
Published as a conference paper at ICLR 2025

INFERENCE SCALING LAWS:
AN EMPIRICAL ANALYSIS OF COMPUTE-OPTIMAL
INFERENCE FOR LLM PROBLEM-SOLVING

Yangzhen Wu1∗, Zhiqing Sun2, Shanda Li2, Sean Welleck2, Yiming Yang2

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2School of Computer Science, Carnegie Mellon University
wuyangch21@mails.tsinghua.edu.cn
{zhiqings, shandal, swelleck, yiming}@cs.cmu.edu
https://thu-wyz.github.io/inference-scaling/

ABSTRACT

While the scaling laws of large language models (LLMs) training have been exten-
sively studied, optimal inference configurations of LLMs remain underexplored.
We study inference scaling laws (aka test-time scaling laws) and compute-optimal
inference, focusing on the trade-offs between model sizes and generating ad-
ditional tokens with different inference strategies. As a first step towards un-
derstanding and designing compute-optimal inference methods, we studied cost-
performance trade-offs for inference strategies such as greedy search, majority
voting, best-of-n, weighted voting, and two different tree search algorithms, us-
ing different model sizes and compute budgets. Our findings suggest that scal-
ing inference compute with inference strategies can be more computationally ef-
ficient than scaling model parameters. Additionally, smaller models combined
with advanced inference algorithms offer Pareto-optimal trade-offs in cost and
performance. For example, the Llemma-7B model, when paired with our novel
tree search algorithm, consistently outperforms the Llemma-34B model across all
tested inference strategies on the MATH benchmark. We hope these insights con-
tribute to a deeper understanding of inference scaling laws (test-time scaling laws)
for LLMs.

2 8 32 128 512 2048
Inference FLOPs per question (×1011)

30

40

50

60
70

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Weighted Majority)
410M
1.4B
2.8B
6.9B
12B

0.5 1 2 4 8 16
Model size (B)

30

40

50

60
70

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Weighted Majority)

11.5

12.0

12.5

13.0

13.5

14.0

14.5
lo

g(
FL

OP
s)

Figure 1: Inference scaling laws exhibited for Pythia (Biderman et al., 2023) models and GSM8K
test error. We evaluate the error rate (lower is better) of models using various sizes and numbers of
sampled solutions for weighted majority voting. Left: the error rate for each model size decreases
steadily as inference-compute increases, and converges at the end. Right: the optimal model size
(shown as stars for 241, 244, and 247 FLOPs) varies based on the inference-time compute budget.
For instance, smaller models are compute-optimal at 241 and 244 FLOPs. Both axes are log scale.

∗Work done during the visit at Carnegie Mellon University

1

https://thu-wyz.github.io/inference-scaling/

Published as a conference paper at ICLR 2025

1 INTRODUCTION

Scaling laws of neural networks (Hestness et al., 2017; Rosenfeld et al., 2020) have been established
across a range of domains, including language modeling (Kaplan et al., 2020; Hoffmann et al., 2022;
OpenAI, 2023), image modeling (Henighan et al., 2020; Yu et al., 2022; Peebles & Xie, 2023),
video modeling (Brooks et al., 2024), reward modeling (Gao et al., 2023), and board games (Jones,
2021). These studies have demonstrated how model performance is influenced by both the size of
the model and the amount of training compute. However, there is limited knowledge on how varying
the compute during inference affects model performance after the model has been trained.

To improve the task performance of large language models (LLMs), inference techniques typically
involve additional compute as a performance maximization step at inference time (Nye et al., 2021;
Wei et al., 2022; Wang et al., 2023b; Yao et al., 2023; Chen et al., 2024b). The computational cost
of these techniques must be taken into account for compute-optimal inference. For example, Monte
Carlo Tree Search (MCTS) may improve task performance, but it potentially requires much more
compute than simply sampling solutions multiple times (Jones, 2021). Generally speaking, we need
a comprehensive understanding of how various inference-time methods (e.g., best-of-n, majority
voting (Wang et al., 2023a; Li et al., 2023)) trade off between performance and cost. To improve
our understanding, this paper presents a thorough empirical evaluation with careful analysis over
various configurations of representative LLMs and inference algorithms.

Specifically, we explore how to select an optimal size for the language model and an effective in-
ference strategy (e.g., greedy search, majority voting, best-of-n, weighted voting, and their tree-
search variants) to maximize performance (i.e., accuracy) with a given compute budget. We control
the inference compute (FLOPs) of a fixed model by generating more tokens through the language
model1, sampling further candidate solutions, and ranking them with a reward model. We analyze
the performance of fine-tuned models of various sizes given different inference FLOPs on mathe-
matical reasoning benchmarks (e.g., GSM8K test set (Cobbe et al., 2021) and MATH500 test set
(Hendrycks et al., 2021b; Lightman et al., 2024)). Our experiments cover several model families,
including general-purpose LLMs (e.g., Pythia (Biderman et al., 2023) & Mistral (Jiang et al., 2023))
as well as math-specialized ones (e.g., Llemma (Azerbayev et al., 2024)).

Our results on Pythia (Fig. 1) illustrate how performance scales with increased inference compute
across various model sizes. Typically, increasing the compute budget leads to higher accuracy until
the accuracy reaches saturation. As the compute budget increases, smaller models initially perform
better than larger ones, but once the accuracy of the smaller models saturates, the larger models have
favorable performance. The right panel of Figure 1 demonstrates that the optimal model size for
inference varies with different levels of computational budgets. However, in real-world deployment,
the available compute is typically much lower than the point where the accuracy of relatively small
models saturates and larger models begin to show their advantage (as shown in Fig. 4, where the 7B
model outperforms the 34B model until 128 Llemma 7B solutions are sampled). This indicates that
relatively smaller models could be more compute-optimal for inference.

We analyze the asymptotic behavior of sampling and voting-based inference strategies, showing
their convergence upper bound and rate of convergence. Given a dataset, the accuracy of the lan-
guage model will ultimately saturate to a fixed limit which is determined by the output probabilities
assigned by the model, exhibiting exponential convergence speed through sampling and voting. This
implies that, without an oracle verifier, simple strategies like sampling cannot achieve perfect ac-
curacy even with an infinite number of samples, leading to diminishing returns. Therefore, this
highlights the necessity for more sophisticated inference algorithms.

We have also found that the commonly-used MCTS method does not perform well with weighted
voting, as it often yields many unfinished solutions, hence having less effective votes. To address this
issue, we propose a novel tree search algorithm, REward BAlanced SEarch (REBASE), which pairs
well with weighted voting and achieves a Pareto-optimal trade-off between accuracy and inference
compute. The key idea of REBASE is to use a node-quality reward to control node expansion, which
eliminates the need for explicit rollouts while ensuring enough candidate solutions for voting.

