
Supplementary Materials:
Asynchronous Decentralized Online Learning

Supplementary materials are organized as follows. Appendix A gives a more detailed review of
related work. Appendix B analyzes the feasibility of the iterations of AD-OGP. Appendix C provides
more detailed experimental setup and supplements additional empirical results. Appendix D and
Appendix E provide detailed proofs of Theorem 1 and Corollary 1, which have been omitted in our
main paper due to the space limit.

A More Related Work

In this section, we provide a more detailed review of related work in two fields, namely decentralized
online learning and decentralized stochastic optimization.

A.1 Decentralized Online Learning

In many distributed online learning scenarios such as learning on mobile networks or sensor networks,
centralized architectures are usually unsuitable due to the very high computation and communication
overhead on the central node [7]. As a general solution to reduce such overhead, decentralized online
learning has received much research attention in recent years.

As mentioned in the main paper, most existing studies in this field are conducted in the synchronous
setting, namely, they require some global coordination among learners during the learning process.
Such coordination is used in either feedback processing, local update, or node communication (also
see [3] for a more detailed explanation of synchronicity). Many previous works have investigated
exemplar online algorithms in the synchronous decentralized setting [36, 13, 15, 24, 38, 16, 18]. Other
recent researches have focused on developing synchronous algorithms in specific scenarios, such as
learning on dynamic networks [1, 28, 37, 20], more efficient information exchange [32, 39, 33], or
optimization under constraints [4].

Different from these previous works, we propose to conduct decentralized online learning in a
fully asynchronous manner [3]. In particular, our work does not need any global synchronization
mechanism to coordinate the learners throughout the learning process. In other words, in our
framework, each learner makes predictions, processes feedback, performs local updates, sends out
messages, receives messages, and performs model averaging independently; in particular, it does
not need to know the states of other learners. As far as we are concerned, the recently proposed
[14] is the only work that investigates delay and asynchronization in decentralized online learning.
However, their work only allows learners to communicate specific gradients, hence it is restricted to
dual averaging method where the decision only depends on historic gradients. By taking a completely
different approach, our work allows each learner to communicate its model parameters with other
learners, which is more efficient and suitable to more general online update methods.

A.2 Decentralized Stochastic Optimization

Decentralized stochastic optimization aims to minimize the objective function
∑

i∈V fi/|V |, where
each learner i ∈ V only has the access to a local loss fi(w) = Eξ∼DFi(w; ξ). In this setting,
each instance point ξ are i.i.d. sampled from some fixed but unknown distribution D; this is a core
assumption in the stochastic optimization setting. Previous studies in this field can be classified into
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two categories: synchronous algorithms and asynchronous algorithms. In synchronous algorithms,
at each iteration, all learners compute stochastic gradients locally and are synchronized to update
their local models at the same pace [7, 26, 29, 30, 23, 17]. However, as stated before, synchronous
algorithms suffer from the straggler problem. To resolve this problem, many recent works have
developed asynchronous algorithms for stochastic optimization [21, 8, 35, 12, 2, 31].

Despite the existence of many previous works for asynchronous decentralized stochastic optimization,
we note that, as a first systematic study for asynchronous decentralized online learning, our work is
largely different from them in the following three aspects. First, we contribute the first framework
of asynchronous decentralized online learning. In particular, we propose an event indexing system
by taking both prediction and local update into account, which is distinct from previous stochastic
frameworks using the update indexing system [21] in both formulation and analysis. Second, our
algorithm has two specific and novel designs in the online setting, namely weighted projection
and instantaneous model averaging. Both designs make our algorithm more effective than simply
tailoring standard stochastic optimization algorithms [21, 2, 31] to the online setting. Third, the regret
analysis for decentralized online learning is intrinsically different from the convergence analysis for
decentralized stochastic optimization.

B The Feasibility of AD-OGP

In this section, we strictly prove that the predictions generated by our proposed AD-OGP algorithm
are guaranteed to lie in the feasible region K. The proof is not straightforward because the predictions
wi of learner i are determined by its model xi and push-sum weight yi together, namely wi = xi/yi;
during the learning process, both local update and model averaging can change the parameters xi and
yi, which possibly induces predictions that lie outside of the feasible region.

We first introduce some notations to specify each learner i’s parameters xi and yi at some certain
event time points t ∈ {1, . . . , 2T}. Specifically, we use xi(t) and yi(t) to denote its most recent
local model and push-sum weight before event t; and use x′

i(t) and y′i(t) to denote its local model
and push-sum weight immediately after event t. Then its predictions immediately before and after
event t are wi(t) = xi(t)/yi(t) and ui(t) = x′

i(t)/y
′
i(t), respectively. To help better understand

our algorithm, we describe the full procedure of AD-OGP in Algorithm 1, which is aligned with our
proposed AD-OCO framework (Protocol 1 in our main paper).

Proposition 1. In AD-OGP, for any i ∈ V, t ∈ PT , it holds that

yi(t) > 0, wi(t) =
xi(t)

yi(t)
∈ K.

Proof. As a prerequisite of proving feasibility, we first show that, for each learner i ∈ V , its push-sum
weight yi(t) is always positive; otherwise, the division xi(t)/yi(t) may be invalid.

Lemma 1. In AD-OGP, for each learner i ∈ V , its push-sum weight is positive throughout the
learning process, i.e., yi(t) > 0, y′i(t) > 0,∀t ∈ {1, . . . , 2T}.

Proof. There are only two types of actions that may change the value of push-sum weights, namely
local update U and model averaging A. Consider an arbitrary learner i ∈ V . At each of its local
update event, its push-sum weight yi is multiplied by a factor of γi (1/m ≤ γi < 1). Moreover, each
time it executes a model averaging operation, its push-sum weight yi is added with some weight y′ of
another learner. In fact, the positiveness of yi(t) can be proved by inducting on t ∈ {1, . . . , 2T}.
At the beginning of the learning process (t = 1), for each learner i ∈ V , its push-sum weight is
initialized as yi(1) = 1. Since the first event must be a prediction event, we must have y′i(1) =
yi(1) = 1 for any i ∈ V . Now we suppose that, for some t ≤ 2T , we have yi(l) > 0, y′i(l) > 0,∀i ∈
V,∀l ∈ {1, . . . , t}. We now check the positiveness of yi(t+ 1) and y′i(t+ 1).

(i) During the interval between events t and t + 1, yi can only change during model averaging on
learner i. Recall the notations in our framework, namely, learner i performs model averaging using
the copies inMi(t) during this interval. IfMi(t) = ∅, we directly have yi(t + 1) = y′i(t) > 0.
If Mi(t) ̸= ∅, consider any single copy (x′, y′) = (γjx

′
j , γjyj) ∈ Mi(t). We suppose that its

corresponding message delay is d′. Then the weight y′j is exactly learner j’s push-sum weight
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Algorithm 1 Asynchronous Decentralized Online Gradient-Push (AD-OGP)
1: Input: Time horizon T , convex set K, and learning rate η.
2: Initialize: Local model xj(1)← w0 ∈ K and push-sum weight yj(1)← 1,∀j ∈ V .
3: for t = 1, . . . , 2T do
4: if δt = 0 then // for a prediction event
5: Learner it predicts with wit(t) = xit(t)/yit(t).
6: Learner it starts to compute the gradient∇ft(wit(t)).
7: (Parameters of all learners j ∈ V stay unchanged: x′

j(t) = xj(t), y
′
j(t) = yj(t).)

8: else // for a local update event
9: Learner it performs weighted projected gradient descent:

x′
it(t) = γityit(t)ΠK(

xit(t)− η∇flt(wit(lt))

yit(t)
), y′it(t) = γityit(t).

10: Learner it sends x′
it
(t) and y′it(t) to each neighbor j ∈ N (it).

11: (Parameters of other learners j ̸= it stay unchanged: x′
j(t) = xj(t), y

′
j(t) = yj(t).)

12: end if
13: for i ∈ V do
14: Learner i performs model averaging as long as it is not occupied:

xi(t+ 1) = x′
i(t) +

∑
x′∈Mi(t)

x′, yi(t+ 1) = y′i(t) +
∑

y′∈Mi(t)

y′.

15: end for
16: end for

immediately after the event t− d′, namely y′j(t− d′). Since we have assumed that y′j(t− d′) > 0,
we thus have yi(t+ 1) = y′i(t) +

∑
(x′,y′)∈Mi(t)

y′ > 0.

(ii) At the event t+ 1, from Algorithm 1 we know that either y′i(t+ 1) = yi(t+ 1) or y′i(t+ 1) =
γiyi(t+ 1). Since γi > 0, in both cases we have y′i(t+ 1) > 0.

In summary, we have yi(t+1) > 0 and y′i(t+1) > 0 for any i ∈ V . Hence we prove this lemma.

Now we can formally analyze the feasibility of AD-OGP. In intuition, we expect that both operations
of local update and model averaging will not violate the feasibility of the generated predictions.
Recall that, in our algorithm, for each local update, the feasibility is always preserved by our proposed
weighted projection mechanism. Hence we only need to prove that, during model averaging, the
feasibility of AD-OGP is also preserved. Indeed, such a property is implied by the following lemma.

Lemma 2. Suppose the parameters (xi, yi) of all learners satisfy yi > 0,xi/yi ∈ K,∀i ∈ V . Then
given any averaging weights {αi}i∈V such that αi ≥ 0,∀i ∈ V and

∑
i∈V αi > 0, it holds that∑

i∈V αixi∑
i∈V αiyi

∈ K.

Proof. We first consider the simple case of two learners with the same weights α1 = α2 > 0. In this
case, we directly have

x1 + x2

y1 + y2
=

y1
y1 + y2

· x1

y1
+

y2
y1 + y2

· x2

y2
,

thus (x1 + x2)/(y1 + y2) is a convex combination of x1/y1 and x2/y2. If x1/y1, x2/y2 ∈ K, the
parameters after model averaging will still generate the prediction (x1 + x2)/(y1 + y2) that lies in K.

Now we prove this lemma by inducting on the cardinality m of V . It trivially holds for the single-
learner setting where m = 1. Now we suppose that it is satisfied under m ≤ k for some k ≥ 1.
We now intend to prove that it still holds when m = k + 1. Denote V = {1, . . . , k + 1}. Since∑

i∈V αi > 0, αi cannot be all zero for i ∈ V . We now consider the following two cases.

(i) There is only a single αi being positive. Then, without loss of generality, we can assume α1 > 0
and αi = 0 for any i > 1. In this case, we trivially have (α1x1)/(α1y1) ∈ K.
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(a) Dp = 1, Dm = 1 (b) Dp = 10, Dm = 1 (c) Dp = 1, Dm = 10 (d) Dp = 10, Dm = 10
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Figure 5: More results to verify the benefit of asynchronization. The plots compare AD-OGP and
D-OGP on a 64-node ring graph under varying levels of processing delays Dp and message delays
Dm on higgs.

(ii) There are at least two αi that are positive. Without loss of generality, we can assume α1, α2 > 0.
Since

∑k+1
i=2 αi > 0, from our assumption we have (

∑k+1
i=2 αixi)/(

∑k+1
i=2 αiyi) ∈ K. Set x′

1 =

α1x1, y
′
1 = α1y1, x

′
2 =

∑n+1
i=2 αixi, y

′
2 =

∑k+1
i=2 αiyi, then from the initial case of two learners, we

have (x′
1 + x′

2)/(y
′
1 + y′2) ∈ K.

Combining the above two cases, we check the setting of |V | = k + 1. Hence, by inducting on k, we
prove the lemma.

Finally, we can prove the feasiblity of AD-OGP by inducting on t ∈ {1, . . . , 2T}. Recall that, at the
beginning of the learning process t = 1, each learner i ∈ V is initialized as xi(1) = w0 ∈ K and
yi(1) = 1; and x′

i(1) = xi(1), y
′
i(1) = yi(1).

We now suppose that for some t ≤ 2T , it holds that xi(l)/yi(l) ∈ K,x′
i(l)/y

′
i(l) ∈ K,∀i ∈ V, l ∈

{1, . . . , t}. Then during the interval between events t and t + 1, each learner i ∈ V may perform
model averaging using the copies inMi(t). From Lemma 2 we know that xi(t+1)/yi(t+1) ∈ K. In
addition, recall our designed mechanism of weighted projection, we also have x′

i(t+1)/y′i(t+1) ∈ K.
Consequently, we prove the proposition by induction.

C More Details of Experiments

In this section, we first provide more details of our experimental setup and algorithm configurations,
then supplement additional empirical results.

C.1 A Summary of Baselines

In our experiments, we have compared AD-OGP with three baseline algorithms. We now give a
summary of the compared baselines, as the readers might expect.

1. Synchronous online gradient push [2]. This is the synchronous counterpart of AD-OGP. It is
compared in Figure 1 of Section 4.1, which verifies the efficiency of AD-OGP compared to
its synchronous counterpart.

