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1 Supplementary figures
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Figure S1: (A) Sample precision for likelihood distribution from generative model and network
with or without SOM input. The circuit with SOM has higher sampling precision than without for
high feedforward input intensity. (B) With increasing inhibitory to excitatory input, there exists a
local minimum where the JS Divergence reaches zero, properly sampling the theoretical posterior
distribution. (C-D) Synaptic input and Firing Rate height decrease for excitatory neurons with
increasing SOM input.
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Figure S2: Sampling bimodal posteriors in the proposed circuit with interneurons when simultane-
ously presenting two stimuli to the circuit model. (A-B) The neural circuit model (A) that receives a
bimodal feedforward input (B) with two stimuli located at −50◦ and 50◦, mimicking the mixture of
two orientations. (C) The population responses of E and SOM neurons in the full circuit (shown in
A) when receiving the bimodal feedforward inputs shown in (B).(D) Same as (C) but removing SOM
neurons in (A).Without SOM neurons, the E neurons are not able to distinguish the two stimuli located
at different locations, and only sample a unimodal distribution. (E-F) The sampling distributions read
out from excitatory (E) neurons from the full circuit model (E) and the reduced circuit after removing
SOM neurons (F). For figure parameters, see Table S3.
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2 The generative model and Bayesian sampling

2.1 The stimulus likelihood from feedforward inputs

We present the math of deriving the stimulus likelihood function (Eq. (7)) from the feedforward
inputs (Eq. (3)). To ease the reading, we copy the definition of stochastic feedforward input here (Eq.
(3) in the main text),

rF (θ|z) ∼ Poisson[λF (θ|z)], λF (θ|z) = RF exp[−(θ − z)2/2a2],

Substituting the feedforward firing rate λF (θ|z) into the Poisson distribution, the probability of
observing a specific feedforward input rF given the stimulus feature z is (the subscript F is suppressed
for concision),

p(r|z) =
NE∏
j=1

Poisson (rj |λj∆t) =

NE∏
j=1

(λj∆t)rj

rj !
exp(−λj∆t), (S1)

Taking the logarithm,

ln p(r|z) =
∑

j

[
rj ln(λj∆t)− ln(rj !)− λj

]
,

=
∑

j rj ln(λj∆t) + const.
(S2)

To obtain the last line in the above equation, we assume the sum of population firing rate
∑

j λj(z) is
a constant irrelevant to z, which is true in a homogeneous population with a large number of neurons.
Substituting the Gaussian profile of feedforward firing rate λF (z),

ln p(r|z) = −
∑
j

rj
(θ − z)2

2a2
+ const,

= − (z − µz)
2

2Λ−1
+ const,

(S3)

where

µz =

∑
j r(θj)θj∑
j r(θj)

, Λ = a−2
∑
j

r(θj). (S4)

which is the Eq. (8) in the main text.

In our theoretical calculation below, we approximate the likelihood precision as a function of the
peak feedforward firing rate RF (Eq. 3),

Λ ≈ a−2
∑
j

λF (θj),

≈ a−2ρ

∫
λF (θ)dθ

= a−2ρRF

∫
e−(θ−z)2/2a2

dθ

=
√
2πρa−1RF ,

(S5)

where the first approximation is approximating the sum of feedforward population spike counts as the
sum of the feedforward input firing rate, which works well in the case of a large number of neurons.
The second approximation comes from converting the summation into integral, with 1/ρ denoting
the distance between neighbor neurons in the stimulus feature manifold.

2.2 Langevin sampling

We present the background of utilizing Langevin dynamics to sample a posterior,

dzt
dt

= (τL)
−1 d ln p(z|rF )

dz
+
√
2τ−1

L ξt, (S6)
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where τL is the time constant controlling the sampling speed and ξt is a standard Gaussian white noise
with zero mean and unit variance. Importantly, to sample the posterior, i.e., where the equilibrium
distribution of z generated by the above dynamics is the same as the posterior, the drift and diffusion
coefficients in the above equation should govern by the same τL. Note that τL only changes the speed
of sampling, how long the zt goes into equilibrium, but won’t change the equilibrium distribution.

A characteristic of Langevin sampling is the cross correlation function of samples exponentially
decaying with time,

ρ(∆t) = exp(∆t/τL), (S7)

which is used in Fig. 2F in the main text.