1Following Uesato et al. (2022), we refer to the main language model generating outputs as the policy model.
It can be paired with a reward model, which scores outputs from the policy model to facilitate inference.

2

Published as a conference paper at ICLR 2025

In our experiments, REBASE consistently outperforms sampling and MCTS methods across all set-
tings, models, and tasks. Importantly, we find that REBASE with a smaller language model typi-
cally achieves a Pareto-optimal trade-off. For instance, we show that the Llemma-7B model can
achieve competitive accuracy to a Llemma-34B model while using 2× less FLOPs when evaluat-
ing on MATH500 (Fig. 4) or GSM8K (Fig. 5). Moreover, Llemma-7B with REBASE outperforms
Llemma-34B with standard majority voting across all compute budgets. Our results show the value
of using smaller models with advanced inference-time algorithms, and the benefits of new algo-
rithms for achieving better returns on inference-time compute.

Our contributions are summarized as follows:

• We explore new inference scaling laws and compute-optimal inference by evaluating the
performance of various model sizes under a fixed inference strategy. We show that smaller
models can outperform larger ones under the same compute budget by increasing the num-
ber of samples.

• We provide new theoretical analysis of the scaling behavior of voting methods, presenting
convergence bounds and rates. Our analysis shows performance limits and diminishing
returns from sampling, pointing to the need for more sophisticated inference algorithms.

• We formulate a new compute-optimal inference problem and propose a novel tree search
algorithm, REBASE, which is compute-optimal compared to widely-used sampling and
MCTS methods. Our results show benefits of using smaller models with advanced infer-
ence algorithms, and new algorithms for achieving better cost-performance tradeoffs.

2 RELATED WORKS

Scaling laws. Recent research on scaling laws has established that model performance follows
predictable power-law relationships with respect to the number of parameters, the size of the train-
ing dataset, and the available compute (Hestness et al., 2017; Rosenfeld et al., 2020). The seminal
work by Kaplan et al. (2020) demonstrates that the test loss of language models decays as a function
of model size and data in a highly regular manner. Subsequent studies refine these initial observa-
tions and extend them into more diverse settings (Hoffmann et al., 2022; Alabdulmohsin et al., 2022;
Muennighoff et al., 2023; Lin et al., 2024; Goyal et al., 2024b). However, most of these existing
works are primarily focused on the training regime. Sardana et al. (2024) study scaling laws taking
both training and inference into account, but only a fixed inference algorithm is considered. In com-
parison, our work systematically demonstrate inference scaling laws, i.e., LLM problem-solving
performance improves with increased inference-time compute budget, and we propose and study
compute-optimal inference.

Inference strategies and inference-time compute utilization in LLM problem-solving. A vari-
ety of inference strategies have been developed to generate sequences with a trained model (Welleck
et al., 2024). Deterministic methods such as greedy decoding and beam search (Teller, 2000; Graves,
2012) find highly probable sequences which typically have decent quality but lacks diversity. Sam-
pling algorithms (e.g., temperature sampling (Ackley et al., 1985)) can produce a diverse set of
results which are then aggregated to achieve higher accuracy (e.g., via the self-consistency ap-
proach (Wang et al., 2023a)). Recent methods combine search algorithms with LLMs, including
breadth-first or depth-first search (Yao et al., 2023), Monte-Carlo Tree Search (MCTS) (Zhang
et al., 2023; Zhou et al., 2024; Liu et al., 2024; Choi et al., 2023), and guided beam search (Xie
et al., 2023). Several prior studies also find that LLM problem-solving performance can be im-
proved by outputting “dummy” tokens at inference time (Goyal et al., 2024a; Pfau et al., 2024). All
of these methods show that using search at inference time can lead to performance gains at the cost
of increased inference-time compute, but they do not characterize the cost-performance trade-off
systematically. We are the first to formulate and study compute-optimal inference, analyzing the
trade-off between compute budget and problem-solving performance and proposing the REBASE
method that is empirically Pareto-optimal. Concurrently, Snell et al. (2025) also study how to scale
inference-compute optimally and provide complementary insights, since we consider more model
families and sizes while they study several different inference strategies.

Mathematical Reasoning with LLMs. Large language models have made significant progress
in recent years, and have exhibited strong reasoning abilities (Brown et al., 2020; Hoffmann et al.,
2022; Lewkowycz et al., 2022; Chowdhery et al., 2023). Mathematical problem solving is a key

3

Published as a conference paper at ICLR 2025

Figure 2: Illustration of compute-optimal scaling laws in training and inference. The Chinchilla
scaling law (Hoffmann et al., 2022) shows how to choose a model size and number of training tokens
under a training-compute budget, while our work shows how to choose a model size and an inference
strategy under an inference-compute budget.

task for measuring LLM reasoning abilities (Cobbe et al., 2021; Hendrycks et al., 2021b). Ling
et al. (2017) first developed the method of producing step by step solutions that lead to the final
answer. Later, Cobbe et al. (2021) extended the work by training a verifier for evaluating and ranking
solutions. Subsequent research has shown the performance benefits of inference-time techniques
such as majority voting and weighted majority voting (Lewkowycz et al., 2022; Li et al., 2023).
We choose problem solving in mathematics as the task to study compute-optimal strategies since it
allows us to accurately evaluate problem solving ability.

3 COMPUTE-OPTIMAL INFERENCE FOR PROBLEM-SOLVING

We explore the following question: Given a fixed FLOPs budget, how should one select an optimal
model size for the policy model, and an effective inference strategy to maximize performance (i.e.,
accuracy)? We are the first to formulate this problem and study the associated inference-time scaling
laws, setting our work apart from previous scaling law studies (Fig. 2).

To address this, we represent the problem-solving error rate E(N,T ;S) as a function of the number
of model parameters N , the number of generated tokens T and the inference strategy S . The com-
putational budget C is a deterministic function FLOPs(N,T ;S), based on N and T . Our goal is to
minimize E under the test-time compute constraint FLOPs(N,T,S) = C:

(Nopt(C), Topt(C);S) = argmin
(N,T,S) s.t. FLOPs(N,T,S)=C

E(N,T ;S)

where Nopt(C) and Topt(C) denote the optimal allocation of a computational budget C.

Here, the inference compute (FLOPs) for a fixed model can be modulated by generating more tokens
with the policy model and an inference strategy, e.g., sampling additional candidate solutions and
subsequently ranking them using a reward model. As the inference strategies, we primarily consider
sampling and tree-search approaches paired with re-ranking or majority voting. This includes greedy
search, majority voting, best-of-n, weighted voting, and their tree-search variants.