2. Asynchronous stochastic gradient descent [4]. This is a classic asynchronous decentralized
algorithm from stochastic optimization. We tailor it to the pure online setting, and present the
comparison results in Figure 2 of Section 4.3.1. It verifies the effectiveness of asymmetric
gossiping in AD-OGP.

3. Asynchronous stochastic gradient-push [5]. This is the state-of-the-art asynchronous algo-
rithm from stochastic optimization. We also tailor it to the pure online setting, and present
the comparison results in Figure 3 of Section 4.3.2 (Figure 3 is on the right of Figure 2). It
verifies the effectiveness of instantaneous model averaging in AD-OGP.

C.2 Logistic Loss for Binary Classification

In binary classification, the class set is C = {±1}. Each learner is parametrized by the (vector) model
x ∈ Rn and the push-sum weight y > 0. Given the feature vector of an instance ξ ∈ Rn, the learner
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Figure 6: More results to verify the benefit of asynchronization. The four plots compare AD-OGP
and D-OGP on a 64-node complete graph under varying levels of processing delays Dp and message
delays Dm on pokerhand.

predicts its class label as sgn(w⊤ξ), where w = x/y is restricted in K. Suppose the true class label
of such instance is l ∈ {±1}. We adopt the logistic loss, which is defined as

f(w) = log(1 + exp(−lw⊤ξ)).

C.3 Multivariate Logistic Loss for Multi-Class Classification

In H-class classification (H ≥ 3), the class set is C = {1, . . . ,H}. Each learner is parametrized by
the model (in a matrix form) X = [x1; · · · ;xH ] ∈ Rn×H and the push-sum weight y > 0. Given
the feature vector of an instance ξ ∈ Rn, the learner predicts its class label as argmaxh∈C w

⊤
h ξ,

where wh = xh/y,∀h ∈ C, is restricted within K. Suppose the true class label of the instance is
l ∈ C. We adopt the multivariate logistic loss [11], which is defined as

f(W ) = log(
∑
h∈C

exp(w⊤
h ξ −w⊤

l ξ)),

where W = X/y is the decision (in a matrix form). Note that, the matrix form is compatible with
our framework and theoretical analysis. Specifically, for each learner, we can concatenate all column
vectors x1, . . . ,xh of the matrix model X into a nh × 1 vector x ∈ Rnh, and all column vectors
w1, . . . ,wh of the matrix prediction W into a nh × 1 vector w ∈ Rnh. Then we have w = x/y,
and the loss function f is convex w.r.t. w.

C.4 Network Topology

We here provide detailed descriptions of the various types of network topology examined in our
experiments, namely the complete graph, the Watts-Strogatz graph, and the ring graph. All these
types of graphs are commonly used in previous studies for decentralized algorithms [7, 38], which
represent different levels of connectivity.

1. Complete graph. In this kind of graph, each node is connected to any other node. Any
complete graph has a diameter of D = 1, which represents a high level of connectivity.

2. Ring graph. In this kind of graph, all nodes are arranged in the shape of a ring, and each
node is only connected to its two immediate neighbors in the ring. The ring graph with m
nodes has a diameter of D = ⌊m/2⌋, which represents a low level of connectivity.

3. Watts-Strogatz graph. This is a kind of random graph, which has two parameters that control
its topology, namely the average degree k and the rewiring probability p. In general, a
higher average degree or a higher rewiring probability will result in better connectivity of
the generated random graph [6]. In our experiments, we follow [34] and set k = 4, p = 0.3,
to generate random graphs that represent a medium level of connectivity.

C.5 More Details of Algorithm Configurations

We adopt L2-norm balls as the decision set in our experiments. Specfically, for binary classification,
it is defined as K = {w ∈ Rn | ∥w∥ ≤ F/2}, where ∥ · ∥ denotes the L2-norm of any vector. For
multi-class classification, it is defined as K = {W ∈ Rn×H | ∥W ∥F ≤ F/2}, where ∥W ∥F is the
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Figure 7: Illustration of the efficiency of AD-OGP in the non-convex setting. The plots compare FMs
using AD-OGP and D-OGP on 64-node graphs of varying topologies on higgs.

Frobenius norm of the matrix W = [w1; . . . ;wH ] ∈ Rn×H , i.e., ∥W ∥F = (
∑H

h=1 ∥wh∥2)1/2. We
set their diameters F = 10.

To configure the learning rate, we follow the common practice in asynchronous online learning [22]
by setting η = αη∗, where η∗ is the appropriate learning rate theoretically suggested by the given
algorithm, and α is chosen from a grid search over {α0(1.25)

i | i ∈ N} (α0 is an initial guess for
each dataset). In particular, as suggested by Corollary 1 in our main paper, the theoretically optimal
η∗ is determined by several quantities, namely T,Dproc, Dmsg,Γu and G. In our experiments, we
use G = 1, which has been suggested as a generally good choice in practice [22]. To specify the
quantities related to delays (Dproc, Dmsg and Γu), we first simulate a small number of rounds (say
T0 = 10000) and measure these quantities within the first T0 rounds [19], and then use them to
estimate the quantities over the entire time horizon T .

Note that, although our proposed framework characterizes the number of predictions Ni for each
learner i ∈ V , we do NOT need to know these values. Instead, we only need to know the time horizon
T =

∑
i∈V Ni. In some specific scenarios where T is unknown, we can adopt the commonly used

doubling trick technique [5] or tune the learning rates by hand [35].

In our experimental setup, the time complexity of each local update or model averaging operation
is in O(n), where n is the dimension of model parameters. Hence the overall time complexity is
O(nT ). All runs are deployed on Xeon(R) E5-2699 @ 2.2GHz.

C.6 More Results to Verify the Benefit of Asynchronization

In our main paper, we report the results of the experiment on Watts-Strogatz graphs on pokerhand.
Here we also compare AD-OGP and D-OGP on higgs as well as other types of networks (i.e., ring
graphs or complete graphs). Specifically, we measure the performance of both algorithms on a 64-
node ring graph on higgs, as well as on a 64-node complete graph on pokerhand, under varying levels
of processing delays Dp and message delays Dm (recall that, we use Dp (Dm) = 1 to represents
a low delay level and Dp (Dm) = 10 to represent a high delay level). The results are plotted in
Figure 5 and Figure 6 respectively. They are consistent with the empirical results presented in our
main paper. In particular, AD-OGP runs significantly faster than its synchronous counterpart while
incurring hardly any loss in the performance.

C.7 Experiments in the Non-Convex Setting

Recall that, our framework and theoretical analysis originate from online convex optimization, which
relies on the convexity assumption [10]. Nevertheless, in principle, our proposed AD-OGP algorithm
can also be applied to the non-convex setting. Here we conduct additional experiments to verify this
point, namely, the efficiency of AD-OGP against its synchronous counterpart [28] is consistent in the
non-convex setting.

In this experiment, we adopt the Factorization Machine (FM) [27] as the non-convex model. Specifi-
cally, a FM model of degree d ∈ N+ is parametrized by a weight vector w ∈ Rn, a bias w0 ∈ R, and
an interaction matrix V ∈ Rn×d. Given the feature vector ξ = (ξ1, . . . , ξn) ∈ Rn of any instance,
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FM predicts its value as

h(ξ;w, w0,V ) = w0 +w⊤ξ +

n∑
i=1

n∑
j=i+1

⟨vi,vj⟩ξiξj ,

where vi represents the i-th row of V .

We conduct online binary classification experiments on higgs and adopt the logistic loss. Specifically,
the class label of ξ is predicted as sgn(h(ξ;w, w0,V )). Suppose its true class label is l ∈ {±1}, then
the loss function is given as f(w, w0,V ) = − log σ(l · h(ξ;w, w0,V )) where σ(u) = 1/(1+ e−u).

We employ AD-OGP and its synchronous counterpart D-OGP in the aforementioned non-convex
setting. In the experiment, we set the FM’s degree d to be 8, which is chosen via a grid search.
Other configurations are set to be the same as those for the convex experiments in our main paper.
Figure 7 presents the results on 64-node graphs with different topologies. The results show that, in
the online non-convex setting, AD-OGP runs significantly faster than its synchronous counterpart,
with negligible loss in performance, which accords well with our intuition that AD-OGP can also be
applied to the non-convex setting.

D Omitted Proof of Theorem 1

In this section, we present the detailed proof of Theorem 1, which is omitted in our main paper.

Our proof consists of three steps. First, we extend the graph augmentation technique [9] to our
online setting to handle message delays, then explicate the transition matrices P (t) at each round
t ∈ {1, . . . , 2T}. Second, we decouple the effect of prediction, local update and model averaging,
then derive a general regret bound in terms of the transition matrices P (t) and the associated gradients
gt and ĝt. Third, we look deep into the mechanism of push-sum and analyze its convergence rate;
plugging it into the above general bound, we successfully derive the bound required in Theorem 1.

D.1 Formulate Transition Matrices on the Augmented Graph

As the first step of regret analysis, we characterize the transition matrices P (t) at each iteration
t ∈ {1, . . . , 2T}. Recall the message sending after any local update event t ∈ QT , namely, the
updated learner it will sent out a copy of its updated parameters (x′

it
(t), y′it(t)) to each of its neighbor

in N (it). Consider its arbitrary neighbor j ∈ N (it), and suppose that the message (x′
it
(t), y′it(t))

will experience a message delay of dmitj(t). For simplicity, abbreviate (x′
it
(t), y′it(t)) into (x′, y′)

and dmitj(t) into d. Then such message will be used for learner j’s model averaging between events
t+ d and t+ d+ 1. Notably, it is captured by NONE of the learners during the interval (t, t+ d].

Such a property will make the recursive relation of local models at different time points extremely
complex. In the above example, due to the message delay, a copy of learner it’s model (x′

it
(t), y′i(t))

after its local update event t will be added to learner j’s model (xj(t + d + 1), yj(t + d + 1)) at
event t + d + 1. Since the message delay d is at most Dmsg (see Assumption 1), the order of the
recursion can be as large as Dmsg + 1. Moreover, each message has its specific delay. Hence the
recursion of parameters will be very complex, which makes the analysis almost intractable.

To alleviate this complexity, we introduce the graph augmentation technique [9]. Its main idea is to
append some virtual nodes to the decentralized network G, so that any message that undergoes delays
will be captured by exactly one of the virtual nodes during its transmission. With this approach, the
algorithm can be viewed as running on the augmented graph with zero message delay. Then we can
derive a first-order recursion of parameters, which is relatively easier in the subsequent analysis.

Formally, the augmented version G̃ = (Ṽ , Ẽ) of G = (V,E) is constructed in the following two
steps. First, regarding each actual node i ∈ V in the original graph, we add Dmsg virtual nodes
b1i , . . . , b

Dmsg

i . Second, we add two types of virtual edges to connect these virtual nodes and some
actual nodes: (i) Corresponding to each actual node i ∈ V , we add Dmsg virtual edges, namely
(b1i , i) and (bl+1

i , bli),∀l ∈ {1, . . . , Dmsg − 1}; then any actual node i ∈ V and its corresponding
Dmsg virtual nodes b1i , . . . , b

Dmsg

i form a chain (i, b1i , . . . , b
Dmsg

i ) in the augmented graph G̃. (ii)
Corresponding to each actual edge (i, j) ∈ E, we add 2Dmsg virtual edges (bli, j), (b

l
j , i),∀l ∈
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Figure 8: Illustration of message passing on the augmented graph. The two solid circles i and j
represent two actual nodes. The solid curve represent the actual edge (i, j). The D dash circles denote
all virtual nodes corresponding to the actual node j, namely b1j , . . . , b

D
j . The dash curves represent

two types of virtual edges, i.e., those in the chain (bDj , . . . , b1j , j) as well as those corresponding to
the actual edge (i, j). The blue arrows illustrate the transmission of the message sent from node i to
node j with a message delay of d. In particular, it transmits along i→ bdj → · · · → b1j → j.

{1, . . . , Dmsg}. Mathematically, the augmented graph G̃ is constituted by the augmented vertex set

Ṽ = V ∪ {bli | i ∈ V, 1 ≤ l ≤ Dmsg},

and the augmented edge set

Ẽ = E ∪ {(bD
msg

i , bD
msg−1

i ), . . . , (b2i , b
1
i ), (b

1
i , i) | i ∈ V }

∪ {(bli, j), (blj , i) | (i, j) ∈ E, 1 ≤ l ≤ Dmsg}.