2.3 Hamiltonian sampling

Hamiltonian Monte Carlo is a Markov Chain Monte Carlo (MCMC) machine learning method that
uses gradient information to draw samples from a target distribution[1, 2]. The Hamiltonian function
H(z, y) is defined as the sum of potential energy U(z), a function of the state z, and the kinetic
energy with momentum K(y), a function of the momentum y,

H(z, y) = U(z) +K(y) (S8)

To utilize Hamiltonian sampling to sample the distribution p(z) (e.g., posterior), the potential energy
U(z) is defined as,

U(z) = − ln p(z). (S9)

There is freedom of defining the kinetic energy K(y) and a usual choice is,

K(y) =
1

2
yTM−1y. (S10)

Hamiltonian dynamics (without noise) is

ż =
∂H(z, y)

∂y
=

∂K(y)

∂y
= M−1y;

ẏ = −∂H(z, y)

∂z
= −∂U(z)

∂z
≜ −∇U(z).

(S11)

It can be proved that in the above Hamiltonian dynamics the Hamiltonian function H(z, y) remains
unchanged over time. Intuitively, using an analogy from classic mechanics, imagine a ball rolling
down a hill. In the conservation of energy principle dictating Hamiltonian mechanics, as the ball rolls
down the hill, it loses potential energy, but gains kinetic energy. This kinetic energy in the form of
momentum, allows the ball to roll up the next hill.

To utilize the Hamiltonian dynamics to draw random samples from the posterior, a common strategy
is injecting noise into the y dynamics,

ż = M−1y;

ẏ = −∇U(z) + ξt.
(S12)

In the present study, we consider a Hamiltonian sampling with friction, because it can be mapped to
the proposed circuit with a diversity of interneurons [2, 3],

τz ż = M−1y;

τy ẏ = −∇U(z)− βM−1y + (2βτy)
1/2ηt

(S13)

where β represents the friction strength which helps decrease the influence of noise on the system
and M is the inertia of the system. The above Hamiltonian dynamics are equivalent to second-order
Langevin dynamics. Intuitively, it corresponds to friction forces existing when a ball rolls down a
hill, e.g., friction from the grass or dirt under the ball, which prevents it from continuing up the hill.
The friction effectively lowers the energy function H(z, y), thereby mitigating the effect of noise [2].
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2.4 The mixture of Langevin and Hamiltonian sampling

We present the math details linking the proposed circuit model with sampling-based Bayesian
inference. Based on the functional form of the bump position dynamics in the proposed circuit model,
we hypothesize the proposed circuit model performs a mixed sampling of Langevin sampling and the
Hamlitonian sampling. To explore such a possibility, we rewrite the Hamiltonian sampling dynamics
below.

ż = τ−1
z y

τy ẏ = −βy +∇ ln p(z|rF ) + (2βτz)
1/2ηt.

(S14)

Meanwhile, the Langevin sampling dynamics of the posterior distribution is,

ż = τ−1
L ∇ ln p(z|rF ) + (τL/2)

−1/2ξt, (S15)

where τL is the time constant of Langevin sampling controlling the convergence speed. It can be
verified that both Langevin and Hamiltonian sampling dynamics converge to the same posterior
distribution. Then we mix both sampling dynamics together, i.e., summing up the z dynamics in the
Hamiltonian sampling (Eq. S14) and Langevin sampling (Eq. S15),

ż = τ−1
z y + τ−1

L ∇ ln p(z|rF ) + (τL/2)
−1/2ξt,

τy ẏ = −βy +∇ ln p(z|rF ) + (2βτz)
1/2ηt

(S16)

Substituting the gradient of the log posterior into the above equation, i.e., ∇ ln p(z|rF ) = Λ(µz − z)
(Eqs. 6 - 8),

ż = τ−1
z y + τ−1

L Λ(µz − z) + (τL/2)
−1/2ξt,

τy ẏ = −βy + Λ(µz − z) + (2βτz)
1/2ηt

(S17)

2.5 Computing the equilibrium distribution via Fokker-Planck approach

Hamiltonian sampling

Here we provide an analysis showing that Hamiltonian sampling can sample the desired distribution
p(z) (with p(z) as the equilibrium distribution), which is defined as,

π(z, y) = exp[−H(z, y)] = exp[−U(z)−K(y)] = exp[ln p(z)−K(y)] (S18)

Reorganizing Eq. (S13),

ż = τ−1
z y

ẏ = −τ−1
y βy − τ−1

y ∇U(z) + τ−1
y (2βτz)

1/2ηt,

where −∇U(z) = ∇ ln p(z), To convert into matrix notation, we define the vector Z = (z, y)⊤.

d

dt

(
z
y

)
= −

(
0 −τ−1

z

τ−1
y τ−1

y β

)(
∇U(z)

y

)
+

√
2

(
0 0
0 τ−1

y (τzβ)
1/2

)
ηt.