3.1 INFERENCE STRATEGIES

We consider the following inference strategies which are popularly used in practice:

• Greedy search. This strategy generates tokens one at a time by selecting the highest probability
token at each step. It is computationally efficient but often suboptimal in terms of diversity.

• best-of-n. This strategy, also known as rejection sampling, generates a set of candidates and
chooses the one with the highest score given by the reward model.

4

Published as a conference paper at ICLR 2025

• Majority voting. In this strategy, a set of candidates are generated, and the final answer to the
problem is determined by the most frequently occurring answer in all the outputs.

• Weighted majority voting. This strategy is a variant of majority voting in which the candidates
are weighted based on the scores given by the reward model.

We say a strategy is sampling-based if it uses a standard autoregressive sampling algorithm (e.g.,
temperature sampling) to generate the candidate set (greedy search is separate, in that it only has a
single deterministic candidate). A tree-search variant uses a tree search to generate the candidate
set. Before discussing tree-search methods, we analyze sampling-based voting below.

Theoretical analysis of sampling-based voting. We present theoretical results on the asymptotic
behavior of voting-based strategies given infinite compute in Theorems 1 & 2. Informally, we show
that the accuracy of standard/weighted majority voting converges with infinite samples, and the
limit only depends on the distribution modeled by the language model (and the reward model).
This theoretical finding is also aligned with our empirical findings shown in Sec. 4.2, which show
saturation at high sampling budgets. The proofs are presented in Appendix A.

Notations and assumptions. Let V be a finite vocabulary and V∗ its Kleene closure, i.e., the set
of all strings. Given a problem x, we say a language model answers y to this problem if the model
outputs rey where r ∈ V∗ can be any “reasoning path” and e ∈ V denotes a special token that marks
the end of reasoning. We further assume that the answer string is always shorter than L tokens, i.e.,
|y| ≤ L for some fixed L ∈ N∗ where |y| denotes the length of y. For a language model π, denote
by π(v|w) the probability of generating v given input (prompt) w. For a reward model ρ, denote by
ρ(v) the score it assigns to the string v. We use I to denote the indicator function.

Theorem 1. Consider a dataset D = {(xi, yi)}mi=1 where xi and yi denotes input and true answer,
respectively. For a language model π, denote by accMV

n (D;π) the accuracy on D using majority
voting with n samples. Following the notations and assumptions defined above, we have:

lim
n→+∞

accMV
n (D;π) = 1

m

m∑
i=1

I

[
yi = argmax

|y|≤L

∑
r∈V∗

π(rey|xi)

]
(almost surely);

and E
[
accMV

n (D;π)
]
=

1

m

m∑
i=1

I

[
yi = argmax

|y|≤L

∑
r∈V∗

π(rey|xi)

]
−O(c−n)

for some constant c > 1.

Theorem 2. Consider a dataset D = {(xi, yi)}mi=1. For a language model π and a reward model
ρ, denote by accWV

n (D;π, ρ) the accuracy on D using weighted majority voting with n samples.
Following the notations and assumptions defined above, we have:

lim
n→+∞

accWV
n (D;π, ρ) = 1

m

m∑
i=1

I

[
yi = argmax

|y|≤L

∑
r∈V∗

π(rey|xi)ρ(xirey)

]
(almost surely);

and E
[
accWV

n (D;π, ρ)
]
=

1

m

m∑
i=1

I

[
yi = argmax

|y|≤L

∑
r∈V∗

π(rey|xi)ρ(xirey)

]
−O(c−n)

for some constant c > 1.

Remarks. Theorems 1 & 2 state the convergence of the accuracy with increasing number of sam-
ples, indicating that the performance gains of using more samples will saturate for any fixed models.
The limit is determined by the likelihood of generating the correct answers through all possible rea-
soning paths (and the likelihood should be viewed as a weighted sum for weighted majority voting).
This motivates us to consider inference algorithms that search for “good” reasoning paths, such as
the tree-search-based variants detailed in Sec. 3.1.1 & 3.1.2.

Theorem 1 & 2 also present insights to compare standard majority voting with weighted majority
voting. Informally, as long as the reward model is “better than random”, i.e., assigning higher
rewards to correct solutions on average, the accuracy limit of weighted majority voting is higher
than that of majority voting. In our experiments, we consistently find that weighted majority voting
dominates majority voting. Thus, we focus on best-of-n and weighted majority voting in the main
paper and defer majority voting results to Appendix D.

5

Published as a conference paper at ICLR 2025

Figure 3: Illustration of one iteration of REward BAlanced SEarch (REBASE).

3.1.1 MONTE CARLO TREE SEARCH (MCTS)
Monte Carlo Tree Search (MCTS) has proven effective in domains such as board games where
strategic decision-making is required (Silver et al., 2016; 2017; Jones, 2021). Recent work has
shown that adapting MCTS to the context of LLMs can enhance the text generation process (Zhang
et al., 2023; Zhou et al., 2024; Liu et al., 2024; Choi et al., 2023; Chen et al., 2024a; Tian et al.,
2024; Chen et al., 2024a). In this context, MCTS is paired with a value model to score and guide
the exploration steps. For additional background, we provide a review of MCTS in Appendix B.

Recent work in MCTS or its variants mainly focus on improving the performance (e.g., accuracy) on
the studied tasks. However, generic comparisons of MCTS with conventional methods like best-of-n
and majority voting in terms of computational budget, measured in generated tokens or processing
time are scarce or indicate potentially unfavorable cost-performance tradeoffs. For example, MCTS
consumes substantially more resources, often requiring dozens of times more generated tokens than
simpler methods. Specifically, a significant portion of the paths in the search tree are used to estimate
and select nodes, and these paths do not necessarily become a part of the final candidate solution,
although MCTS ensures that the sampled solutions comprise high-quality intermediate steps. In
contrast, sampling methods generate multiple solutions in parallel and independently, and all the
generated sequences are included in the candidate solutions. However, the intermediate steps in
these sequences are not guaranteed to be of high quality, as there is no mechanism for pruning poor
steps or exploiting promising ones.

This highlights the need for a new tree search method that can achieve a comparable (or better) per-
formance as MCTS, and that is computationally less costly, with a cost similar to weighted majority
voting and best-of-n. This motivates our new method, Reward Balanced SEarch (REBASE).

3.1.2 REWARD BALANCED SEARCH (REBASE)
The REBASE tree search method, illustrated in Fig. 3, inherits the exploitation and pruning proper-
ties of tree search, while using a reward model alone to estimate quality of intermediate nodes. This
saves inference compute compared to methods such as MCTS, since it does not involve estimate
node quality with explicit rollouts. In short, the underlying idea is to use a process reward model to
determine how much each node should be expanded at each depth. Namely, REBASE expands nodes
at a given depth according to their softmax-normalized reward scores, subject to a total expansion
budget. We describe this procedure in more detail below.