To ensure that the message is captured by exactly one virtual node during its transmission, we can
imagine an information flow along the chain (bD

msg

j , . . . , b1j , j). Specifically, suppose that some
message is sent from learner i to learner j after some event t ∈ {1, . . . , 2T}, which has a message
delay of d ≥ 0. Then we can imagine that it first arrives at the virtual node bdj at event t+ 1, then is
passed to bd−1

j at event t+ 2, and so forth until it arrives at b1j at event t+ d, and finally reaches its
destination j at event t+ d+ 1. In this imaginary process, this message is captured by exactly one
node (either actual or virtual) at each step during its transmission. Therefore, the message can be
viewed as transmitting via the path i→ bdj → · · · → b1j → j, with zero message delay at each hop.
Note that, when d = 0, the transmission trivially reduces to i→ j, namely, the message reaches node
j immediately and is processed by node j before the incoming event. To better explicate this point, in
Figure 8 we give a demonstration of how a message is diffusing over the augmented graph. Note
that, for conciseness, we abbreviate the maximal message delay Dmsg into D throughout the proof
of Theorem 1.

Now we can characterize the evolving dynamics of the whole process via formulating the recursive
relation of parameters. For each virtual node bli ∈ Ṽ − V , we assume that it also maintains
model parameters xl

i and push-sum weight yli during the process, and initialize these parameters as
xl
i(1) = 0 ∈ Rn and yli(1) = 0. In addition, to give a more concise expression of the nodes in G̃,

for each actual node i ∈ V , we also represent it by b0i and rewrite its parameters as (x0
i (t), y

0
i (t)) =

(xi(t), yi(t)). In the following, we will can formulate the evolution of model parameters (xl
i(t), y

l
i(t))

of either actual (l = 0) or virtual (l ≥ 1) node throughout the learning process.
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(A) First we analyze the evolution of model parameters at any specific event t ∈ {1, . . . , 2T}. If
event t is a local update event (t ∈ PT ), then the local model of any learner will not change at this
event. If event t is a local update event (t ∈ QT ), then it is the only learner whose model parameters
changes at this event, with the update form

x′
it(t) = γityit(t)ΠK(

xit(t)− ηgt

yit(t)
), y′it(t) = γityit(t).

In the above update form, we first cast aside the multiplication operation with γit (which is regarded
as part of model averaging and will be tackled later). Denote the local model immediately after the
projected gradient descent step as

zit(t) = yit(t)ΠK(
xit(t)− ηgt

yit(t)
).

Since the projection operation ΠK will introduce nonlinearity to the local update, we denote the
residual of weighted projection as rt = zit(t)− (xit(t)− ηgt) and linearize the local update as

zit(t) = xit(t)− ηgt + rt.

More compactly, we denote the incremental term associated with this local update as ϵt = −ηgt +
rt ∈ Rn. In summary, for each learner i ∈ V , the change of its local model (without multiplication
with γi) at any event t ∈ {1, . . . , 2T} takes

zl
i(t) =

{
xl
i(t) + ϵt, t ∈ QT , i = it, l = 0;

xl
i(t), else.

In addition, its push-sum weight yli(t) stays unchanged.

(B) Then we give a matrix form of model averaging between any two consecutive events t and t+ 1.
Specifically, for the transition matrix P (t) between events t and t+ 1 (which is now defined on the
augmented graph G̃), we identify each of its entries pij(t). Recall that, for each entry pij(t) of the
transition matrix P (t), it specifies how much portion of node j’s push-sum weight ylj(t) immediately
before event t will be added to node i’s push-sum weight yli(t+ 1) until the next event t+ 1. Note
that, as the averaging operation on model parameters xl

i(t) and push-sum weight yli(t) are totally the
same, the same transition matrix P (t) is also applied to model parameters.

As a prerequisite, we represent the parameters of all nodes in the augmented graph via a compact
matrix form. Specifically, for each node bli ∈ Ṽ , we view its local model xl

i as a row vector in R1×n.
Then we can formulate the matrix model X(t) by stacking the local models of all nodes (both actual
and virtual) together into a m(D + 1)× n matrix, namely

X(t) = [x1(t)
⊤, . . . ,xm(t)⊤,x1

1(t)
⊤, . . . ,x1

m(t)⊤, . . . ,xD
1 (t)⊤, . . . ,xD

m(t)⊤]⊤ ∈ Rm(D+1)×n.

Similarly, we can denote the compact form of push-sum weights y(t) by stacking the push-sum
weights yli(t) of all nodes (both actual and virtual) into a m(D + 1)× 1 column vector, i.e.,

y(t) = [y1(t), . . . , ym(t), y11(t), . . . , y
1
m(t), . . . , yD1 (t), . . . , yDm(t)]⊤ ∈ Rm(D+1).

Now the parameters of each node can be specified via X(t) and y(t). Specifically, (i) For each actual
node i ∈ V , its local model constitutes the i-th row of X(t), i.e., xi(t) = e⊤i X(t) = Xi·(t)

1, and
its push-sum weight yi(t) is exactly the i-th entry of y(t). (ii) For any virtual node bli, i ∈ V, l ∈
{1, . . . , D}, its local model constitutes the (lm + i)-th row of X(t), i.e., xl

i(t) = e⊤lm+iX(t) =

X(lm+i)·(t), and its push-sum weight yli(t) is the (lm+ i)-th entry of y(t). Since the index bli is a
bit lengthy, we simplify the notations by using an integer h = lm+ i to identify this virtual node bli.
Then its parameters can be rewritten as xh(t) = e⊤hX(t) = Xh·(t) and yh(t) = e⊤h y(t). Note that,
now the vertex set of G̃ is equivalent to Ṽ = {1, . . . ,m(D + 1)}, and the virtual nodes are specified
in Ṽ − V = {m+ 1, . . . ,m(D + 1)}.

1We use ei to represent the i-th unit vector in Rm(D+1), whose i-th entry takes 1 and other entries take 0.
We also use Ai· to represent the i-th row of any matrix A.
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The transition matrix P (t) now acts on the model parameters as

y(t+ 1) = P (t)y(t).

The entries pij(t) of P (t) formulate the multiplication and the averaging operation on push-sum
weights, in the form of yi(t+ 1) =

∑
j∈Ṽ pij(t)yj(t). To specify the matrix P (t), first recall that,

after a local update event t ∈ QT , learner i will first multiple its model and push-sum weight by
a factor of γit , then sent out copies of its updated parameters (e.g.,the push-sum weight y′it(t) =
γityit(t)). In the following, we investigate the two types of events separately.

(i) If event t is a prediction event, i.e., t ∈ PT , then y′i(t) = yi(t),∀i ∈ Ṽ .

(i-a) For each actual learner i ∈ V , it can only perform model averaging during the interval between
events t and t+ 1. In Algorithm 1, the model averaging takes

yi(t+ 1) = y′i(t) +
∑

(x′,y′)∈Mi(t)

y′ = yi(t) +
∑

(x′,y′)∈Mi(t)

y′,

where the setMi(t) contains all messages used for model averaging on learner i during the interval
between events t and t+ 1. Recall that, in the graph augmentation technique, any message sent to
learner i with a delay of d is viewed as transmitting along the chain bdi → bd−1

i → · · · → b1i → i.
Consequently,Mi(t) inherits all messages that are captured by node b1i immediately before event t,
and we simply have

yi(t+ 1) = yi(t) + y1i (t).

(i-b) For each virtual node h = bli, i ∈ V, l ∈ {1, . . . , D}, it will pass its parameters to the successor
bl−1
i in the chain, and may inherit the parameters of the predecessor bl+1

i in the chain (if bl+1
i does

exist, namely l < D). Therefore, we have

yli(t+ 1) =

{
yl+1
i (t), l ∈ {1, . . . , D − 1},
0, l = D.

Combining (i-a) and (i-b), the transition matrix P (t) after each prediction event t ∈ PT and before
the next event can be formulated as2

P (t) =



Im Im Om · · · Om

Om Om Im · · · Om

...
...

...
. . .

...
Om Om Om · · · Im
Om Om Om · · · Om

 . (1)

(ii) If event t is a local update event, i.e., t ∈ QT , the averaging effect will be more complex, because
the updated node it will also send out messages.

(ii-a) We first consider actual nodes i ∈ V . For the updated node it, it will multiply its push-sum
weight by γit immediately after the projected gradient descent step, namely y′it(t) = γityit(t). For
any other actual node j ∈ V − {it}, its push-sum weight does not need to multiply γj , it may receive
the message sent from learner it if it is a neighbor of it and the message has zero message delay,
i.e., j ∈ N (it) and dmitj(t) = 0. Then, just like the above case (i-a), each actual node i ∈ V will
inherit the parameters from the virtual node b1i . To give a more compact expression, similar to [31],
we introduce an indicator variable δli(t) for i ∈ V, 0 ≤ l ≤ D, i.e.,

δli(t) =

{
1, i ∈ N (it) ∪ {it}, l = dmiti(t),

0, otherwise.

δli(t) equals to 1 if and only if node it sends a message to node i and such message exactly has a
delay of l. Note that, we assume dmitit(t) = 0, which makes the indicator variable δli(t) well-defined.
In summary, we have

yi(t+ 1) =

{
γityi(t) + y1i (t), i = it,

yi(t) + y1i (t) + δ0i (t)γityit(t), i ̸= it.

2We use Im to represent the m×m identity matrix and Om to represent the m×m all-zero matrix.
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(ii-b) We then consider virtual nodes h = bli, i ∈ V, l ∈ {1, . . . , D}. If its corresponding actual node
i is a neighbor of the updated node it and the message sent from node it has a delay of l, namely
i ∈ N (it) and dmiti(t) = l, then this virtual node will receive the model copy of learner it. Moreover,
just like the above case (i-b), it will pass its parameters to the successor bl−1

i in the chain and may
inherate the parameters of the predecessor bl+1

i in the chain (if node bl+1
i exists). In summary, we

have

yli(t+ 1) =

{
δli(t)γityit(t) + yl+1

i (t), l ∈ {1, . . . , D − 1},
δli(t)γityit(t), l = D.

Combining (ii-a) and (ii-b), the transition matrix P (t) after each local update event t ∈ QT takes

P (t) =



P 0(t) Im Om · · · Om

P 1(t) Om Im · · · Om

...
...

...
. . .

...

PD−1(t) Om Om · · · Im

PD(t) Om Om · · · Om


, (2)

where each block P l(t) ∈ Rm×m for l ∈ {0, . . . , D} takes

P l
ij(t) =


1, i = j ̸= it, l = 0,

δli(t)γit , j = it,

0, else,

for any i, j ∈ {1, . . . ,m}.
The transition matrix P (t) derived above has the following properties:

Lemma 3. In AD-OGP, for any t ∈ {1, . . . , 2T}, the transition matrix P (t) defined on the augmented
graph satisfies:
(i) P (t) is non-negative and column stochastic, i.e., 1⊤P (t) = 1⊤.
(ii) Its first m diagonal entries P ii(t), 1 ≤ i ≤ m are positive. In addition, its positive entries are at
least γit if t ∈ QT , and 1 if t ∈ PT .

Proof. Since this lemma obviously holds for t ∈ PT , we only need to check the case of t ∈ QT .
From the above formulation in (B), P (t) is non-negative, and its minimal positive entry is exactly
γit . Moreover, From the formulation of P 0(t) and the fact that δ0it(t) = 1, we have P jj(t) = 1 for
j ∈ {1, . . . ,m} − {it} and P itit(t) = γit , which are all positive.

Now we prove the column stochasticity of P (t). As it trivially holds for the last mD columns,
we only need to check the first m columns. For any j ∈ {1, . . . ,m} − {it}, the only non-zero
entry in the j-th column is P jj(t) = 1. For the it-th column, the entries in this column sum up
to

∑D
l=0

∑
i∈V δli(t)γit . From Assumption 1, the message delay dmiti(t) must take a value within

{0, . . . , Dm} for any i ∈ N (it) ∪ {it}, and particularly dmitit(t) = 0. Hence

D∑
l=0

δli(t) =

{
1, i ∈ N (it) ∪ {it},
0, otherwise.

Recall that γit = 1/(|N (it)|+ 1). Thus the sum of the entries in its it-th column is exactly

D∑
l=0

∑
i∈V

δli(t)γit =
∑

i∈N (it)∪{it}

γit = (|N (it)|+ 1)γit = 1.

Hence, we prove that P (t) is column stochastic.
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D.2 Derive a General Bound in Terms of Transition Matrices and Gradients

Now that we have formulated the transition matrix at each round, we can derive the compact matrix
form of the learning procedure.

We define a matrix ∆(t) ∈ Rm(D+1)×n at each round t ∈ {1, . . . , 2T}: if t ∈ PT , we let ∆(t) be
the m(D + 1)× n all-zero matrix; if t ∈ QT , we let ∆(t) = eitϵt, whose it-th row takes ϵt and the
other rows are the all-zero vector. Then for t ∈ QT , the weighted projected gradient step (without
multiplication with γit ) takes X(t) +∆(t); and this also holds for t ∈ PT where ∆(t) is an all-zero
matrix. Hence we can call ∆(t) the incremental matrix at round t. Combining it with the transition
matrix P (t) derived before, we can write out the full recursive relations of model parameters or
push-sum weights of all learners, namely,

X(t+ 1) = P (t)(X(t) +∆(t)),

y(t+ 1) = P (t)y(t).
(3)

From the above recursions, we can now express X(t) and y(t) in terms of the initial parameters
X(0),Y (0) and the incremental terms ∆(s) at previous rounds s < t. For conciseness, for any
s < t, we define the product of the t − s consecutive transition matrices (termed the multi-hop
transition matrix) as

Q(s, t) = P (t− 1) · · ·P (s).

