.96%
FLowers ResNet101 224×224×3 102 85.80%
ImageNet ResNet152 224×224×3 1000 78.33%
Pets Vit-B/16 224×224×3 37 93.13%

2 DETECTING QUERY-BASED ATTACKS ON
VISION-LANGUAGE MODELS

Our previous experiments have shown that the ACPT method is
effective, efficient, and robust at detecting query-based attacks in
image classification tasks. Here, we extend ACPT to detect query-
based attacks on the image captioning task. Additionally, Figure 1
visualizes the process of query-based attacks, showcasing interme-
diate adversarial examples such as those generated by Boundary [2],
HSJA [3], NESS [6], QEBA [7], Square [1], SurFree [11], ZOO [4],
and AttackVLM [13]. While methods like Boundary, HSJA, NESS,
QEBA, Square, SurFree, and ZOO are specifically designed for im-
age classification, AttackVLM targets image captioning tasks. This
visualization reveals that the underlying process of such attacks is
consistent across different tasks.

Unlike query-based attacks on image classification, AttackVLM
[13] first employs pre-trained CLIP [12] and BLIP [9] as surrogate
models to generate attacks, either by matching image or textual
embeddings, aiming to generate targeted responses. These adver-
sarial examples are then transferred to other large Vision-Language
Models (VLMs), including MiniGPT-4 [14], LLaVA [10], and BLIP-
2 [8]. Furthermore, AttackVLM utilizes query-based attacks that
incorporate transfer-based attacks as an initial step, significantly
boosting the effectiveness of targeted evasion against such VLMs,
aimming for the targeted response generation over large VLMs.
Despite these advanced techniques, our experiments show that
ACPT can effectively detect AttackVLM attacks within 3 attempts.

3 THE TRADE-OFF: DETECTION RATE VS.
FALSE POSITIVES RATE

The trade-off is related to encoder 𝐸 and the distribution of query
data. Following the OARS work [5], we assume an isotropic Gauss-
ian distribution for benign queries N(px, 𝐼𝜎2), and another Gauss-
ian distribution 𝛿 ∼ N(0, 𝐼 𝛽2) for adversarial perturbations. A false
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Figure 1: Malicious queries (𝑥0, 𝑥1, . . . , 𝑥49) generated by 8
query-based attacks (Boundary, HSJA, NESS, QEBA, Square,
SurFree, ZOO, and AttackVLM) exhibit notable differences
during the generation process. However, the sequences of
query images produced by these attacks are highly similar
to one another.

negative occurs when encoder 𝐸 fails to identify themalicious query
x+𝛿 , especially if the embeddings of x and x+𝛿 are significantly dif-
ferent, meaning 𝑠𝑖𝑚(𝐸 (x), 𝐸 (x + 𝛿)) ≤ 𝜇. Consequently, we define
the detection rate as 𝛼det = P[𝑠𝑖𝑚(𝐸 (x), 𝐸 (x + 𝛿)) ≥ 𝜇], while the
false positive rate can be expressed as 𝛼 fp = P[𝑠𝑖𝑚(𝐸 (x1), 𝐸 (x2)) ≥
𝜇]. Furthermore, the trade-off between the detection rate 𝛼det and
the false positve rate 𝛼 fp, is influenced by the standard deviation 𝛽

of the perturbation distribution and the expected spread 𝜎 of natu-
ral queries. Hence, our observations find that natural images are
sufficiently spread out, while adversarial examples generated by the
query-based attacks tend to cluster more centrally. This suggests
that a stronger encoder can achieve a high detection rate while
maintaining a low false positive rate. Additionally, by implementing
an effective defense action, such as returning cache predictions, our
approach is designed to minimize the impact of false positives on
benign users.
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