Notations. We view the fine-tuned LLM as a policy πθ which generates the solution step by step.
Given a question x and the first k steps of a solution r1 · · · rk, the (k + 1)-th step is sampled from
πθ(·|xr1 · · · rk). REBASE generates a solution tree during inference, in which the root node is the
question x, and other nodes corresponds to solution steps. When generating solution trees, we
generate children of rk by sampling from πθ(·|xr1 · · · rk). We use the corresponding solution step
to denote a node. The reward of a node rk is generated by the PRM: R(rk) := R(xr1 · · · rk).

6

Published as a conference paper at ICLR 2025

4 16 64 256 1024
Inference FLOPs per question (×1012)

50

55

60

65

70
75

Te
st

 e
rro

r o
n

M
AT

H

Inference scaling (Weighted Majority)
Sampling (7B)
Sampling (34B)
MCTS (7B)
MCTS (34B)
REBASE (7B)
REBASE (34B)

4 16 64 256 1024
Inference FLOPs per question (×1012)

55

60

65

70

75

Te
st

 e
rro

r o
n

M
AT

H

Inference scaling (Best-of-N)
Sampling (7B)
Sampling (34B)
MCTS (7B)
MCTS (34B)
REBASE (7B)
REBASE (34B)

Figure 4: MATH inference scaling across inference strategies and model sizes (lower is better).
Detailed MCTS configurations can be found in Appendix B. The left/right panel shows the error
rate on MATH based on weighted majority/best-of-n. REBASE is the compute-optimal strategy at
all budgets, with 7B typically the optimal model size.

Initialization. Given the question x, a balance temperature Tb > 0, and target number of generated
solutions N , we sample N instances of the first step for the question, yielding all the nodes of depth
1 in the search tree. We let the sampling budget of depth 0, B0, to N at initialization.

Reward assignment and update. In the i-th iteration, the PRM assigns the rewards to all the nodes
at depth i. After that, the algorithm examines whether the solutions up to depth i are complete.
Supposing there are Ci completed solutions, we update the sampling budget using Bi ← Bi−1−Ci.
If Bi = 0, the process ends, and we obtain N solutions.

Exploration balancing and expansion. For all of the nodes nj with reward R(nj) in the depth i of
the tree, we calculate the expansion width of the nj as:

Wj = Round

(
Bi

exp (R(nj)/Tb)∑
k exp (R(nk)/Tb)

)
. (1)

Then we sample Wj children for nj for all the nodes in depth i, and start the next iteration.

4 EXPERIMENTS

Our experiments are centered around two main questions:

• Compute-optimal model size: How does performance scale as inference-time compute is
increased with a fixed inference strategy, but with varying model size?

• Compute-optimal inference strategy: How does performance scale as inference-time
compute is increased with various inference strategies (and various model sizes)?

We detail our experimental setup below.

4.1 SETUP

Datasets. We conduct experiments on two mathematical problem-solving datasets to investigate
the effects of scaling inference compute for both challenging and simpler problems. Specifically,
MATH (Hendrycks et al., 2021a) and GSM8K (Cobbe et al., 2021) are datasets containing high
school mathematics competition-level problems and grade-school level mathematical reasoning
problems, respectively. Following Lightman et al. (2024); Wang et al. (2024); Sun et al. (2024),
we use the MATH500 subset as our test set.

Policy model (solution generator). To study the how performance scales as inference compute is
increased using a fixed strategy, the primary axis of variation is model size. Therefore, we choose
Pythia (Biderman et al., 2023) as our base models, since various model sizes are available in the
Pythia family. To study inference scaling under different inference strategies (e.g., tree search,
weighted majority voting), we use math-specialized Llemma models (Azerbayev et al., 2024). We
finetune these models on the MetaMath dataset (Yu et al., 2024) using full parameter supervised

7

Published as a conference paper at ICLR 2025

2 4 8 16 32 64 128 256
Inference FLOPs per question (×1012)

12

16

20
24
28
32

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Weighted Majority)
Sampling (7B)
Sampling (34B)
REBASE (7B)
REBASE (34B)

2 4 8 16 32 64 128 256
Inference FLOPs per question (×1012)

12

16

20
24
28
32

Te
st

 e
rro

r o
n

GS
M

8K

Inference scaling (Best-of-N)
Sampling (7B)
Sampling (34B)
REBASE (7B)
REBASE (34B)

Figure 5: GSM8k inference scaling across inference strategies and model sizes (lower is bet-
ter). The left/right panel shows the problem-solving error rate on GSM8K based on weighted
majority/best-of-n. MCTS is not included in the comparison because of its poor compute-accuracy
trade-off. REBASE is the compute-optimal inference strategy, and the optimal model size varies.

fine-tuning (Full-SFT), The finetuning configuration is given in the Appendix. Additionally, we test
the Mistral-7B (Jiang et al., 2023) to expand our findings across different models and architectures.

Reward model. All of the experiments use the same Llemma-34B reward model, which we fine-
tuned on the synthetic process reward modeling dataset, Math-Shepherd (Wang et al., 2024). We
added a reward head to the model, enabling it to output a scalar reward at the end of each step.

Inference configuration. We use sampling and tree search methods to generate multiple candi-
dates, and select the answer through best-of-n, majority voting, or weighted voting. Each con-
figuration is run multiple times to calculate the mean and variance, which mitigates effects from
randomness and thereby improves the reliability of our conclusions. Unless explicitly stated other-
wise, each point in the figures in this section corresponds to 2i samples, where i is an integer starting
from 0.

4.2 COMPUTE-OPTIMAL MODEL SIZE

To compare the inference compute budgets of different models, we plot the figures with the num-
ber of FLOPs used per question during inference. We compute the inference FLOPs based on the
commonly-used formula proposed by Kaplan et al. (2020).

Scaling law of compute-optimal inference for model size. Fig. 1 shows the relationship between
inference compute and error rate for different model sizes. The error rate first decreases steadily and
then starts to saturate. Initially, sampling many times from smaller models is compute-optimal. At
larger compute budgets the larger models are preferable, since the performance of small models has
saturated. As highlighted in the right panel of Fig. 1, the optimal model size varies based on the
inference budget. We performed a regression analysis on inference FLOPs C and model sizes N
to establish a relationship between a given computational budget and its optimal model size. The
resulting equation, log10 (C) = 1.19 log10 (N) + 2.03, lets us estimate the optimal inference model
size for a specific compute budget.