In the Hamiltonian sampling, we have the freedom to define the kinetic energy K(y). To facilitate
the calculation of equilibrium distribution, we reorganize the above equation as

d

dt

(
z
y

)
= −

(
0 −τ−1

y

τ−1
y βτz/τ

2
y

)(
∇U(z)
τyy/τz

)
+

√
2

(
0 0
0 (βτz)

1/2/τy

)
ηt (S19)

where the kinetic energy becomes K(y) = −τyy
2/(2τz). The time evolution of the distribution

Z = (z, y)⊤ in the above dynamics is governed by the following Fokker-Planck equation [4, 2],

∂tp(Z, t) = ∇⊤M [p(Z, t)∇H(Z)] +∇⊤[D∇p(Z, t)]

where H(Z) is the Hamiltonian defined in Eq. (S8), and the matrices are defined as

D =

(
0 0
0 βτz/τ

2
y

)
, M =

(
0 −τ−1

y

τ−1
y βτz/τ

2
y

)
(S20)
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Further, decomposing the matrix M as the sum of the matrix D and an anti-symmetric matrix G,

M =

(
0 −τ−1

y

τ−1
y 0

)
︸ ︷︷ ︸

G

+

(
0 0
0 βτz/τ

2
y

)
︸ ︷︷ ︸

D

Then, the Fokker-Planck equation can be converted into,

∂tpt(Z) = ∇⊤(D +G)[∇H(Z)pt(Z)] +∇⊤[D∇∂pt(Z)]

Since G is anti-symmetric, it can be checked that

∇⊤[G∇pt(Z)] = τ−1
y [−∂z∂ypt(z, y) + ∂z∂ypt(z, y)] = 0.

Therefore, we have,

∇⊤[D∇∂tp(Z)] = ∇⊤[(D +G)∇∂pt(Z)].

Substituting the above relation into the Fokker-Planck equation,

∂tpt(Z) = ∇⊤(D +G)[∇H(Z)pt(Z) +∇∂pt(Z)].

Therefore, the equilibrium distribution should satisfy

∇H(Z)pt(Z) +∇∂pt(Z) = 0.

It can be verified that the p(Z) ∝ exp[−H(Z)] is indeed the equilibrium distribution.

The mixture of Langevin and Hamiltonian sampling

For the mixed sampling of Langevin and Hamiltonian dynamics (Eq. S16), it can be converted into
the below matrix form,

d

dt

(
z
y

)
= −

(
τ−1
L −τ−1

y

τ−1
y βτz/τ

2
y

)(
∇U(z)

τy
τz
y

)
+

√
2

(
τ
−1/2
L 0
0 (βτz)

1/2/τy

)
ηt (S21)

where the drift term matrix can be decomposed as(
τ−1
L −τ−1

y

τ−1
y βτz/τ

2
y

)
︸ ︷︷ ︸

M

=

(
0 −τ−1

y

τ−1
y 0

)
︸ ︷︷ ︸

G

+

(
τ−1
L 0
0 βτz/τ

2
y

)
︸ ︷︷ ︸

D′

Then its corresponding Fokker-Plank equation is,

∂tpt(Z) = ∇⊤(D′ +G)[∇H(Z)pt(Z)] +∇⊤[D′∇∂tp(Z)] (S22)

Redo the similar calculation as above, we can check that p(Z) ∝ exp[−H(Z)] is still the equilibrium
distribution. That is, the mixture of Langevin and Hamiltonian sampling dynamics doesn’t alter the
equilibrium distribution.

3 Theoretical analysis of the nonlinear circuit dynamics

3.1 Verifying the Gaussian ansatz of equilibrium attractor states

We present the math in verifying the Gaussian anstaz of population responses in the proposed network
model (Eq. 9). To ease reading, we copy the network dynamics (Eq. 1 and Eq. 5) below.

τ
∂uE(θ, t)

∂t
= −uE(θ, t) + ρ

∑
X=E,F,S

(WEX ∗ rX)(θ, t) +
√
τFE [uE(θ, t)]+ξ(θ, t),

τ
∂uS(θ, t)

∂t
= −uS(θ, t) + ρ

∑
X=E,F

(WSX ∗ rX)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+,

(S23)
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For an equilibrium attractor state, the mean responses in the network satisfy,

⟨uE(θ)⟩ = ρ
∑

X=E,F,S

(WEX · ⟨rX⟩)(θ),

⟨uS(θ)⟩ = ρ
∑

X=E,F

(WSX · ⟨rX⟩)(θ),
(S24)

where ⟨·⟩ denotes the average in the equilibrium.