We also set Q(t, t) = Im(D+1) to make the notation Q(s, t) well-defined. Then, it is easy to verify
that Q(s, t) is column stochastic for any s ≤ t. Specifically, since all P (t) are column stochastic, we
have

1⊤Q(s, t) = 1⊤P (t− 1) · · ·P (s) = 1⊤.

Recall that ∆(t) is an all-zero matrix if t ∈ PT and also notice that {1, . . . , t − 1} − PT =
{1, . . . , t− 1} ∩ QT = Q1,t, hence we have

X(t) = Q(1, t)X(1) +

t−1∑
s=1

Q(s, t)∆(s)

= Q(1, t)X(1) +
∑

s∈Q1,t

Q(s, t)∆(s),

y(t) = Q(1, t)y(1).

(4)

Based on the above recursions in the matrix form, we now give a general analysis of the regret. Since
the regret is evaluated by the actual predictions made at prediction events, we consider each prediction
event t ∈ PT . For each learner i ∈ V , since xi(t) and yi(t) denote its most recent parameters
immediately before event t, the actual prediction made by learner i is exactly wi(t) = xi(t)/yi(t).
To analyze the regret, we need to compare the loss ft(wj(t)) evaluated at the reference learner j
with the loss ft(w∗) evaluated by the best fixed prediction w∗ in hindsight.

Inlighted by the analysis of synchronous online algorithms [36], we introduce the notion of "average
model x̄(t)" as a communication-invariant quantity. However, such a quantity in the asynchronous
setting is much more complex than that in the synchronous setting due to the existence of message
delay. Specifically, in the synchronous setting, x̄(t) can be computed by simply averaging the local
models of all actual learners, i.e., x̄(t) =

∑
i∈V xi(t)/m. In the asynchronous setting, however, due

to the message delay, each message will not be captured by any actual learner during its transmission.
Suppose some message is in transmission at some round t, then the average model

∑
i∈V xi(t)/m of

all actual learners will not cover this message, and consequently, the recursion of the average model
will crash. To resolve this issue, recall that, each message is captured by exactly one virtual node
in the augmented graph G̃ during its transmission. Therefore, when calculating the average model,
the parameters captured by any virtual node should also be taken into account. Consequently, the
average model can be defined as

x̄(t) =
1

m

∑
i∈V

D∑
l=0

xl
i(t) =

1

m

∑
h∈Ṽ

xh(t) =
1

m
1⊤X(t),
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where Ṽ is the aformentioned augmented vertex set. Plug the formulation (4) of X(t) into the above
equation, and recall that Q(s, t) is column stochastic for all s ≤ t, then we have

x̄(t) =
1

m
1⊤(X(1) +

∑
s∈Q1,t

∆(s)).

Also recall that, the local model of each node is initialized as xi(1) = w0 and xl
i(1) = 0 for all

i ∈ V, l ∈ {1, . . . , D}. Hence the first m rows of X(1) are w0, and the last mD rows of X(1)
are all-zero vectors. Moreover, for any t ∈ QT , the it-th row of ∆(t) takes ϵt = −ηgt + rt, and
the other rows of ∆(t) are all-zero vectors. Therefore, the average model x̄(t) has a simple form,
namely,

x̄(t) = w0 +
1

m

∑
s∈Q1,t

(rs − ηgs).

Similarly, we can define the average push-sum weight ȳ(t) at each round t ∈ {1, . . . , 2T}. Specifi-
cally, we sum up the push-sum weights yli(t) of all nodes bli for i ∈ V, 0 ≤ l ≤ D and divide it by m,
which turns out to be

ȳ(t) =
1

m
1⊤y(t) =

1

m
1⊤Q(1, t)y(1) =

1

m
1⊤y(1),

where the last step utilizes the column stochasticity of Q(1, t). Moreover, since the push-sum weight
is initialized as yi(1) = 1 and yli(1) = 0 for i ∈ V, l ∈ {1, . . . , D}, we have ȳ(t) = 1 for any
t ∈ {1, . . . , 2T}, which means that the average push-sum weight stays unchanged during the learning
process. For now, at each event t ∈ {1, . . . , 2T} (either a prediction event or a local update event),
the average model x̄(t) and the average push-sum weight ȳ(t) can induce a prediction termed the
system prediction3

w̄(t) =
x̄(t)

ȳ(t)
,

which is equivalent to the average model x̄(t) since ȳ(t) = 1. Using the formulation (4) of X(t), we
can also write out the recursive relation of the system prediction w̄(t) at different events

w̄(t+ 1) = x̄(t+ 1) = w0 +
1

m

∑
s∈Q1,t+1

(rs − ηgs)

= x̄(t) + δt(−
η

m
gt +

1

m
rt) = w̄(t) + δt(−

η

m
gt +

1

m
rt).

Recall that, the indicator variable δt equals to 0 if t ∈ PT and to 1 if t ∈ QT .

We further investigate the distance between the system prediction w̄(t + 1) and the best fixed
prediction w∗ in hindsight. Specifically, for any t ∈ PT , we simply have

∥w̄(t+ 1)−w∗∥2 = ∥w̄(t)−w∗∥2. (5)

For any t ∈ QT , the form is slightly more complex

∥w̄(t+ 1)−w∗∥2 = ∥w̄(t)−w∗∥2 + 1

m2
∥rt − ηgt∥2

+
2

m
r⊤t (w̄(t)−w∗)− 2η

m
g⊤
t (w̄(t)−w∗).

(6)

We further investigate the latter case t ∈ QT . Notice that, the recursion (6) is related with the residual
rt of the weighted projection operation. We show that, the norm of the residual is upper bounded by
the norm of the associated gradient gt.
Lemma 4. In AD-OGP, the residual rt of the weighted projection operation at each local update
event t ∈ QT is defined as above. Then its norm is bounded as

∥rt∥ ≤ ηgt.

3Remind that, in our definition, the system prediction w̄(t) is induced by the average parameters x̄(t) and
ȳ(t) of all learners at event t, which does NOT necessily equal to the average of the predictions generated by all
actual learners at event t, i.e., w̄(t) ̸=

∑
i∈V wi(t)/m.
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Proof. Recall our definition of weighted projection operation (note that, Lemma 1 ensures that y > 0)

ΠyK(x) = argmin
z∈yK

∥z − x∥ = y argmin
w∈K

∥w − x

y
∥,

or equivalently
ΠyK(x)

y
= argmin

w∈K
∥w − x

y
∥.

Denote learner it’s local model after gradient descent and before weighted projection as zit(t) =
xit(t) − ηgt, and its induced prediction as vit(t) = zit(t)/yit(t). From Proposition 1 we have
xit(t) ∈ yit(t)K, and from Lemma 1 we know yit(t) > 0. Hence

∥rt∥ = ∥Πyit (t)K(zit(t))− zit(t)∥ = yit(t)∥
Πyit (t)K(zit(t))

yit(t)
− zit(t)

yit(t)
∥

≤ yit(t)∥
xit(t)

yit(t)
− zit(t)

yit(t)
∥ = ∥xit(t)− zit(t)∥ = ∥ηgt∥ = ηgt,

which proves the lemma.

Now we turn back to analyze the recursion (6). Specifically, in the right-hand side of the recursion:
(i) The first term ∥w̄(t)−w∗∥ is preserved for successive elimination.
(ii) The second term is bounded as

∥rt − ηgt∥ ≤ ∥rt∥+ η∥gt∥ ≤ 2ηgt.

(iii) For the third term r⊤t (w̄(t) − w∗), recall the definition of rt and the property of standard
projection operation onto a convex set

(ΠK(a)− a)⊤(a− b) ≤ 0, ∀a ∈ Rn, b ∈ K.
Set a = vit(t), b = w∗ in the above inequality, and utilize yit(t) > 0, then we have

r⊤t (vit(t)−w∗) = yit(t)(ΠK(vit(t))− vit(t))
⊤(vit(t)−w∗) ≤ yit(t) · 0 = 0.

Therefore, we can bound the third term as

r⊤t (w̄(t)−w∗) = r⊤t (w̄(t)− vit(t)) + r⊤t (vit(t)−w∗)

≤ ∥rt∥∥w̄(t)− vit(t)∥ ≤ ηgt∥w̄(t)− vit(t)∥,
where the last inequality utilizes Lemma 4.
(iv) For the last term g⊤

t (w
∗− w̄(t)), recall that gt = ∇flt(wit(lt)) and flt is convex, then we have

g⊤
t (w

∗ − w̄(t)) = g⊤
t (wit(lt)− w̄(t)) + g⊤

t (w
∗ −wit(lt))

≤ gt∥wit(lt)− w̄(t)∥+ flt(w
∗)− flt(wit(lt))

Plug the above terms (i)-(iv) into the recursion (6) and rearrange the inequality, then we obtain

flt(wit(lt))− flt(w
∗) ≤ m

2η
(∥w̄(t)−w∗∥2 − ∥w̄(t+ 1)−w∗∥2)

+ gt(∥w′
it(t)− w̄(t)∥+ ∥wit(lt)− w̄(t)∥+ 2η

m
gt).

Moreover, to relate the above inequality to loss evaluated at the reference learner j, namely
flt(wj(lt)), we again utilize the convexity of flt and recall the definition ĝt = ∇flt(wj(lt)).
Then we have

flt(wj(lt))− flt(wit(lt)) ≤ (ĝt)
⊤(wj(lt)−wit(lt)) ≤ ĝt∥wj(lt)−wit(lt)∥.

Summing the above two inequality together, we derive an upper bound for flt(wj(lt))− flt(w
∗).

Notably, the upper bound is in terms of ∥w′
it
(t)− w̄(t)∥, ∥wit(lt)− w̄(t)∥ and ∥wj(lt)−wit(lt)∥,

which capture the distance between some specific pair of predictions and need to be further analyzed.
In fact, we can decompose these distance terms as

∥w′
it(t)− w̄(t)∥ ≤ ∥wit(t)− w̄(t)∥+ ηgt

yit(t)
,

∥wit(lt)− w̄(t)∥ ≤ ∥wit(lt)− w̄(lt)∥+ ∥w̄(t)− w̄(lt)∥,
∥wj(lt)−wit(lt)∥ ≤ ∥wit(lt)− w̄(lt)∥+ ∥wj(lt)− w̄(lt)∥.
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In summary, for each t ∈ Qt, the quantity flt(wj(lt))− flt(w
∗) can be bounded as

flt(wj(lt))− flt(w
∗) ≤ m

2η
(∥w̄(t)−w∗∥2 − ∥w̄(t+ 1)−w∗∥2)

+ gt(∥wit(t)− w̄(t)∥+ ∥wit(lt)− w̄(lt)∥)

+ gt(∥w̄(t)− w̄(lt)∥+ (
2

m
+

1

yit(t)
)ηgt)

+ ĝt(∥wit(lt)− w̄(lt)∥+ ∥wj(lt)− w̄(lt)∥).

(7)

To further analyze the above quantity, we are particularly interested in ∥w̄(s)− w̄(t)∥ and ∥wi(t)−
w̄(t)∥ for any i ∈ V, 0 ≤ s ≤ t. In the following, we analyze these terms, respectively.

We first derive a bound for ∥w̄(s)−w̄(t)∥ as follows. Recall that we useQs,t = QT ∩{s+1, . . . , t−
1} to denote all update events that happen within (s, t).
Lemma 5. In AD-OGP, the average prediction w̄(t) is defined above. Then for any 1 ≤ s ≤ t ≤ 2T ,

∥w̄(s)− w̄(t)∥ ≤ 2η

m

∑
k∈Qs−1,t

gk.

Proof. Recall the recursion (6) of the system predictions, i.e.,

w̄(t+ 1) = w̄(t) + δt(−
η

m
gt +

1

m
rt).

We then have

∥w̄(s)− w̄(t)∥ ≤
t−1∑
k=s

δk(
η

m
∥gt∥+

1

m
∥rt∥) ≤

∑
k∈Qs−1,t

(
η

m
∥gk∥+

1

m
∥rk∥).

From Lemma 4 we also know that ∥rt∥ ≤ ηgt. Hence we prove the lemma.