Llemma-7B achieves competitive accuracy to Llemma-34B with less compute. Fig. 4 and
Fig. 5 shows the relationship between error rate and inference FLOPs for Llemma 7B and Llemma
34B using different inference strategies. Llemma-7B requires around 2× less total FLOPs than
Llemma-34B to achieve comparable accuracy. This held across inference strategies (sampling strate-
gies, MCTS, REBASE) and tasks (MATH, GSM8K). This result suggests that, with the same training
dataset and model family, generating more tokens with a suitable inference strategy using a smaller
model can have more favorable cost-performance tradeoffs than using a larger model.

4.3 COMPUTE-OPTIMAL INFERENCE STRATEGY

REBASE is Pareto-optimal. REBASE consistently achieves the best cost-performance tradeoffs,
outperforming the sampling-based methods in all settings when fixing the model and the evaluation
task (Fig. 4, 5, 6, and 7). For example, in Fig. 4, REBASE is the compute-optimal strategy at all

8

Published as a conference paper at ICLR 2025

4 16 64 256 1024
Infer. FLOPs per question (×1012)

45

50

55

60
65
70
75
80

Te
st

 e
rro

r o
n

M
AT

H

Llemma-7B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

16 32 64 128 256 5121024
Infer. FLOPs per question (×1012)

45

50

55

60

65
70
75

Te
st

 e
rro

r o
n

M
AT

H

Llemma-34B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

4 8 16 32 64 128256512
Infer. FLOPs per question (×1012)

50

55

60

65

70

75
80

Te
st

 e
rro

r o
n

M
AT

H

Mistral-7B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

Figure 6: MATH inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

10

15

20

25
30
35
40

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-7B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

16 32 64 128 256
Infer. FLOPs per question (×1012)

10

12

14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-34B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

8

10

12
14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Mistral-7B
Sampling W.M.
Sampling BoN
REBASE W.M.
REBASE BoN

Figure 7: GSM8K inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.

2 4 8 16 32 64
Number of Samples

27
30
33
36
39
42

Te
st

 E
rro

r (
%

)

Llemma-7B on MATH-easy
Sampling
REBASE

2 4 8 16 32 64
Number of Samples

60
63
66
69
72
75

Llemma-7B on MATH-hard
Sampling
REBASE

2 4 8 16 32 64
Number of Samples

27

30

33

36

39
Llemma-34B on MATH-easy

Sampling
REBASE

2 4 8 16 32 64
Number of Samples

57
60
63
66
69
72
Llemma-34B on MATH-hard

Sampling
REBASE

Figure 8: Comparisons of sampling and REBASE using weighted majority voting on MATH-easy
problems (levels 1-2) and MATH-hard problems (levels 3-5). The tested models are Llemma-7B
and Llemma-34B.

inference compute budgets, with 7B typically the optimal model size. On the other hand, MCTS
underperforms the sampling-based methods at each compute budget, likely due to its costly rollouts
(Fig. 4) compared to the efficient use of the reward model in REBASE.

Tab. 1 shows that REBASE achieves better accuracy with a lower compute budget compared to
sampling-based weighted voting. With the 7B model, REBASE achieves higher accuracy with 7
times less compute. This finding is novel, and differs from previous tree search methods that typi-
cally improve the performance at the cost of higher computational expense compared to sampling-
based voting (Chen et al., 2024a; Xie et al., 2023).

REBASE yields greater gains on hard problems. The MATH dataset assigns each problem a dif-
ficulty level from 1 to 5. This enables a finer-grained analysis of the relationship between problem

9

Published as a conference paper at ICLR 2025

Table 1: REBASE with a lower compute budget achieves better accuracy compared to sampling
with a higher compute budget. We use weighted voting to aggregate candidates for both sampling
and REBASE.

Samples FLOPs MATH500 Accuracy (%)

Mistral-7B

Sampling 256 8.70× 1014 42.8
REBASE 32 1.36× 1014 45.0

Llemma-7B

Sampling 256 10.0× 1014 45.5
REBASE 32 1.48× 1014 46.8

Llemma-34B

Sampling 64 12.1× 1014 46.7
REBASE 32 7.08× 1014 49.2

difficulty and inference strategy. We divide the MATH test set into MATH-easy (levels 1-2) and
MATH-hard (levels 3-5) and compare REBASE to sampling on these two subsets. The results are
shown in Fig. 8. The performance of sampling and REBASE on easy problems (levels 1-2) is com-
parable. However, REBASE demonstrates a significant advantage on harder problems (levels 3-5).
This suggests that advanced inference strategies like tree search are especially effective for solving
difficult problems.

REBASE saturates later than sampling with higher accuracy. From Fig. 6 and Fig. 7, we ob-
serve that both sampling and REBASE saturate early in GSM8K and relatively late in MATH. We
attribute this to the difference of in difficulty levels between GSM8K and MATH. Specifically, the
LLM may assign high probability only to correct solutions in easy problems, but spread probability
mass across solutions in harder problems. Thus, harder problems may require aggregating over more
solution paths to converge to the distribution over answers shown in Theorems 1 & 2. On MATH
(Fig. 6), we see that REBASE finally saturates with a higher accuracy than sampling. We hypoth-
esize the reason is that drawing samples from REBASE corresponds to sampling from a policy that
assigns high probability to true answers compared to sampling from the underlying language model.
If this was indeed the case, Theorems 1 & 2 indicate that the upper bound would become higher. We
leave formally analyzing the behavior of tree search algorithms as interesting future work.

5 CONCLUSIONS

We study the relationship between task performance and the amount of compute expended during
inference for various model sizes, model families, and inference strategies, to form empirical in-
ference scaling laws. These relationships let us reason about compute-optimal inference: inference
configurations that give the best performance at a given compute budget.

Our results lead to three main takeaways. First, we find that using a smaller model and generat-
ing more tokens in an inference strategy often outperforms using a larger model at a fixed compute
budget. This has implications for models deployed in the real world, where inference compute
is constrained in various ways. Specifically, it is potentially beneficial to deploy smaller models
with more sophisticated inference strategies for better cost-performance trade-off. Second, we show
that in the limit of infinite compute (allocated by drawing more samples), sampling-based majority
voting strategies inevitably saturate to a distribution that depends on the underlying generation pol-
icy. Hence, it is of interest to alter the sampling distribution by designing an alternative inference
strategy. Third, we design such an inference strategy–the novel REBASE tree search–and find it is
Pareto optimal, in that it achieves the best performance across all tested compute budgets. Notably,
it outperforms commonly used weighted majority voting and MCTS methods that have attracted
much interest and widespread use. This finding not only shows the strength of REBASE, but also
indicates that there is large headroom to improve language model performances via inference-time
algorithms.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENT

Zhiqing Sun acknowledges the support of the Google Fellowship. Sean Welleck thanks NSF SCALE
(NSF DMS 2134012) and Convergent Research.