We propose the following Gaussian ansatz for synaptic input of E neurons as in Eq. (9),

⟨uE(θ)⟩ = UE exp

[
− (θ − zE)

2

4a2E

]
. (S25)

Next we will verify the above Gausisan ansatz works for the proposed recurrent circuit dynamics.
The ansatz of the E neurons’ firing rates can be obtained by substituting ⟨UE(θ)⟩ into divisive
normalization (Eq. 4),

⟨rE(θ)⟩ =
[U2

E(θ, t)]
2

1 + ρwEP

∫
[UE(θ, t)]2dθ

=
U2
E

1 + ρwEPU2
E

√
2πaE︸ ︷︷ ︸

RE

exp

[
− (θ − zE)

2

2a2E

]
. (S26)

Next, we substitute the above Gaussian ansatz into the stationary state of the circuit dynamics (S24).
We consider the connection width between E and SOM neuronal population to be different, aE and
aS , respectively (Table S1). The neural population input from the neuronal population of type Y to
the one with type X in the circuit model can generally be calculated as,

⟨IXY (θ)⟩ = ρWXY ∗ ⟨rY (θ)⟩

= ρ

∫
wXY (θ

′ − θ)⟨rY (θ)⟩dθ′

=
ρwXY RY√
2πaXY

∫
exp

[
− (θ′ − θ)2

2a2XY

− (θ′ − zY )
2

2a2Y

]
dθ′

=
ρwXY RY√
2πaXY

∫
exp

−
(
θ′ − a2

Y θ+a2
XY zY

a2
XY +a2

Y

)2
2

a2
XY a2

Y

a2
XY +a2

Y

− (θ − zY )
2

2(a2XY + a2Y )

 dθ′,

= ρwXY RY
aY√

a2XY + a2Y
exp

[
− (θ − zY )

2

2(a2XY + a2Y )

]
.

(S27)

Specifically, plugging in the Gaussian ansatz of E population firing rate (Eq. S26), the recurrent
connections leads to the following input,

⟨IEE(θ)⟩ = ρWEE ∗ ⟨rE(θ)⟩ =
ρ√
2
wEERE exp

[
− (θ − zE)

2

4a2E

]
. (S28)

Similarly, the feedforward input term is,

⟨IEF (θ)⟩ = ρWEF ∗ ⟨rF (θ)⟩ =
ρ√
2
wEFRF exp

[
− (θ − µE)

2

4a2E

]
. (S29)

Repeat the process for the E to SOM input,

⟨ISE(θ)⟩ = ρWSE ∗ ⟨rE(θ)⟩ = ρwSERE
aE√

a2SE + a2E
exp

[
− (θ − zE)

2

2(a2SE + a2E)

]
. (S30)

We have analytically calculated the outputs from E neurons. We next calculate the response of SOM
neurons. First, we assume SOM neurons receive feedforward inputs, with uS being ISE + ISF ,
where we assume the two inputs have the same width. Then, we can derive rS from uS . Substituting
the ansatz for the SOM synaptic input,

⟨uS(θ)⟩ = ISE(θ) + ISF (θ) ≜ US exp

[
− (θ − zS)

2

4a2S

]
. (S31)
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where 2a2S = a2SE + a2E . We can then derive the SOM firing rate,

⟨rS(θ)⟩ = gS [US(θ, t)] = gSUS︸ ︷︷ ︸
RS

exp

[
− (θ − zS)

2

4a2S

]
. (S32)

Eventually, the inhibitory inputs from SOM to E neurons are calculated as,

⟨IES(θ)⟩ = ρWES ∗ ⟨rS(θ)⟩ = ρwESRS
aS√

a2ES + a2S
exp

[
− (θ − zS)

2

2(a2ES + a2S)

]
, (S33)

The feedforward input into SOM is,

⟨ISF (θ)⟩ = ρWSF ∗ ⟨rF (θ)⟩ =
ρ√
2
wSFRF exp

[
− (θ − µS)

2

4a2S

]
. (S34)

To validate the Gaussian ansatz, we need the width of ⟨IES(θ)⟩ (Eq. S33) is the same as the width of
the Gaussian ansatz (Eq. S25), which constrains the connection widths from (S33) and (S31).

2a2E = a2ES + a2S , (S35)

Recalling that 2a2S = a2SE + a2E , and combining with the above equation,

a2E = a2ES + a2SE . (S36)

which constrains the connection width between E and SOM neurons.

By appropriately setting the connection width suggested by the above equation, and substituting all
above Gaussian functions of synaptic inputs, firing rates into the circuit dynamics (Eqs. 1 and 5),

UE exp

[
− (θ − zE)

2

4a2E

]
=

ρ√
2

[
wEEREe

−(θ−zE)2/4a2
E + wEFRF e

−(θ−µz)
2/4a2

E

]
+ ρwESRS

aS√
2aE

exp

[
− (θ − zS)

2

4a2E

]
.

US exp

[
− (θ − zS)

2

4a2S

]
= ρwSERE

aE√
a2SE + a2E

exp

[
− (θ − zE)

2

2(a2SE + a2E)

]
,

(S37)

Since the above equations are summations of Gaussian functions, it can be checked that when the
positions of Gaussian functions are the same, i.e., zE = zS = µz , the sum of two Gaussian functions
will also be a Gaussian function. Therefore we complete our verification about the Gaussian ansatz
of equilibrium attractor state.