We then analyze the term ∥wi(t)− w̄(t)∥, which is a bit more complex. In fact, this term measures
the distance between the prediction of the specific learner i and the system prediction, which is thus
affected by both local update and communication. The following lemma shows that such term has
a bound in terms of the incremental term ϵs at local weight updates as well as the multiple-hop
transition matrices Q(s, t).
Lemma 6. In AD-OGP, the average prediction w̄(t), the residual of projection rt and the multi-hop
transition matrix Q(s, t) are defined above. Then for any t ∈ {1, . . . , 2T}, it holds that

∥wi(t)− w̄(t)∥ ≤
∑

s∈Q1,t

Ri(s, t),

where the quantity Ri(s, t) is defined as4

Ri(s, t) = ∥
e⊤i Q(s, t)∆(s)

e⊤i Q(s, t)y(s)
− ϵs

m
∥.

Proof. Recall that, for any actual learner i ∈ V , its prediction wi(t) at round t is determined by
xi(t)/yi(t) = e⊤i X(t)/e⊤i y(t). From the above formulations (4) of X(t) and y(t), the prediction
can be expressed in terms of the initial local model X(1) and the update matrix ∆(s), namely,

wi(t) =
e⊤i X(t)

e⊤i y(t)
=

e⊤i Q(1, t)X(1)

e⊤i Q(1, t)y(1)
+

∑
s∈Q1,t

e⊤i Q(s, t)∆(s)

e⊤i Q(s, t)y(s)
.

Since all actual learners are initialized as xi(1) = w0, yi(1) = 1, i ∈ V , and all virtual learners
are initialized as xl

i(1) = 0, yli(1) = 0, i ∈ V, l ∈ {1, . . . , D}, we can verify that (here we view
w0 ∈ R1×n as a row vector)

X(1) =

[
1mw0

OmD×n

]
=

[
1m

0mD

]
w0 = y(1)w0.

4Recall that, ei denotes the i-th unit vector in Rm(D+1); for any t ∈ QT , we have also denoted the update
matrix at round t as ∆(s) = eisϵt and the update term at round t as ϵt = rt − ηgt.
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Since e⊤i Q(1, t)y(1) is a scalar, we directly have

e⊤i Q(1, t)X(1)

e⊤i Q(1, t)y(1)
=

(e⊤i Q(1, t)y(1))w0

e⊤i Q(1, t)y(1)
= w0,

and thus

wi(t) = w0 +
∑

s∈Q1,t

e⊤i Q(s, t)∆(s)

e⊤i Q(s, t)y(s)
.

A similar deduction on w̄(t) gives

w̄(t) =
1

m
1⊤X(t) = w0 +

∑
s∈Q1,t

ϵs
m

.

Plugging the above expressions of wi(t) and w̄(t) into the term ∥wi(t)− w̄(t)∥, we derive

∥wi(t)− w̄(t)∥ ≤
∑

s∈Q1,t

Ri(s, t),

which proves the lemma.

Utilizing the above Lemma 5 and Lemma 6, we can derive a general bound in terms of Ri(s, t)
(which is a function of transition matrix Q(s, t) and update term ϵt) and the associated gradients
gt, ĝt. Specifically, for any t ∈ QT , we can apply both lemmas to inequality (7), which derives

flt(wj(lt))− flt(w
∗) ≤ m

2η
(∥w̄(t)−w∗∥2 − ∥w̄(t+ 1)−w∗∥2)

+
∑

s∈Q1,t

gtRit(s, t) +
∑

s∈Q1,lt

gtRit(s, lt)

+
2η

m
gt(gt +

∑
s∈Qlt−1,t

gs) +
1

yit(t)
ηg2t

+
∑

s∈Q1,lt

ĝt(Rit(s, lt) +Rj(s, lt)).

(8)

Recall the definition Qs,t = {k | s < k < t, δk = 1}. Since event lt is a prediction event
(δlt = 0) and event t is a local update event (δt = 1), we have Qlt−1,t ∪ {t} = Qlt,t+1. Hence
gt +

∑
s∈Qlt−1,t

gs =
∑

s∈Qlt,t+1
gs.

Moreover, for any t ∈ PT , from the equation (5), we trivially have

0 =
m

2η
(∥w̄(t)−w∗∥2 − ∥w̄(t+ 1)−w∗∥2). (9)

We sum the above inequality (8) and equation (9) over t ∈ {1, . . . , 2T} = PT ∪ QT . The left-
hand side of the inequalities sum up to

∑
t∈QT

flt(wj(lt) − flt(w
∗)). Consider the index set

{lt | t ∈ QT }. Recall that, in our event indexing system, for any local update event t ∈ QT , lt is
defined as the index of its corresponding prediction event. Therefore, the index set {lt | t ∈ QT } is
exactly a permutation of the indices of the prediction events PT . Therefore, the left-hand side has an
equivalent expression, namely,∑

t∈QT

flt(wj(lt)− flt(w
∗)) =

∑
t∈PT

ft(wj(t)− ft(w
∗)),

which is exactly the definition of our regret.

Therefore, to analyze the regret, it suffices to bound the right-hand side of the summation of the
inequalities. From w̄(1) = w0, the first terms in the right-hand side of the inequalities (t ∈ QT ) and
equations (t ∈ PT ) sum up to

m

2η
(∥w̄(1)−w∗∥2 − ∥w̄(2T + 1)−w∗)∥2 ≤ m

2η
∥w0 −w∗∥2.
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Now we can derive a general bound, i.e.,

Regretj ≤
m

2η
∥w0 −w∗∥2 + 2η

m

∑
t∈QT

∑
s∈Qlt,t+1

gsgt +
1

yit(t)
ηg2t

+
∑
t∈QT

∑
s∈Q1,t

gtRit(s, t) +
∑
t∈QT

∑
s∈Q1,lt

(gtRit(s, lt) + ĝtRit(s, lt) + ĝtRj(s, lt)),
(10)

where the quantity Ri(s, t) for any i ∈ V, s ∈ QT , t ∈ {s, s+ 1, . . . , 2T} is defined as

Ri(s, t) = ∥
e⊤i Q(s, t)∆(s)

e⊤i Q(s, t)y(s)
− ϵs

m
∥.

D.3 Analyze the Effect of Push-Sum in Asynchronous Decentralized Online Learning

The final step of our analysis is to derive an upper bound of the quantity Ri(s, t), which specialize the
regret to our proposed algorithm. Recall that, the multi-hop transition matrix Q(s, t) characterizes
the overall effect of push-sum among all nodes (actual or virtual) during the interval between events
s and t. Also notice that ϵs/m = 1⊤∆(s)/1⊤y(s) for all s ≤ 2T , since 1⊤y(s) = 1⊤y(1) = m.

Now the physical meaning of the quantity Ri(s, t) can be interpreted as below. We imagine a
(t− s)-step distributed averaging process operated on the augmented graph G̃ (notably, the nodes
communicate with each other at each step k ∈ {1, . . . , t− s}, but they never perform local update).
At the beginning of the averaging process, the local model xh and push-sum weight yh of each node
h ∈ Ṽ = {1, . . . ,m(D + 1)} are initialized to be the h-th row of ∆(s) and the h-th entry of y(s),
respectively. At each step k = 1, . . . , t− s, the nodes mix their model parameters according to the
transition matrix P (s+ k − 1). Consequently, e⊤i Q(s, t)∆(s) and e⊤i Q(s, t)y(s) are exactly node
i’s local model xi and push-sum weight yi after the whole imaginary averaging process, respectively.
Moreover, 1⊤∆(s) and 1⊤y(s) are exactly the average parameters of all nodes in Ṽ , which actually
stay unchanged during the averaging process as Q(s, t) is column stochastic. Therefore, the quantity
Ri(s, t) measures the distance between the prediction of node i and the system prediction induced by
the average parameters after the (t− s)-step averaging process.

From the above analysis, we know that the quantity Ri(s, t) is determined by the initial states of
nodes h ∈ Ṽ and the multi-hop communication matrix Q(s, t). Therefore, to give a bound for
Ri(s, t), we need to investigate the property of multi-hop transition matrix Q(s, t). Our analysis is
enlightened by prior work for asynchronous stochastic optimization [31].

By its definition, each entry Qij(s, t) of the transition matrix measures the portion of j’s initial model
uj attributing to i’s model after t− s push-sum steps. If this entry is positive, namely Qij(s, t) > 0,
it then implies that node i is able to receive information from node j during the push-sum steps. In
intuition, after sufficient number of communication steps, each actual node i ∈ V can access the
information on any other node (either actual or virtual) h ∈ Ṽ via communication; alternatively
speaking, when t− s is sufficiently large, Qih(s, t) is expected to be positive for all i ∈ V, l ∈ Ṽ .

The following lemma gives a lower bound of t − s, which guarantees that the entries in first m
row of Q(s, t) are all positive. Note that, [31] also derives a similar result in their Lemma 7,
namely t − s ≥ m(Dmsg + Γd). In our work, via a finer-grained analysis, we only requires
t− s ≥ (D + 1)(Dmsg + Γd) where D denote the diameter of the original graph G. In other words,
our bound is much smaller than the bound in [31], since the diameterD of a decentralized architecture
is usually much smaller than the number of learners m. For example, the diameter of any complete
graph is only 1.

Lemma 7. Denote Γ = Dmsg + Γd. In AD-OGP, for any s ≥ 1, the entries in the first m rows of
Q(s, s+ (D + 1)Γ) are positive. In addition, any positive entry of Q(s, s+ (D + 1)Γ) is at least

α = (
1

m
)(D+1)Γ.

Proof. Recall that, in our derived forms (8) and (9) of the transition matrix P (t) at each push-
sum step, the first m ×m block of P (t) for any event t ∈ {1, . . . , 2T} has all-positive diagonals.
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Therefore, for any multi-hop transition matrix Q(p, q) (p ≤ q), if its (i, h)-th entry located at the first
m rows (i.e., i ≤ m) is positive, then the corresponding (i, h)-th entry of Q(p, q + 1) is exactly

Qih(p, q + 1) =

m(D+1)∑
j=1

P ij(q)Qjh(p, q) ≥ P 0
ii(q + 1)Qih(p, q),

which must be positive as well. This suggests that the positiveness of the entries in the first m row of
the multi-hop transition matrix will be preserved as the push-sum process proceeds on. Therefore,
to prove the positiveness of the first m rows of Q(s, s + (D + 1)Γ), it suffices to prove that, for
any i ≤ m,h ≤ m(D + 1), there exists some intermediate step t ∈ [s, s+ (D + 1)Γ] such that the
(i, h)-th entry of Q(s, t) is positive. Equivalently, we only need to prove that, the information on any
node h ∈ Ṽ is able to reach all actual nodes i ∈ V within at most (D + 1)Γ steps.

To this end, we consider an arbitrary node h = blj ∈ Ṽ for any j ∈ V, 0 ≤ l ≤ D. The information
on node h will reach its corresponding actual node j within l steps, i.e., along the path blj → bl−1

j →
· · · → j. In addition, since the underlying decentralized network G is connected, there must exist
some path linking j and i in G, and the path length r is no more than the diameter D of the graph.
We assume the path to be j → u1 → · · · → ur−1 → i where uk ∈ V, k ∈ {1, . . . , r − 1} are the
intermediate nodes; also denote the endpoints of the path u0 = j, ur = i.

Consider each segment (uk, uk+1) of the path for any k ∈ {0, . . . , r − 1}. From Assumption 1 and
the graph augmentation technique, we know that: (i) the node uk will perform local update at least
once every Γd steps, after which it will send out a message to its neighbor uk+1; (ii) such a message
will take at most D steps to reach its destination uk+1. Therefore, starting from any step, it takes
at most Γ = D + Γd event steps for the information on uk to diffuse to uk+1. Since such threshold
Γ holds for all segments (uk, uk+1), the information on j will reach i within at most DΓ steps. In
summary, for an arbitrary node h ∈ Ṽ in the augmented graph, it takes at most D +DΓ ≤ (D + 1)Γ
communication steps in AD-OGP for its information to diffuse to any actual node i ∈ V . Therefore,
all entries in the first m row of Q(s, s+ (D + 1)Γ) are positive.

In addition, from the formulation (8) or (9) of P (t) for any t ∈ {1, . . . , 2T}, its positive entries are
at least λit ≥ 1/m. Therefore, since Q(s, s + (D + 1)Γ) = P (s + (D + 1)Γ − 1) · · ·P (s), the
positive entries of Q(s, s+ (D + 1)Γ) are at least

∏(D+1)Γ−1
k=0 λis+k

≥ (1/m)(D+1)Γ.

The above property of multi-hop transition matrices also implies the range of the push-sum weights
y(t). In fact, the following lemma gives an upper and a lower bound on the push-sum weights yh(t)
of all nodes h ∈ Ṽ throughout the learning process. Note that, [31] also investigates the range of the
push-sum weight yh(t) in their Lemma 11, where the lower bound of the weight on the virtual node
is given as mα2. Compared to their bound, we give a lower bound α by looking into the physical
communication process; it is much tighter than their bound mα2, as α = (1/m)(D+1)Γ is usually
much smaller than 1/m.
Lemma 8. In AD-OGP, for any t ∈ {1, . . . , 2T} and i ∈ V , it holds that

mα ≤ yi(t) ≤ m.