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws
in language and vision. Advances in Neural Information Processing Systems, 35:22300–22312,
2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=4WnqRR915j.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators, 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervision
without process. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=VaXnxQ3UKo.

Ziru Chen, Michael White, Ray Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree search
useful for llm planning? it depends on the discriminator. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13659–
13678, 2024b.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. KCTS: Knowledge-constrained
tree search decoding with token-level hallucination detection. In The 2023 Conference on Em-
pirical Methods in Natural Language Processing, 2023. URL https://openreview.net/
forum?id=7H45HfXsJb.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=4WnqRR915j
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=7H45HfXsJb
https://openreview.net/forum?id=7H45HfXsJb

Published as a conference paper at ICLR 2025

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=ph04CRkPdC.

Sachin Goyal, Pratyush Maini, Zachary C Lipton, Aditi Raghunathan, and J Zico Kolter. Scaling
laws for data filtering–data curation cannot be compute agnostic. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 22702–22711, 2024b.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding chal-
lenge competence with APPS. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021a. URL https://openreview.net/
forum?id=sD93GOzH3i5.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021b. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive genera-
tive modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Mak-
ing language models better reasoners with step-aware verifier. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.291. URL
https://aclanthology.org/2023.acl-long.291.

12

https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=IFXTZERXdM7
https://aclanthology.org/2023.acl-long.291

Published as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun
Wan, James Zou, and Yitao Liang. Selecting large language model to fine-tune via rectified
scaling law. In International Conference on Machine Learning, pp. 30080–30107. PMLR, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 158–167,
2017.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=kh9Zt2Ldmn.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36:50358–50376, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=NikbrdtYvG.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. In International Conference on Learning Representa-
tions, 2020. URL https://openreview.net/forum?id=ryenvpEKDr.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Ac-
counting for inference in language model scaling laws. In International Conference on Machine
Learning, pp. 43445–43460. PMLR, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling test-time compute opti-
mally can be more effective than scaling LLM parameters. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?
id=4FWAwZtd2n.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=qwgfh2fTtN.

13

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=kh9Zt2Ldmn
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=ryenvpEKDr
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=qwgfh2fTtN
https://openreview.net/forum?id=qwgfh2fTtN

Published as a conference paper at ICLR 2025

Virginia Teller. Speech and language processing: an introduction to natural language processing,
computational linguistics, and speech recognition, 2000.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu.
Toward self-improvement of LLMs via imagination, searching, and criticizing. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=tPdJ2qHkOB.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=eskQMcIbMS. Survey Certification.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=AFDcYJKhND. Featured Certification.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Lr8cOOtYbfL.

14

https://openreview.net/forum?id=tPdJ2qHkOB
https://openreview.net/forum?id=tPdJ2qHkOB
https://aclanthology.org/2024.acl-long.510/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=Bw82hwg5Q3
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=AFDcYJKhND
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

Published as a conference paper at ICLR 2025

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning, acting, and planning in language models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 62138–62160, 2024.

15

Published as a conference paper at ICLR 2025

A OMITTED PROOFS

A.1 PROOF OF THEOREM 1

Proof. Recall that we assume the answer must be shorter than L tokens. Let A = {v | |v| ≤ L} be
the set of all possible answers. Let π̃(y | x) be the probability of the language model π outputting
the answer y to the question x after marginalizing over the “reasoning paths”, i.e.,

π̃(y | x) =
∑
r∈V∗

π(rey|x).

Given an input x, Assume that y∗ = argmax
y∈A

π̃(y|x), y′ = argmax
y∈A\{y∗}

π̃(y|x), and denote

δ = π̃(y∗|x)− π̃(y′|x).

For any y, denote by fn(y) the number of times that the model answers y in the first n samples. Let
En be the event that majority voting with n samples does not output y∗. We note that En happens
only if there exists y′′ such that fn(y′′) ≥ fn(y

∗). Therefore, by union bound,

P(En) ≤P(∃ y′′ ∈ A\{y∗}, fn(y′′) ≥ fn(y
∗))

≤
∑

y′′∈A\{y∗}

P(fn(y′′) ≥ fn(y
∗))

≤|A|P(fn(y′) ≥ fn(y
∗))

Note that fn(y∗) − fn(y
′) can be viewed as a sum of n i.i.d. random variables, which take value

1 with probability π̃(y∗|x), −1 with probability π̃(y′|x), and 0 otherwise. Thus, their expectations
are all δ = π̃(y∗|x)− π̃(y′|x). By Hoeffding’s inequality, we have

P(fn(y′) ≥ fn(y
∗)) ≤ exp

(
−nδ2

2

)
.

Thus,

P(En) ≤ |A| exp
(
−nδ2

2

)
⇒

+∞∑
n=1

P(En) < +∞.

By Borel–Cantelli lemma, we have

P
(
lim sup
n→+∞

En

)
= 0,

which implies the following is true almost surely:

∃ N ∈ N∗, such that for any n ≥ N, y∗ = argmax
y∈A

fn(y)

Hence
lim

n→+∞
accMV

n ({(x, y)};π) = I [y = y∗] (almost surely).

Recall the definition of y∗, the above shows the theorem is true for a dataset with a single example
{(x, y)}. For general datasets D with m examples, one can apply the above argument to each
examples and combine the results to conclude the proof of the almost-sure convergence.

Next, we prove the asymptotic result on E
[
accMV

n ({D};π)
]
. We slightly abuse notation for sim-

plicity as follows: We let y∗(xi) = argmax
y∈A

π̃(y|xi), y′ = argmax
y∈A\{y∗(xi)}

π̃(y|xi), and let

δmin = min
(xi,yi)∈D

π̃(y∗(xi)|xi)− π̃(y′(xi)|xi).

16

Published as a conference paper at ICLR 2025

We denote by En(xi) the event that majority voting with n samples does not output y∗(xi) given
input xi. Then it’s easy to see that

P(En(xi)) ≤ |A| exp
(
−nδ2min

2

)
⇒ P(En(xi)) = O(c−n)

where c > 1 is a constant (which does not depend on i).

Note that if accMV
n ({xi, yi};π) = 1, we have yi = y∗(xi) unless En(xi) happens. In other words,

accMV
n ({xi, yi};π) ≤ I [yi = y∗(xi)] + I[En(xi)]

⇒
∣∣E [

accMV
n ({xi, yi};π)

]
− I [yi = y∗(xi)]

∣∣ ≤ P(En(xi)) = O(c−n).