3.2 Critical Recurrent Weight

We want to scale all the connection strength weights by the smallest recurrent connection strength
where the network can hold persistent activity in the absence of feedforward input. Since all
exponential functions in the Eq. (S37) can be canceled (the mean of Gaussian functions will be the
same in equilibrium), we have

UE =
ρ√
2

[
wEERE +

aS
aE

wESRS

]
,

US =
ρ√
2

aE
aS

wSERE .
(S38)

From Eq. (S32), we know RS = gSUS . Combining this result with Eq. (S38),

UE =
ρ√
2
RE

[
wEE +

ρ√
2
wESgSwSE

]
(S39)

Recalling the definition of E population firing rate height defined in Eq. (S26)

RE =
U2
E

1 +
√
2πkρaEU2

E

.
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Substituting the above Eq. into Eq. (S39)

UE =
ρU2

E√
2 + 2

√
πkρaEU2

E

[
wEE +

ρ√
2
wESwSEgS

]
.

The above equation can be converted into a quadratic equation of UE ,

2
√
πkρaEU

2
E − ρUE

[
wEE +

ρ√
2
wESwSEgS

]
︸ ︷︷ ︸

wc

+
√
2 = 0. (S40)

with solution

UE =
ρwc ±

√
ρ2w2

c − 8
√
2πkρaE

4
√
πkρaE

(S41)

To have non-zero persistent activity without feedforward input, there must exist a value of wc where
the inside of the square root function is positive. Therefore, the smallest wc for holding the persistent
activity is,

w2
c >

8
√
2πkaE
ρ

3.3 The circuit dynamics on the stimulus feature manifold

Previous theoretical studies on the recurrent circuit dynamics have analytically computed the eigen-
vectors corresponding to the stimulus feature manifold in the neuronal population X [5, 6],

ϕ1(θ|zX) =
d⟨UX |θ⟩
dzX

∝ (θ − zX) exp

[
− (θ − zX)2

4a2X

]
(S42)

where the above eigenvector has the largest eigenvalue, denoting the circuit dynamics is dominated
by the changes along the stimulus feature manifold.

To complete the projection of the high dimensional network dynamics onto the manifold, we first
substitute the Gaussian ansatz into the circuit dynamics (Eq. 1).

τUE
d

dt
exp

[
− (θ − zE)

2

4a2E

]
= τUE

θ − zE
2a2E

dzE
dt

exp

[
− (θ − zE)

2

4a2E

]
,

=

(
−UE +

ρwEERE√
2

)
exp

[
− (θ − zE)

2

4a2E

]
+

ρwESRSaS√
2aE

exp

[
− (θ − zS)

2

4a2E

]
+ wEFREF exp

[
− (θ − µz)

2

4a2E

]
+
√
τFEUE exp

[
− (θ − zE)

2

8a2E

]
ξ(θ, t)

(S43)

Projecting both sides onto eigenvector ϕ1(θ|zE),

τUE
dzE
dt

=
ρ√
2
wESRS

aS
aE

(zS − zE) exp

[
− (zS − zE)

2

8a2E

]
,

+
ρ√
2
wEFRF (µz − zE) exp

[
− (µz − zE)

2

8a2E

]
+

√
8aEFE

3
√
3π

√
τLUEηt

(S44)

The process is repeated for the SOM neurons network, starting with substituting ansatz into network
dynamics and simplifying.

τUS
d

dt
exp

[
− (θ − zS)

2

4a2S

]
= τUS

θ − zS
2a2S

dzS
dt

exp

[
− (θ − zS)

2

4a2S

]
,

= −US exp

[
− (θ − zS)

2

4a2S

]
+ wSEUE exp

[
− (θ − zS)

2

4a2S

]
+

ρ√
2
wSFRF exp

[
− (θ − µz)

2

4a2S

]
.

(S45)
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Projecting both sides onto the eigenvector ϕ(θ|zS) = (θ − zS)e
−(θ−zS)2/4a2

S ,

τUS
dzS
dt

=
ρ√
2
wSERE

aE
aS

(zE − zS) exp

[
− (zE − zS)

2

8a2S

]
+ wSFRF (µz − zS) exp

[
(µz − zS)

2

8a2S

]
(S46)

From here, we assume the difference between neuronal populations’ positions is small enough
compared to the connection width a, i.e., |zE − zS | and |µz − zE | << 4aX . In this case, the
projected circuit dynamics can be simplified by ignoring exponential terms in Eqs. (S44) and (S46),

τUE
dzE
dt

=
ρ√
2

[
wESRS

aS
aE

(zS − zE) + wEFRF (µz − zE)

]
+

√
8FEaE

3
√
3π

√
τUEηt

τUS
dzS
dt

=
ρ√
2

[
aE
aS

wSERE(zE − zS) + wSFRF (µz − zS)

] (S47)

To simplify notations, we define

τX = τUX , gXY =
ρaY√
2aX

wXY RY , σ2
E =

8aFE

3
√
3π

, (S48)

and then the Eq. (S47) is simplified into

τE żE = gES(zS − zE) + gEF (µz − zE) + σE
√
τEηt,

τS żS = gSE(zE − zS) + gSF (µz − zS),
(S49)

which are the bump position dynamics of Eqs. (11) and (12) in the main text.