Moreover, for any l ∈ {1, . . . , D}, we have either yli(t) = 0 or

α ≤ yli(t) ≤ m.

Proof. Recall our initialization of the push-sum weight on all nodes, namely yi(1) = 1 and yli(1) = 0
for all i ∈ V, l ∈ {1, . . . , D}. Therefore, the stacked vector y(t) (which is constructed by stacking
the parameter y of all nodes in the augmented graph at step t together, as we have defined before) can
be expressed as

y(t) = Q(1, t)y(1) = Q(1, t)

[
1m

0mD

]
.

From Lemma 3, for any t > 0, i ∈ {1, . . . ,m}, P ii(t) > 0, and P (t) is non-negative. Since y(1) is
non-negative, y(t) = Q(1, t)y(1) is also non-negative. Moreover, since P (t) is column stochastic,
i.e., 1⊤P (t) = 1⊤, the sum of the parameters yh(t) of all nodes h ∈ Ṽ at any step t is exactly∑

h∈Ṽ

yh(t) = 1⊤y(t) = 1⊤Q(1, t)y(1) = 1⊤y(0) = m.
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Therefore, the parameter yli(t) for any node bli ∈ Ṽ (recall that, we use b0i to represent the actual
node i ∈ V ) is at most m, which gives the common upper bound m for the push-sum weight yh(t)
throughout the learning process.

To analyze the lower bound, notice that, for any actual node i ∈ V , we particularly have

yi(t) = e⊤i

t−1∏
s=0

P (t− s)y(1) ≥
t−1∏
s=0

P ii(s) · yi(1) > 0.

To further investigate the range of the push-sum weight yh(t), we consider the following two cases.

(i) When t < (D + 1)Γ, the positive entries of Q(1, t) are at least (1/m)t ≥ mα. Therefore, the
positive entries of y(t) are at least mα.

(ii) When t ≥ (D + 1)Γ, we can split the multi-hop transition matrix into Q(1, t) = Q(t −
s, t)Q(1, t − s) where s = (D + 1)Γ. From Lemma 7, the first m rows of Q(t − s, t) are
positive, and its positive entries are at least α. Recall that Q(1, t − s) is column stochastic,
i.e.,

∑m(D+1)
j=1 Qjh(1, t − s) = 1 for any h. Therefore, for any i ∈ V, h ∈ Ṽ , Qih(1, t) =∑m(D+1)

j=1 Qjh(1, t− s)Qij(t− s, t) is a convex combination of entries in the i-th row of Q(t− s, t).
Since all these entries are no less than α from Lemma 7, Qih(1, t) is also at least α. From the
arbitrariness of i ∈ V and h ∈ Ṽ , the entries in the first m rows of Q(1, t) are at least α. Therefore,
for any actual node i ∈ V , we further have

yi(t) ≥
m∑
j=1

Qij(1, t)yj(1) ≥ mα.

As for any virtual node bli, i ∈ V, l ∈ {1, . . . , D}, we assume its parameter yli(t) is positive at
some step t. Recall the transmission of message on the augment graph G̃ (you can also see the
demonstration in Figure 8). Specifically, for any virtual node h = bli ∈ Ṽ − V , we have yli(t) > 0
only when this node is carrying at least one delayed message that is sent to node i. We suppose
some specific message currently carried by node bli was sent by node j ∈ V at some previous step
s. From our communication strategy, the weight parameter captured in such message is exactly a
γj-fraction of node j’s parameter yj(s). From the former case (i), the weight parameters carried by
other messages are all positive. As we have also proved that yj(s) ≥ mα, we directly have

yli(t) ≥ γjyj(s) ≥ γjmα ≥ α.

Combining the above derived bounds, we successfully prove the lemma.

From Lemma 8, we know that the parameter yli of any virtual node bli is either zero, or restricted to
the interval [α,m]. The following lemma explores the first case: when yli(t) = 0, its corresponding
local model xl

i(t) must also be zero.
Lemma 9. For any virtual node bli, i ∈ V, l ∈ {1, . . . , D}, if its push-sum weight yli(t) = 0 at some
step t ∈ {1, . . . , 2T}, then its local model parameters xl

i(t) = 0.

Proof. In intuition, yli(t) = 0 implies that the virtual node bli is carrying no delayed message at step
t. Since parameters x and y are coupled in each message, node bli must not be carrying any local
model as well, which means that its local model parameters xl

i(t) is also zero.

In the following, we provide a strict proof of this lemma by inducting on t. The lemma obviously
holds for t = 1, since the parameters of virtual nodes are initialized as xl

i(1) = 0 and yli(1) = 0.

We suppose the lemma holds for some t ≥ 0. From Lemma 8, the first m entries of y(t) are all
positive. Therefore, for any h ∈ Ṽ , yh(t) = 0 implies that the h-th row in X(t) equals to 0.5 Denote
X ′(t) = X(t) +∆(t). From the definition of ∆(t), the entries in its last mD rows all equal to zero.
Therefore, yh(t) = 0 also implies that the h-th row of X ′(t) equals to 0. Recall the recursion

X(t+ 1) = P (t)X ′(t), y(t+ 1) = P (t)y(t).

5Recall that, we slightly abuse the notations of any virtual node h = bli ∈ Ṽ − V . Notably, its push-sum
weight at step t can be represented by either yl

i(t) or yh(t) (here we mean h = lm+ i), which refers to the h-th
entry of y(t).
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Suppose yh(t+ 1) = 0 for an arbitrary h ∈ Ṽ = {1, . . . ,m(D + 1)}, namely,

yh(t+ 1) =

m(D+1)∑
k=1

P hk(t)yk(t) = 0.

Since the entries of P (t) and y(t) are all non-negative, for any k ∈ Ṽ such that yk(t) > 0, we
must have P hk(t) = 0. For simplicity, we use Ah· to denote the h-th row of any given matrix A.
Therefore, the h-th row of X(t+ 1) can be expressed as

Xh·(t+ 1) =

m(D+1)∑
k=1

P hk(t)Xk·(t) =
∑

k:yk(t)=0

P hk(t)Xk·(t).

Since yk(t) = 0 leads to Xk·(t) = 0, we directly have Xh·(t+1) = 0. Hence the lemma also holds
at the next step t+ 1.

With the above preparations, we can now begin to analyze the quantity Ri(s, t) in Lemma 6, which is
a crucial term for regret analysis. Recall that Ri(s, t) is defined as

Ri(s, t) = ∥
e⊤i Q(s, t)∆(s)

e⊤i Q(s, t)y(s)
− ϵs

m
∥.

As discussed before, we can imagine a (t − s)-step distributed averaging process operated on
the augmented graph G̃. In the averaging process, the parameters of all nodes are initialized as
X̃(1) = ∆(s) and ỹ(1) = y(s). The initial predictions are w̃(1) such that w̃i(1) = x̃i(1)/ỹi(1).
At each step k = 1, . . . , τ (here τ = t − s), each node mixes its parameters with other nodes
according to the transition matrix P (s+ k − 1), i.e.,

X̃(k + 1) = P (s+ k − 1)X̃(k),

ỹ(k + 1) = P (s+ k − 1)ỹ(k).

At the end of the process, the parameters of node i are exactly x̃i(τ + 1) = e⊤i Q(s, t)∆(s) and
ỹi(τ + 1) = e⊤i Q(s, t)y(s), and its prediction w̃i(τ + 1) = x̃i(τ + 1)/ỹi(τ + 1).

With the above notations, we now analyze the effect of the imaginary τ -step averaging process. As a
prerequisite, we can verify that, the previously derived lemmas on model parameters, namely Lemma
8 and Lemma 9, also hold for x̃ and ỹ. Specifically, for Lemma 8, we directly utilize ỹ(k) = y(k−s);
for Lemma 9, we know it holds for k = 1 and then induct on k = 2, . . . , τ .

We first try to give a matrix form of the evolution of predictions, just like our previously derived
matrix form (4) of the recursion of model parameters X̃(k) and ỹ(k). To this end, we first give
a definition of the predictions w̃l

i(k) on virtual nodes bli. However, a problem will arise in the
formulation, namely, some ỹli(k) may be zero during the averaging process, so directly computing
x̃l
i(k)/ỹ

l
i(k) does not necessarily make sense. To tackle this issue, from Lemma 9 we know that

ỹli(k) = 0 gives x̃l
i(k) = 0, we can thus set its prediction w̃l

i(k) = 0 if ỹli(k) = 0. Now the
predictions of all nodes in Ṽ are well-defined. For a more compact expression, we define the vector
ỹ−1(k) = (ỹ−1

1 (k), . . . , ỹ−1
m(D+1)(k)) ∈ Rm(D+1) as

ỹ−1
h (k) =

{
1/ỹh(k), ỹh(k) > 0,

0, ỹh(k) = 0.

For any 1 ≤ l ≤ k ≤ τ , the matrix form of predictions W̃ (k + 1) can be expressed via X̃(l) as

W̃ (k + 1) = diag(ỹ−1(k + 1))X̃(k + 1)

= diag(ỹ−1(k + 1))P (s+ k − 1)X̃(k)

= · · ·
= diag(ỹ−1(k + 1))Q(s+ l − 1, s+ k)X̃(l),

where diag(u) denotes the diagonal matrix, whose (i, i)-th entry takes ui for all i, and other entries
are zero.

From the above expression, we can directly derive the recursive function of the stacked predictions.
The following lemma gives an arbitrary-order recursive relation on W̃ (k).
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Lemma 10. In the above push-sum averaging process, for any 1 ≤ l ≤ k ≤ τ + 1, the stacked
predictions satisfy the recursive relation

W̃ (k) = A(l, k)W̃ (l),

where the (multi-hop) transition matrix A(l, k) for decisions is defined as

A(l, k) = diag(ỹ−1(k))Q(s+ l − 1, s+ k − 1)diag(ỹ(l))

when l < k, and A(l, k) = Im(D+1) when l = k.

Proof. Since the lemma trivially holds for l = k, we only need to investigate the case of l < k. We
first prove that X̃(k) = diag(ỹ(k))W̃ (k) for any k ∈ {1, . . . , τ + 1}. Specifically, we check each
row of the matrices on both sides. Recall our definition of predictions w̃l

i(k) on virtual nodes bli. For
any h ≤ m(D + 1), the h-th row of W̃ (k) is exactly (remind that, we use Ai· = e⊤i A to represent
the i-th row vector of any matrix A)

W̃ h·(k) =

{
X̃h·(k)/ỹh(k), ỹh(k) > 0,

0, ỹh(k) = 0.

From Lemma 9, when ỹh(k) = 0 for some virtual node, its corresponding local model parameters
x̃h(k) always satisfies X̃h·(k) = 0. Besides, from Lemma 8, the push-sum weight parameter
yi(k) of any actual node i ∈ V is positive. Therefore, it is easy to check that, for any h ∈ Ṽ =

{1, . . . ,m(D + 1)}, the h-th row of X̃(k) satisfies

X̃h·(k) = W̃ h·(k) · ỹh(k).

From the arbitrariness of h ∈ Ṽ , we derive X̃(k) = diag(ỹ(k))W̃ (k). Plugging X̃(l) =

diag(ỹ(l))W̃ (l) into the above relation X̃(k) = diag(ỹ(k))W̃ (k), we prove the lemma.

We now focus on the transition matrix A(l, k) of predictions, which is determined by the multi-hop
communication matrix Q(s + l − 1, s + k − 1) induced by push-sum and the stacked weights
ỹ(l), ỹ(k), as suggested in the above lemma. We already know that Q(s, t) is non-negative and
column stochastic, and expect A(l, k) to inherit some properties from Q(s, t). In addition, the
transition matrix A(l, k) of predictions is analogous to the mixing matrices P in other decentralized
online algorithms [36, 38]. However, their mixing matrices P are conventionally doubly stochastic
(i.e., P1 = P⊤1 = 1), whereas our transition matrices are not. Therefore, their analysis which
relies on the doubly stochastic property and spectral gaps can not be directly applied to our setting.

To tackle this issue, we introduce the technique in [25], but make a refinement on the analysis
which saves a factor of

√
n in the convergence rate, where n is the dimension of the decision set.

Specifically, we utilize the internal structure of incremental term ∆(s), which is a rank-one matrix,
namely ∆(s) = eisϵs, since there is only a single learner performing local update at each step. This
enables us to tackle the n dimensions of ϵs simultaneously by directly analyzing its L2-norm ∥ϵs∥
(in our analysis, ∥ · ∥ represents the L2-norm). In contrast, [25] tackles each of the n dimensions
separately. In their approach, the k-th dimension contributes a coefficient |ϵs,k| (ϵs,k is the k-th entry
of ϵs) to the convergence rate; summing them together gives a bound ∥ϵs∥1 in terms of L1-norm (see
Corollary 1 in [25]). To transform it into L2-norm, one need to utilize ∥ϵs∥1 ≤

√
n∥ϵs∥, which will

incur an extra coefficient
√
n as the expense of expressing the final bound in terms of L2-norm ∥ϵs∥.