Taking a summation over the entire dataset D yields∣∣∣∣∣accMV
n (D;π)− 1

m

m∑
i=1

I [yi = y∗(xi)]

∣∣∣∣∣ ≤ 1

m

m∑
i=1

P(En(xi)) = O(c−n),

which concludes the proof.

A.2 PROOF OF THEOREM 2

Proof. The proof is similar to the proof of Theorem 1. We only need to set

π̃(y | x) =
∑
r∈V∗

π(rey|xi)ρ(xirey).

Then the technique in the proof of Theorem 1 immediately applies.

17

Published as a conference paper at ICLR 2025

B MCTS DETAILS

In this section, we present additional background on the Monte Carlo Tree Search (MCTS) algo-
rithm. The MCTS process can be formulated as the following steps:

Selection. The process begins at the root node. Here, the algorithm recursively selects the child
node that offers the highest Upper Confidence Bound applied to Trees (UCT) value, continuing until
a node is reached that has not been expanded. The UCT is calculated using the formula

UCT (s) = Q(s) + C

√
ln (N(Parent(s)))

N(s)
,

where Q(s) denotes the quality score of node s, N(s) is the number of visits to node s, Parent(s)
denotes the parent node of s, and C is a constant determining the level of exploration.

Expansion and evaluation. Upon reaching a non-terminal node s, the node is expanded by gen-
erating multiple child nodes. Each child node c is then evaluated using a value function V (c), which
predicts the potential quality of continuing the sequence from node c.

Backpropagation. After evaluation, the algorithm updates the UCT values and the visit counts
for all nodes along the path from the selected node back to the root. For any node n in this path, the
updates are made as follows:

N(n)← N(n) + 1,

Q(n)← (N(n)− 1)Q(n) + V (s)

N(n)
.

18

Published as a conference paper at ICLR 2025

C HYPER-PARAMETERS

Finetuning. All the hyperparameters for model fine-tuning can be found in Tab. 2. We preprocess
the MetaMath Dataset to make the solutions in a stepwise format.

Table 2: Fine-tuning Hyper-parameters: LR refers to the learning rate, BS refers to the batch size.
Pythia, Llemma-7B and LLemma-34B are the generators we use in our experiments, RM is short
for Reward Model. We only use problems from GSM8K to train the Pythia models.

Model # Epoch Dataset BS LR Max Seq Length Dtype

Pythia-410M 1 MetaMath (GSM8K) 128 8E-5 768 FP32
Pythia-1.4B 1 MetaMath (GSM8K) 128 4E-5 768 FP32
Pythia-2.8B 1 MetaMath (GSM8K) 128 3E-5 768 FP32
Pythia-6.9B 1 MetaMath (GSM8K) 128 2E-5 768 FP32
Pythia-12B 1 MetaMath (GSM8K) 128 1E-5 768 FP32
Llemma-7B 1 MetaMath 128 8E-6 1024 FP32
Llemma-34B 1 MetaMath 128 8E-6 768 FP32
Llemma-34B RM 2 Math-Shepherd 128 1E-5 768 BF16

Inference. For all the inference strategies, the temperature for LLM token generation is set to 1.0.
Max tokens for the output is 1024 and max tokens for one step is 256. For REBASE, we set the
balance temperature (i.e., the parameter Tb in Eq. (1)) to 0.1. For MCTS, we set C in the UCT
value to 1 and we expand 4, 8, 16 children for the root, 2 children for other selected nodes with total
32, 64, 128 expansions respectively. New expanded nodes will be assigned values by the PRM, and
then backpropagate the Q values through the process described in the last section.

19

Published as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 MAJORITY VOTING EXPERIMENT RESULTS

In this section, we additionally include experimental results on the majority voting method, along
with its comparison with weighted majority voting (Fig. 9, 10 ,11, 12). The experiments show that
although the gap between majority voting and weighted majority voting on sampling is huge. This
gap becomes much smaller if we apply REBASE. This phenomenon can be caused by the selection
ability of tree search like REBASE. Once REBASE already samples solutions with high rewards,
conducing weighted majority voting gains less since the sampled solutions may all have relatively
high and stable rewards compared with those of sampling.

D.2 ADDITIONAL EXPERIMENTS ON LLAMA3 MODELS

We conduct additional experiments with Llama3-8B-Instruct (Dubey et al., 2024) model on MATH
and GSM8K datasets, as shown in Fig. 13. Results for code generation task MBPP are presented
(Austin et al., 2021) in Tab. 3. These experiments demonstrate that our conclusions generalize to
the Llama3 architecture and coding tasks, confirming that increased computational effort improves
performance until saturation is reached, and REBASE reaches the optimal performance-compute
trade-off.

In mathematical reasoning tasks, REBASE consistently outperforms the sampling approach across
different answer selection strategies, including best-of-n, majority voting, and weighted voting. The
highest performance on each dataset is achieved using REBASE. Specifically, on GSM8K, REBASE
combined with weighted majority voting using 128 samples achieves an accuracy of 90.2%, sur-
passing the best accuracy of 89.7% obtained by the sampling method with 256 samples using the
best-of-n strategy. Similarly, on MATH, REBASE with weighted majority voting using 128 samples

4 16 64 256 1024
Infer. FLOPs per question (×1012)

45

50

55

60
65
70
75
80

Te
st

 e
rro

r o
n

M
AT

H

Llemma-7B
Sampling M.V.
REBASE M.V.

16 32 64 128 256 5121024
Infer. FLOPs per question (×1012)

45

50

55

60

65
70
75

Te
st

 e
rro

r o
n

M
AT

H

Llemma-34B
Sampling M.V.
REBASE M.V.

4 8 16 32 64 128256512
Infer. FLOPs per question (×1012)

50

55

60

65

70

75
80

Te
st

 e
rro

r o
n

M
AT

H
Mistral-7B

Sampling M.V.
REBASE M.V.

Figure 9: The inference scaling laws of different models for the problem-solving error rate on
MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B
(right). In the legend, M.V. refer to majority voting.

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

10

15

20

25
30
35
40

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-7B
Sampling M.V.
REBASE M.V.

16 32 64 128 256
Infer. FLOPs per question (×1012)

10

12

14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-34B
Sampling M.V.
REBASE M.V.

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

10

12

14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Mistral-7B
Sampling M.V.
REBASE M.V.

Figure 10: The inference scaling laws of different models for the problem-solving error rate on
GSM8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B
(right). In the legend, M.V. refer to majority voting.