4 Bayesian sampling in the recurrent circuit dynamics

In this section, we compare the 1D and 2D dynamics from (S49) and (S83) to the theoretical mixed
sampling in Sec. 2.4.

4.1 Bridging the circuit dynamics with mixed sampling

We see the z dynamics in the mixed sampling (Eq. S17) resembles the zE dynamics in the proposed
circuit model (Eq. S49). We next find the auxiliary variable y in the proposed circuit. We firstly
decompose the term from feedforward input in the zE dynamics into two parts,

τE żE = [gES(zS − zE) + (1− αL)gEF (µz − zE)] + [αLgEF (µz − zE) + σE
√
τEηt],

= yS + [αLgEF (µz − zE) + σE
√
τEηt],

(S50)

where αL ∈ [0, 1] denotes the proportion of feedforward input coming from the Langevin sampling
dynamics. Then the yS is similar to the auxiliary variable in the mixed sampling dynamics (Eq. S17).
To derive the dynamics of yS , we take the derivative of yS ,

ẏS = gES(żS − żE)− (1− αL)gEF żE . (S51)

Based on Eq. (S49), we have

żE − żS =
(
−τ−1

E gES − τ−1
S gSE , τ

−1
E gEF ,−τ−1

S gSF

)(zE − zS
µz − zE
µz − zS

)
+ σE

√
τ−1
E ηt

żE =
(
−τ−1

E gES , τ
−1
E gEF , 0

)(zE − zS
µz − zE
µz − zS

)
+ σE

√
τ−1
E ηt

Substitute the above equations into Eq. (S51), the yS dynamics can be converted into,

ẏS =


gES(τ

−1
E gES + τ−1

S gSE) + (1− αL)gEF τ
−1
E gES

−τ−1
E gEF [gES + (1− αL)gEF ]

τ−1
S gSF gES

σE(τE)
−1/2[gES − (1− αL)gEF ]


⊤zE − zS

µz − zE
µz − zS

ηt

 (S52)
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To derive a yS dynamics with a decaying term of yS itself, we utilize that (based on the definition of
yS , Eq. S50),

(zE − zS) = −g−1
ES [yS − (1− αL)gEF (µz − zE)]

Substituting it back to Eq. (S52), we arrive at a yS dynamics similar to the one defined in Hamiltonian
sampling (Eq. S17),

ẏS =


τ−1
E [gES + (1− αL)gEF ] + τ−1

S gSE

−αLτ
−1
E gEF [gES − (1− αL)gEF ] + τ−1

S gSE(1− αL)gEF

τ−1
S gSF gES

σE(τE)
−1/2[gES − (1− αL)gEF ]


⊤ −yS

µz − zE
µz − zS

ηt



≡ (βy, βE , βS , σy)

 −yS
µz − zE
µz − zS

ηt

 .

(S53)

Combining with the zE dynamics (Eq. S50) together, the bump position dynamics of E and SOM
neurons in the proposed circuit is reorganized into a form similar to the mixed sampling (Eq. S17)

E neurons : żE = τ−1
E yS + αLτ

−1
E gEF (µz − zE) + σEτ

−1/2
E ηt (S54)

Auxiliary : ẏS = −βyyS + βE(µz − zE) + βS(µz − zS) + σyηt. (S55)

To help readers compare the circuit dynamics on the stimulus feature manifold with the mixed
sampling dynamics, we copy the Eq. (S17) in below

Sample z : ż = τ−1
z y + τ−1

L Λ(µz − z) + (τL/2)
−1/2ξt, (S56)

Auxiliary : τy ẏ = −βy + Λ(µz − z) + (2βτz)
1/2ηt (S57)

4.2 Conditions of Bayesian sampling in the circuit

The circuit weights must be set appropriately to sample from the posterior. Now we investigate the
conditions for realizing Bayesian sampling in the proposed circuit model.

Langevin sampling part

To implement the Langevin sampling part in the zE dynamics (Eq. S54, last two terms), we need

αLτ
−1
E gEF

Λ
=

σ2
Eτ

−1
E

2
⇒ σ2

EΛ = 2αLgEF . (S58)

Substituting the expression of gEF , σ2
E (Eq. S48), and Λ (Eq. S5), it yields a constraint on the

feedforward weight,

wEF =

√
πσ2

E

aαL
=

(
2√
3

)3
FE

αL
, (S59)

which gives rise to the Eq. (19) in the main text.