More specifically, since ∆(s) = eisϵs, the quantity Ri(s, t) can be written as

Ri(s, t) = ∥
e⊤i Q(s, t)eisϵs
e⊤i Q(s, t)y(s)

− ϵs
m
∥.

Since both e⊤i Q(s, t)eis and e⊤i Q(s, t)y(s) are scalars, we further have

Ri(s, t) ≤ |
e⊤i Q(s, t)eis
e⊤i Q(s, t)y(s)

− 1

m
|∥ϵs∥. (11)

Concretely, we investigate the effect of transition matrix A(l, k) on an arbitrary vector u ∈ Rm(D+1),
which satisfies uh = 0 for any h ∈ Ṽ such that ỹh(k) = 0 (then we can set u = diag(ỹ−1(1))eis =
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eis/yis(s) to restore the averaging process). Enlightened by the analysis in [31], we use the index
set Ik = {h ≤ m(D + 1) | ỹh(k) > 0} to denote the positive entries of ỹ(k). Lemma 8 implies
that V ⊂ Ik. From Lemma 9, only those nodes inside Ik will give valid predictions (in fact, for
any other node h /∈ Ik, its parameters x̃h(k), ỹh(k) are all zero, which cannot give any meaningful
predictions). Therefore, we are mainly interested in the nodes inside Ik at each step k. In this spirit,
we call {uj | j ∈ I l} the valid entries of u = (u1, . . . , um(D+1)) at step l. Denote v = A(l, k)u,
we similarly call {vj | j ∈ Ik} the valid entries of v at step k. We can now give some general
properties of A(l, k) as below.
Lemma 11. For all 1 ≤ l ≤ k ≤ τ + 1, the transition matrix A(l, k) of decisions satisfies:

(a) If i /∈ Ik or j /∈ I l, then Aij(l, k) = 0.

(b) The entries in the h-th row of A(l, k) sum up to
m(D+1)∑

j=1

Ahj(l, k) =
∑
j∈Il

Ahj(l, k) =

{
1, h ∈ Ik,

0, h /∈ Ik.

Proof. (a) From the definition of A(l, k) in Lemma 10, its (i, j)-th entry

Aij(l, k) = ỹ−1
i (k)Qij(s+ l − 1, s+ k − 1)ỹj(l),

which equals to zero if i /∈ Ik or j /∈ I l.

(b) Since ỹ(k) denotes the parameter after k − 1 push-sum steps starting from step s, we actually
have ỹ(k) = y(s+ k − 1). Therefore, the entries in the h-th row of A(l, k) sum up to

e⊤hA(l, k)1 = e⊤h diag(ỹ−1(k))Q(s+ l − 1, s+ k − 1)ỹ(l)

= ỹ−1
h (k) · e⊤hQ(s+ l − 1, s+ k − 1)ỹ(l)

= ỹ−1
h (k) · e⊤hQ(s+ l − 1, s+ k − 1)y(s+ l − 1)

= ỹ−1
h (k) · e⊤h y(s+ k − 1) = ỹ−1

h (k) · ỹh(k)

=

{
1, h ∈ Ik,

0, h /∈ Ik.

Moreover, we have Ahj(l, k) = 0 if j /∈ I l. Therefore, for any h ∈ Ik, it holds that

1 = Ah·(l, k)1 =

m(D+1)∑
j=1

Ahj(l, k) =
∑
j∈Il

Ahj(l, k),

which proves the lemma.

Let’s return to v = A(l, k)u. The following lemma shows that, the transition matrix of predictions
induced by push-sum steps will shrink the range of the valid entries of a vector, which is actually the
core step to the analysis of push-sum.
Lemma 12. Let u = (u1, . . . , um(D+1)) be an arbitrary vector in Rm(D+1). Set v = A(l, k)u and
denote v = (v1, . . . , vm(D+1)). The index set of valid entries Ik = {h : ỹh(k) > 0} is defined above.
Then it holds that

max
h∈Ik

vh − min
h∈Ik

vh ≤ max
h∈Il

uh −min
h∈Il

uh.

Proof. For any h ∈ Ik, the h-th entry of v takes

vh =

m(D+1)∑
j=1

Ahj(l, k)uj =
∑
j∈Il

Ahj(l, k)uj .

From Lemma 10 and Lemma 11 we know that Ahj(l, k) ≥ 0,∀j ∈ I l and
∑

j∈Il Ahj(l, k) = 1,
respectively. Hence vh is a convex combination of the elements in {uj | j ∈ I l}. Consequently, we
have

min
j∈Il

uj ≤ vh ≤ max
j∈Il

uj .
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Since h is arbitrarily chosen from Ik, we have

min
j∈Il

uj ≤ min
h∈Ik

uh ≤ max
h∈Ik

uh ≤ max
j∈Il

uj ,

which proves the lemma.

The above lemma implies that, any push-sum step will not expand the range of the entries in any
given vector. To show the convergence to consensus, we expect that, after operating sufficient number
of push-sum steps, the range of a vector will be scaled down. Such convergence effect is proved in
the following lemma, in which the minimal number of steps (D + 1)Γ stems from Lemma 7, namely
the minimal number of hops t− s for Q(s, t) to guarantee the positiveness of its first m rows. We
note that, a similar approach to derive the convergence effect can be seen in the analysis of symmetric
communication [36, 21], which relies on the double stochasticity of the transition matrices. However,
their methods are unsuitable to our setting, where A(l, k) is actually not doubly stochastic.

As a prerequisite, we derive some properties of any r = (D + 1)Γ-hop transition matrix A(l, l + r)
in the lemma below. Remind that, the vertex set and the augmented vertex set are specified as
V = {1, . . . ,m} and Ṽ = {1, . . . ,m(D + 1)}, respectively.

Lemma 13. Set r = (D + 1)Γ. For any l ≥ 1, the transition matrix A(l, l + r) satisfies:

(a) The first m×m block of A(l, l + r) is positive, namely Aij(l, l + r) > 0,∀i, j ∈ V .

(b) The positive entries in the first m columns of A(l, l + r) are at least α2. Moreover, the positive
entries in the last mD columns of A(l, l + r) are at least α2/m.

(c) For any m + 1 ≤ h ≤ m(D + 1), if h ∈ I l+r, then there must exist some i ∈ V such that
Ahi(l, l + r) ≥ α2.

Proof. From Lemma 10, for any i, j ∈ Ṽ , Aij(l, l+r) = ỹ−1
i (l+r)Qij(s+ l−1, s+ l+r−1)ỹj(l).

(a) When i, j ∈ V , from Lemma 8, ỹi(l + r), ỹj(l) > 0; also from Lemma 7, Qij(s+ l − 1, s+ l +
r − 1) > 0. Therefore, Aij(l, l + r) > 0.

(b) Suppose Ahi(l, l + r) > 0 for some h ∈ Ṽ , i ∈ V . Then we have ỹh(t + s) > 0 and
Qhi(s+ l − 1, s+ l + r − 1) > 0. From Lemma 8, we have 1/ỹh(l + r) ≥ 1/m, ỹi(t) ≥ mα; in
addition, from Lemma 7, we have Qhi(s + l − 1, s + l + r − 1) ≥ α, therefore Ahi(l, l + r) ≥
(1/m)α(mα) = α2. Similarly, we can prove that, if Ahj(l, l+ r) > 0 for some h ∈ Ṽ , j > m, then
Ahj(l, l + r) ≥ (1/m)αα = α2/m.

(c) From (b), we only need to prove that Ahi(l, l + r) > 0 for some i ∈ V . Since A(l, l + r) is
non-negative, and from Lemma 8 ỹi(l) > 0 for all i ∈ V , it suffices to prove that Qhi(s + l −
1, s + l + r − 1) > 0 for some i ∈ V . For simplicity we denote p = s + l − 1. We now assume
Qhi(p, p+ r) = 0 for all i ∈ V . From the definition of multi-hop communication matrix, we have
Qii(p+ k, p+ r) > 0 for all i ∈ V, k ≤ r. Since Qhi(p, p+ r) ≥ Qhi(p, p+ k)Qii(p+ k, p+ r)
for all k ≤ r, we must have Qhi(p, p+k) = 0 for all i ∈ V, k ≤ r, which means that the information
on any actual node i ∈ V will not reach the virtual node h during step l and l + r. Since the message
delay is at most D < r − 1, then the node h will not capture any message at step l + r, which means
ỹh(l + r) = 0 and will lead to contradiction.

Given the above lemma, we now return to the relation v = A(l, l + r)u. The following lemma
shows that A(l, l + r) will shrink the range of the valid entries of u. Then, after sufficient number of
push-sum steps, all valid entries of the vector tend to reach a consensus (i.e., attain a fixed value).

Lemma 14. Given 1 ≤ l ≤ k ≤ τ + 1. Assume u = (u1, . . . , um(D+1)) ∈ Rm(D+1) satisfies
ỹh(l) = 0⇒ uh = 0,∀h ∈ Ṽ = {1, . . . ,m(D + 1)}. Define

β(w; p) = max
h∈Ip

wh(p)− min
h∈Ip

wh(p)

as the range of the valid entries of w = (w1, . . . , wm(D+1)) at step p. Set r = (D + 1)Γ, then we
have

β(A(l, k)u; k) ≤ (1−mα4)⌊
k−l
2r ⌋β(u; l).
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Proof. Denote v = A(l, k)u and q = ⌊(k − l)/r⌋. We construct a sequence of vectors {u(p) |
0 ≤ p ≤ q + 1}, namely, u(0) = u, u(p) = A(l + (p − 1)r, l + pr)u(p − 1) for p ∈ {1, . . . , q},
and u(q + 1) = A(l + qr, k)u(q). We now specify u(p) = (u1(p), . . . , um(D+1)(p)) for any
p ∈ {1, . . . , q + 1}.
As assumed in this lemma, ỹh(l) = 0 leads to uh = 0. From the definition of A(l, r) in Lemma 10,
we can inductively prove that ỹh(l+pr) = 0 leads to uh(p) = 0, and further u(p) = A(l, l+pr)u(0)
for all p ∈ {1, . . . , q}. Similarly, ỹh(k) = 0 leads to uh(p+ 1) = 0; and we also have u(p+ 1) =
A(l, k)u(0) = v.

For any 0 ≤ p ≤ q, denote βp = β(u(p); l + pr). We now derive the recursive relation of βp.
Specifically, we introduce an auxiliary sequence {γp}p∈{0,...,q}, i.e.,

γp = max
i∈V

ui(p)−min
i∈V

ui(p),

which measures the range of the first m-entries of u(p). From Lemma 8, the first m entries of ỹ(k)
must be positive for any k. Therefore, for any p ∈ {1, . . . , q}, we have V ⊂ I l+pr and further

max
i∈V

ui(p) ≤ max
h∈Il+pr

ui(p),

min
i∈V

ui(p) ≥ min
h∈Il+pr

ui(p),

which implies γp ≤ βp. Now we investigate the relation between γp, βp and γp−1, βp−1.

(i) First we consider an arbitrary actual node i ∈ V . From Lemma 8, ỹi(l + pr) > 0. We abbreviate
Aih(l + (p − 1)r, l + pr) into ch for h ∈ Ṽ . Since A(l + (p − 1)r, l + pr) is non-negative, we
have ch ≥ 0. From Lemma 11 we further have

∑
h∈Ṽ ch = 1. Thus ui(p) =

∑
h∈Ṽ chuh(p− 1),

which means that ui(p) is a convex combination of the entries in u(p − 1). From Lemma 13
we also know that cj ≥ α2 for any j ∈ V . Denote the maximal valid entry of u(p − 1) as
u′ = maxh∈Il+(p−1)r uh(p− 1), then we have

ui(p) =

m(D+1)∑
h=1

chuh(p− 1) =

m∑
j=1

cjuj(p− 1) +

m(D+1)∑
h=m+1

chuh(p− 1)

≤
m∑
j=1

cjuj(p− 1) + u′(1−
m∑
j=1

ch) ≤
m∑
j=1

α2uj(p− 1) + u′(1−mα2),

where the last step utilizes cj ≥ α2 and uj(p − 1) ≤ u′ for j ∈ V . Similarly, denote the minimal
valid entry of u(p− 1) as u′′ = minh∈Il+(p−1)r uh(p− 1), then we have

ui(p) =

m(D+1)∑
h=1

chuh(p− 1) =

m∑
j=1

cjuj(p− 1) +

m(D+1)∑
h=m+1

chuh(p− 1)

≥
m∑
j=1

cjuj(p− 1) + u′′(1−
m∑
j=1

ch) ≥
m∑
j=1

α2uj(p− 1) + u′′(1−mα2).