20

Published as a conference paper at ICLR 2025

4 16 64 256 1024
Infer. FLOPs per question (×1012)

45

50

55

60
65
70
75
80

Te
st

 e
rro

r o
n

M
AT

H

Llemma-7B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

16 32 64 128 256 5121024
Infer. FLOPs per question (×1012)

45

50

55

60

65
70
75

Te
st

 e
rro

r o
n

M
AT

H

Llemma-34B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

4 8 16 32 64 128256512
Infer. FLOPs per question (×1012)

50

55

60

65

70

75
80

Te
st

 e
rro

r o
n

M
AT

H

Mistral-7B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

Figure 11: The inference scaling laws of different models for the problem-solving error rate on
MATH test set. The tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B
(right). In the legend, M.V. and W.M. refer to majority voting and weighted majority, respectively.

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

10

15

20

25
30
35
40

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-7B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

16 32 64 128 256
Infer. FLOPs per question (×1012)

10

12

14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Llemma-34B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

2 4 8 16 32 64
Infer. FLOPs per question (×1012)

8

10

12
14
16
18
20
22
24
26

Te
st

 e
rro

r o
n

GS
M

8K

Mistral-7B
Sampling M.V.
Sampling W.M.
REBASE M.V.
REBASE W.M.

Figure 12: The inference scaling laws of different models for the problem-solving error rate on
GSM8K test set. The tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B
(right). In the legend, M.V. and W.M. refer to majority voting and weighted majority, respectively.

Table 3: Zero shot pass rates of Sampling and REBASE on MBPP code generation task.

Samples Sampling FLOPs Sampling Pass Rate REBASE FLOPs REBASE Pass Rate

8 8× 1012 63 8.3× 1012 69.6
16 16× 1012 69.4 17.5× 1012 72.4
32 32× 1012 72.4 34.9× 1012 75.8
64 64× 1012 79 69.2× 1012 81.4

achieves an accuracy of 47.4%, significantly outperforming the sampling method’s best accuracy of
41.9% with 256 samples using best-of-n.

For the code generation task MBPP, we analyze scaling behavior and compute-optimal inference
through pass rate evaluation. The results confirm that REBASE is more compute-efficient than sam-
pling. This advantage can be attributed to the use of a reward model that evaluates partial code
solutions. By conducting one iteration of REBASE, our method prunes suboptimal partial solutions
while encouraging exploration of promising ones, thereby enhancing computational efficiency and
solution quality.

D.3 COMPARISON OF DIFFERENT STRATEGIES ACROSS DIFFERENT MODELS

We show the accuracy of different strategies under a specific compute budget in Tab. 4.

21

Published as a conference paper at ICLR 2025

2 8 32 128 512
Infer. FLOPs per question (×1012)

7

10

12
15
17
20
22
25
27
30

Te
st

 e
rro

r o
n

GS
M

8K

Llama3-instruct-8B
Sampling M.V.
Sampling W.M.
Sampling BoN
REBASE M.V.
REBASE W.M.
REBASE BoN

4 16 64 256 1024
Infer. FLOPs per question (×1012)

50

55

60

65

70

75
80

Te
st

 e
rro

r o
n

M
AT

H

Llama3-instruct-8B
Sampling M.V.
Sampling W.M.
Sampling BoN
REBASE M.V.
REBASE W.M.
REBASE BoN

Figure 13: GSM8K (left) and MATH (right) inference scaling across inference strategies and
models (lower is better). The tested model is Llama3-instruct-8B. In the legend, M.V., W.M., and
BoN refer to majority voting, weighted majority, and best-of-n, respectively.

Table 4: Accuracy of different inference configurations under a specific compute budget. MV,
BoN and WV denote Majority Voting, best-of-n and Weighted Voting, respectively.

SAMPLES MATH FLOPS GSM8K FLOPS MATH500 GSM8K

MISTRAL-7B

GREEDY 1 3.4× 1012 2.3× 1012 28.6 77.9
SAMPLING + MV 32 109.2× 1012 72.6× 1012 36.1 85.7
SAMPLING + BON 32 109.2× 1012 72.6× 1012 40.3 89.4
SAMPLING + WV 32 109.2× 1012 72.6× 1012 39.7 89.1
REBASE + MV 32 136.2× 1012 78.9× 1012 44.1 88.8
REBASE + BON 32 136.2× 1012 78.9× 1012 45.4 89.4
REBASE + WV 32 136.2× 1012 78.9× 1012 45.0 89.8

LLEMMA-7B

GREEDY 1 3.92× 1012 2.3× 1012 30.0 68.5
SAMPLING + MV 32 125.4× 1012 73.9× 1012 41.0 80.0
SAMPLING + BON 32 125.4× 1012 73.9× 1012 41.7 85.6
SAMPLING + WV 32 125.4× 1012 73.9× 1012 43.5 85.4
REBASE + MV 32 148.0× 1012 82.6× 1012 46.1 86.1
REBASE + BON 32 148.0× 1012 82.6× 1012 44.1 86.9
REBASE + WV 32 148.0× 1012 82.6× 1012 46.8 87.3

LLAMA3-INSTRUCT-8B

GREEDY 1 3.84× 1012 2.28× 1012 29.6 79.0
SAMPLING + MV 32 122.9× 1012 73.2× 1012 35.4 84.6
SAMPLING + BON 32 122.9× 1012 73.2× 1012 39.7 88.5
SAMPLING + WV 32 122.9× 1012 73.2× 1012 39.5 88.6
REBASE + MV 32 172.8× 1012 79.3× 1012 45.2 88.3
REBASE + BON 32 172.8× 1012 79.3× 1012 45.5 88.7
REBASE + WV 32 172.8× 1012 79.3× 1012 43.7 89.1

LLEMMA-34B

GREEDY 1 19.0× 1012 11.2× 1012 33.0 78.4
SAMPLING + MV 8 152.3× 1012 89.7× 1012 39.9 84.3
SAMPLING + BON 8 152.3× 1012 89.7× 1012 40.4 86.7
SAMPLING + WV 8 152.3× 1012 89.7× 1012 41.0 86.0
REBASE + MV 8 176.8× 1012 98.7× 1012 43.9 86.1
REBASE + BON 8 176.8× 1012 98.7× 1012 43.6 86.9
REBASE + WV 8 176.8× 1012 98.7× 1012 42.9 86.9

22

	Introduction
	Related Works
	Compute-Optimal Inference for Problem-Solving
	Inference Strategies
	Monte Carlo Tree Search (MCTS)
	Reward Balanced Search (Rebase)

	Experiments
	Setup
	Compute-Optimal Model Size
	Compute-Optimal Inference Strategy

	Conclusions
	Omitted Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	MCTS Details
	Hyper-parameters
	Additional experimental results
	Majority voting experiment results
	Additional experiments on Llama3 models
	Comparison of different strategies across different models