Hamiltonian sampling part

Comparing Eqs. (S54 - S55) and Eqs. (S56 - S57), we can derive the conditions for realizing
Hamiltonian sampling in the circuit,

τz = τE ; (S60a)
βS = 0; (S60b)

τy
1

=
β

βy
=

Λ

βE
=

(2βτz)
1/2

σy
, (S60c)
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which is the same as the Eq. (20) in the main text. Combining the above three equations could yield
the following condition,

τ2y =
2βτz
σ2
y

=
2τyβyτz

σ2
y

⇔ τy =
2βyτz
σ2
y

=
Λ

βE
⇔ Λσ2

y = 2τEβyβE . (S61)

Substituting the detailed expression of coefficients σy , βy , and βE (Eq. S53) in the above Eq. (S61),

Λσ2
Eτ

−1
E [gES − (1− αL)gEF ]

2 = 2τE

[
τ−1
E [gES + (1− αL)gEF ] + τ−1

S gSE

]
× gEF

[
− αLτ

−1
E [gES − (1− αL)gEF ] + τ−1

S gSE(1− αL)
]

Utilizing the relation (Eq. S58) to cancel Λσ2
E with gEF at two sides in the above equation,

αLτ
−2
E [gES − (1− αL)gEF ]

2 =
[
τ−1
E [gES + (1− αL)gEF ] + τ−1

S gSE

]
×
[
− αLτ

−1
E [gES − (1− αL)gEF ] + τ−1

S gSE(1− αL)
]

To simplify notations in the above equation, we define

hE ≡ τ−1
E [gES − (1− αL)gEF ]; hS ≡ τ−1

S gSE . (S62)
which simplified the above equation into,

αLh
2
E = (hE + hS)[−αLhE + (1− αL)hS ]. (S63)

Reorganizing the above equation into a quadratic equation of hE ,
2αL · h2

E + (2αL − 1)hShE + (αL − 1)h2
S = 0 (S64)

Then the root of hE is,

hE = hS
(1− 2αL)±

√
1 + 4αL − 4α2

L

4αL
≡ G(αL) · hS (S65)

Substituting the expressions of hE and hS (Eq. S62) back into the above equation,

τ−1
E [gES − (1− αL)gEF ] = G(αL)τ

−1
S gSE . (S66)

Further, substituting the coefficients in Eq. (S48) we eventually have(
U−1
E RS

)
· wES −

[
(1− αL)U

−1
E RF

]
· wEF =

[
G(αL)U

−1
S RE

]
· wSE (S67)

which is the Eq. (21) in the main text.

4.3 Evaluating sampling performance by eigenvalue analysis

We calculate the eigenvalues of the circuit dynamics on the stimulus feature manifold (Eq. S49),
in order to analyze the circuit sampling performance. Since our derivation found the Hamiltonian
sampling SOM neurons don’t receive feedforward input, i.e., wSF = 0, we set gSF = 0 in Eq. S49)
and rearrange it into the matrix form,(

żE
żS

)
=−

(
τ−1
E (gES + gEF ) −τ−1

E gES

−τ−1
S gSE τ−1

S gSE

)
︸ ︷︷ ︸

M

,

+

(
τ−1
E gEF

τ−1
S gSF

)
+

(
µz + σEτ

−1/2
E ηt

0

)
︸ ︷︷ ︸

µ

(S68)

The eigenvalue with the smallest real-part limits the sampling speed, which is calculated as

λ− =
[
tr(M)−

√
tr(M)2 − 4 det(M)

]
/2 (S69)

with the trace tr(M)

tr(M) = τ−1
E (gES + gEF ) + τ−1

S gSE , (S70)
and determinant det(M)

det(M) = τ−1
E τ−1

S gSEgEF . (S71)

We next analyze how PV and SOM neurons affect the sampling performance respectively.
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PV neurons

We first consider the reduced circuit model without SOM neurons (setting gES = gSE = 0), and
then the dynamics of zE and zS are disconnected. The zE dynamics reduces to

żE = τ−1
E gEF (µz − zE) + σE

√
τ−1
E ξ,

= −τ−1
E gEF zE +

[
τ−1
E gEFµz + σE

√
τ−1
E ξ

]
,

(S72)

whose eigenvalue is

λ = τ−1
E gEF =

ρRF√
2τ

1

UE(wEP )
. (S73)

The UE refers to the peak value of the population synaptic input uE(θ), and is a decreasing function
with the inhibitory strength from PV to E neurons wEP (Eq. 4). Therefore, larger inhibition from
PV to E neurons will increase the eigenvalue of the zE sampling dynamics, and hence increase the
sampling speed, i.e., the zE dynamics converges faster (Eq. S72.