Since the above two inequalities hold for all i ∈ V , we set i = argmaxj∈V uj(p) in the first
inequality, and set i = argminj∈V uj(p) in the second inequality, to derive

γp = max
j∈V

uj(p)−min
j∈V

uj(p) ≤ (1−mα2)(u′ − u′′) = (1−mα2)βp−1.

(ii) Then we consider an arbitrary "valid" node i′ ∈ I l+pr, and denote ch = Ai′h(l+(p−1)r, l+pr)

for h ∈ Ṽ . Via a very similar deduction in (i), we can prove that ui′(p) =
∑

h∈Ṽ chuh(p− 1) is a
convex combination of the entries in u(p− 1). However, since ch may locate at the last mD rows
of A(l + (p − 1)r, l + pr), from Lemma 13 we only have cj ≥ α2 for some j ∈ V , which leads
to

∑
j∈V cj ≥ α2. Therefore, using the same notations u′ and u′′ as the first case (i) to denote the
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maximal and minimal valid entry of u(p− 1), respectively, we have

ui′(p) =

m(D+1)∑
h=1

chuh(p− 1) =

m∑
j=1

cjuj(p− 1) +

m(D+1)∑
h=m+1

chuh(p− 1)

≤
m∑
j=1

cjuj(p− 1) + u′(1−
m∑
j=1

ch) ≤ α2 max
j∈V

uj(p− 1) + u′(1− α2),

and similarly

ui′(p) =

m(D+1)∑
h=1

chuh(p− 1) =

m∑
j=1

cjuj(p− 1) +

m(D+1)∑
h=m+1

chuh(p− 1)

≥
m∑
j=1

cjuj(p− 1) + u′′(1−
m∑
j=1

ch) ≥ α2 min
j∈V

uj(p− 1) + u′′(1− α2).

Set i′ = argmaxh∈Il+pr uh(p) in the first inequality, and set i′ = argminh∈Il+pr uh(p) in the
second inequality, then we have

βp ≤ α2γp−1 + (1− α2)βp−1.

From Lemma 12, we have βp−1 ≤ βp−2. Hence we can combine both cases (i) and (ii) to derive

βp ≤ α2(1−mα2)βp−2 + (1− α2)βp−1 ≤ (1−mα4)βp−2,

which gives the recursive relation of βp.

Now we can prove the desired lemma. Specifically, from the above recursion and the fact that
βp ≤ βp−1,∀p ∈ {1, . . . , q}, we have

β(u(q); l + qr) = βq ≤ β2⌊ q
2 ⌋ ≤ (1−mα4)β2(⌊ q

2 ⌋−1) ≤ · · ·

≤ (1−mα4)⌊
q
2 ⌋β0 = (1−mα4)⌊

q
2 ⌋β(u, l),

and consequently,
β(v; k) ≤ β(u(q); l + qr) ≤ (1−mα4)⌊

q
2 ⌋β(u, l).

Since q = ⌊(k − l)/r⌋, we have ⌊q/2⌋ ≤ ⌊(k − l)/2r⌋, which proves the lemma.

To relate the above lemma with the imaginary push-sum averaging process on X̃(1) and ỹ(1), we set
l = 1, k = τ+1, and u = eis/ỹis(1) in the above lemma. Also denote z = A(1, τ+1)eis/ỹis(1) ∈
Rm(D+1) and specify its entries as z = (z1, . . . , zm(D+1)). Recall the inequality (11) where the
bound of Ri(s, t) is related with the term |zi − 1/m|. In other words, we need to compare the
quantity zi with 1/m. Notice that minh∈Iτ+1 zh ≤ zi ≤ maxh∈Iτ+1 zh. We now verify that
minh∈Iτ+1 zh ≤ 1/m ≤ maxh∈Iτ+1 zh.
Lemma 15. The transition matrix of predictions A(1, τ + 1) is defined as above. Set z =
(z1, . . . , zm(D+1)) = A(1, τ + 1)eis/ỹis(1), then we have

min
h∈Iτ+1

zh ≤
1

m
≤ max

h∈Iτ+1
zh.

Proof. It suffices to prove that, 1/m is a convex combination of the elements in {zh | h ∈ Iτ+1}. To
this end, we observe that, zh can be viewed as the prediction of learner h ∈ Iτ+1 after τ push-sum
steps, where the scalar models and push-sum weights of each learner k ∈ Ṽ are initialized as the k-th
entry of eis and ỹ(1), respectively. Concretely, from the definition of A(1, τ + 1) in Lemma 10, we
have

zh =
e⊤hQ(s, t)eis
ỹh(τ + 1)

=
Qh·(s, t)eis
ỹh(τ + 1)

.

Recall that 1⊤eis = 1 and 1⊤ỹ(τ + 1) = 1⊤ỹ(t) = m; in addition, Q(s, t) is column stochastic.
Hence we have

1

m
=

1⊤Q(s, t)eis
m

=
∑
h∈Ṽ

Qh·(s, t)eis
m

.
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From Lemma 9, for any node h ∈ Ṽ − Iτ+1, its push-sum weight ỹh(τ + 1) = 0 and local scalar
model Qh·(s, t)eis = 0. Therefore, we further have

1

m
=

∑
h∈Iτ+1

Qh·(s, t)eis
m

=
∑

h∈Iτ+1

ỹh(τ + 1)

m
· Qh·(s, t)eis

ỹh(τ + 1)
=

∑
h∈Iτ+1

ỹh(τ + 1)

m
zh,

which is a convex combination of {zh | h ∈ Iτ+1}, because ỹh(τ + 1) ≥ 0 and
∑

h∈Iτ+1 ỹh(τ +
1)/m =

∑
h∈Ṽ ỹh(τ + 1)/m = 1. Therefore, 1/m must lie between the maximal and the minimal

values of the elements in {zh | h ∈ Iτ+1}, which proves the lemma.

Set λ = 1−mα4, B = (D + 1)Γ = (D + 1)(Dmsg + Γd), and u = eis/ỹis(1). From the above
lemma, the term |zi − 1/m| can be bounded as

|zi −
1

m
| ≤ max

h∈Iτ+1
zh − min

h∈Iτ+1
zh

≤ λ⌊ τ
2B ⌋(max

h∈I1
uh − min

h∈I1
uh) =

1

ỹis(1)
λ⌊ t−s

2B ⌋ =
1

yis(s)
λ⌊ t−s

2B ⌋.

Now, we successifully derive a bound for the term Ri(s, t) for any i ∈ V, s ∈ QT , t ∈ {s, s +
1, . . . , 2T}, i.e.,

Ri(s, t) = |zi −
1

m
|∥ϵs∥ ≤ λ⌊ t−s

2B ⌋ ∥ϵs∥
yis(s)

.

Moreover, recall our definition of the incremental term ϵs = −ηgs+rs. From Lemma 4, the residual
term ∥rs∥ ≤ ηgs. Therefore,for any i ∈ V, s ∈ QT , t ∈ {s, s+ 1, . . . , 2T}, we have

Ri(s, t) ≤ 2ηλ⌊ t−s
2B ⌋ gs

yis(s)
.

Finally, we plug the above inequality of Ri(s, t) into the general regret bound (10), then derive the
final bound in the main theorem.

E Omitted Proof of Corollary 1

In this section, we provide the detailed proof of Corollary 1 in our main paper.

Starting from the regret bound in Theorem 1. We analyze each regret term under the bounded gradient
norm assumption separately. The first term is preserved. For the second term, we have∑

t∈QT

∑
s∈Qlt,t+1

gtgs ≤ G2
∑
t∈QT

|Qlt,t+1|.

We first focus on the elements in Qlt,t+1, which is defined as {lt < s < t+ 1 | s ∈ QT } in our main
paper. Specifically, for any t ∈ QT , recall our definition of processing delay dp(t) = |Qlt,t|, we
directly have

|Qlt,t+1| = |Qlt,t ∪ {t}| = dp(t) + 1.

Summing the above equation over t ∈ QT , we thus have∑
t∈QT

|Qlt,t+1| = (
∑
t∈QT

dp(t)) + |QT | = Dproc + T.

To analyze the last three terms in the regret bound, we first utilize Lemma 8 which gives 1/yit(t) ≤
1/mα for any t ∈ QT . Then we investigate the geometric series of λ. Specifically, for any t ∈ QT ,
we have ∑

s∈Q1,t+1

λ⌊ t−s
2B ⌋ ≤

t∑
s=1

λ⌊ t−s
2B ⌋ =

t−1∑
s=0

λ⌊ s
2B ⌋ ≤

T−1∑
s=0

λ⌊ s
2B ⌋ ≤

2B⌈ T
2B ⌉−1∑
s=0

λ⌊ s
2B ⌋

=

⌈ T
2B ⌉−1∑
t=0

2B−1∑
s=0

λ⌊ 2tB+s
2B ⌋ =

⌈T+1
B ⌉−1∑
t=0

2Bλt ≤ 2B

1− λ
.
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Therefore, the last three terms in the regret bound in Theorem 1 can be bounded by

8η
∑
t∈QT

2B

1− λ

G2

mα
+ η

∑
t∈QT

G2

mα
=

η

m
(
16B

mα5
+

1

α
)G2|QT | ≤

2η

m
(
8

α5
+

1

α
)BG2T.

Combining the above analysis for each regret term, we prove this corollary.

References
[1] Mohammad Akbari, Bahman Gharesifard, and Tamás Linder. Distributed online convex optimization on

time-varying directed graphs. IEEE Transactions on Control of Network Systems, 4(3):417–428, 2015.

[2] Mahmoud Assran and Michael Rabbat. Asynchronous gradient-push. IEEE Transactions on Automatic
Control, 2020.

[3] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical methods,
volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[4] Xuanyu Cao, Junshan Zhang, and H Vincent Poor. Constrained online convex optimization with feedback
delays. IEEE Transactions on Automatic Control, 2020.

[5] Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P Helmbold, Robert E Schapire, and Manfred K
Warmuth. How to use expert advice. Journal of the ACM (JACM), 44(3):427–485, 1997.

[6] Igor Colin, Aurelien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip dual averaging for decen-
tralized optimization of pairwise functions. In International Conference on Machine Learning, pages
1388–1396, 2016.

[7] John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic control, 57(3):592–606, 2011.

[8] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch algorithm
for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61(12):3740–3754,
2016.

[9] Christoforos N Hadjicostis and Themistoklis Charalambous. Average consensus in the presence of delays
in directed graph topologies. IEEE Transactions on Automatic Control, 59(3):763–768, 2013.

[10] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

[11] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In Interna-
tional Conference on Machine Learning, pages 1263–1271, 2016.

[12] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. Accelerated decentralized optimization with
local updates for smooth and strongly convex objectives. In AISTATS 2019-22nd International Conference
on Artificial Intelligence and Statistics, 2019.

[13] Saghar Hosseini, Airlie Chapman, and Mehran Mesbahi. Online distributed optimization via dual averaging.
In 52nd IEEE Conference on Decision and Control, pages 1484–1489. IEEE, 2013.

[14] Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. Multi-agent online
optimization with delays: Asynchronicity, adaptivity, and optimism. arXiv preprint arXiv:2012.11579,
2020.

[15] Alec Koppel, Felicia Y Jakubiec, and Alejandro Ribeiro. A saddle point algorithm for networked online
convex optimization. IEEE Transactions on Signal Processing, 63(19):5149–5164, 2015.

[16] Alec Koppel, Santiago Paternain, Cédric Richard, and Alejandro Ribeiro. Decentralized online learning
with kernels. IEEE Transactions on Signal Processing, 66(12):3240–3255, 2018.

[17] Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decentralized and
stochastic optimization. Mathematical Programming, pages 1–48, 2017.

[18] Jinlong Lei, Peng Yi, Yiguang Hong, Jie Chen, and Guodong Shi. Online convex optimization over
erdos-renyi random networks. Advances in Neural Information Processing Systems, 33, 2020.

[19] Bingcong Li, Tianyi Chen, and Georgios B Giannakis. Bandit online learning with unknown delays. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 993–1002. PMLR, 2019.

27



[20] Jueyou Li, Chuanye Gu, and Zhiyou Wu. Online distributed stochastic learning algorithm for convex
optimization in time-varying directed networks. Neurocomputing, 416:85–94, 2020.

[21] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic gradient
descent. In International Conference on Machine Learning, pages 3049–3058, 2018.

[22] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous distributed online
learning. In Advances in Neural Information Processing Systems, pages 2915–2923, 2014.

[23] Aryan Mokhtari and Alejandro Ribeiro. Dsa: Decentralized double stochastic averaging gradient algorithm.
The Journal of Machine Learning Research, 17(1):2165–2199, 2016.
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(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code and data
source are provided in supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] (i) The online learning setup does not require data splits. (ii) How
the hyperparameters were chosen is clarified in Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] In distributed online learning, it is very common not to
report the error bar, as the average loss plot is usually very stable in different runs (see
reference [22, 38, 33] for more examples). We do find such stability in our experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix.
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information or offensive content? [N/A] We only use open source datasets.
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