SOM neurons

We next investigate how the inhibitory feedback from SOM to E neurons will affect the sampling
performance. To obtain theoretical insight, we firstly consider a simple case that the wES is small
enough and its increment doesn’t cause a significant change in population response height, i.e., UX

and RX , otherwise τX ∝ τUX in Eq. (S69) will change. In the simplified case, increasing wES will
only change the gES occurring in the tr(M) in the slowest eigenvalue λ−. In this simple case, we
find increasing gES may non-monotonically change the real part of λ−, depending on whether λ−
has an imaginary part or not.

a). Pure real λ−.
For pure real λ−, it means the gES ∝ wES is not large enough and in the weak regime of wES . In
this regime, Re(λ−) increases with stronger (more negative) wES .

b). λ− has an imaginary part .
Increasing wES will lead to the imaginary part of λ−, and the real part of λ− is,

Re(λ−) = tr(M) = τ−1
E (gES + gEF ) + τ−1

S gSE , (S74)
which will decrease with stronger (more negative) wES .

Figs. 4C plots the real and imaginary parts of λ− with wES . We see the Re(λ−) increases with wES

if λ− doesn’t have an imaginary part. However, when wES is large enough to induce imaginary λ−,
both the Re(λ−) and Im(λ−) decay.

5 Bivariate stimulus posterior sampling in coupled recurrent circuit

We extend our recurrent circuit model above to sample bivariate stimulus posterior. We consider two
coupled recurrent circuits, with each the same as Fig. 2C. Each circuit m will receive a feedforward
input Im generated by latent stimulus sm, and will sample the stimulus sm. For simplicity, we
consider only E neurons across circuits to be coupled together. For coupled networks,

τ
∂uE

m(θ, t)

∂t
= −uE

m(θ, t) + ρ
∑
n

(WE
mn ∗ rEn )(θ, t) + ρWES

m ∗ rSm,

+ ρWEF
m ∗ rFm +

√
τFE

m [uE
m(θ, t)]ξm(θ, t)

τ
∂uS

m(θ, t)

∂t
= −uS

m(θ, t) + ρ
∑

X=E,F

(WSX
m ∗ rX)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+,

where uEm(θ, t) and rEm(θ, t) represent the synaptic input and firing rate, respectively of each each
network receiving independent input, zXm and has its own population of SOM interneurons. When
m = n, WEmm is the recurrent connection kernel within the same network; whereas m ̸= n, WEmn

is the connection kernel between neurons from network n to network m. In the case of the coupled
network, m = 1, and n = 2 since there are only two networks.

14



5.1 The coupled circuit dynamics on the stimulus manifold

As described in Sec. 3.3 and the main text, the eigenvector with the largest eigenvalue dominating the
circuit dynamics along the stimulus feature manifold of the neuronal population is,

ϕ(θ|zXm) ∝ d⟨UX
m |θ⟩

dzXm
= (θ − zXm) exp− (θ − zXm)2

4(aX)2
(S75)

Projecting the circuit dynamics onto the position mode(eigenfunction defined in (S75)), we get the
bump position dynamics which has an extra term compared with the Eq. (S47)

τUE
1

dzE1
dt

=
ρ√
2

[
wEE

12 RE
2 (z

E
2 − zE1 ) + wES

11 RS
1

aS

aE
(zS1 − zE1 ) + wEFRF

1 (µ1 − zE1 )
]
,

+

√
8aEFE

3
√
3π

√
τLUE

1 ξE1 (θ, t), (S76)

where the 1st term on the right-hand side denotes the effect of the input from another circuit.

Since the SOM populations are not coupled together, the substitution and projection onto the eigen-
vector remains to same as (S46).

τEU
E
1

dzE1
dt

=
ρ√
2

[
wEE

12 RE
2 (z

E
2 − zE1 ) + wES

1 RS
1

aS

aE
(zS1 − zE1 ) + wEF

1 RF
1 (µ1 − zE1 )

]
+

√
8FE

1 aE

3
√
3π

√
τUE

1 ηt

τSU
S
1

dzS1
dt

=
ρ√
2

[
wSE

1 RE
1

aE

aS
(zE1 − zS1 ) + wSF

1 RF
1 (µ1 − zS1 )

]
(S77)

We define the following notations,

τXm = τUX
m , gXY

mn =
ρaY√
2aX

wXY
mn RY

m, σ2
E =

8aEFE

3
√
3π

, (S78)

We simplify (S77) as,

τE1 żE1 = gEE
12 (zE2 − zE1 ) + gES

11 (zS1 − zE1 ) + gEF
11 (µ1 − zE1 ) + σE

√
τE1 ξt

τS1 ż
S
1 = gSE

11 (zE1 − zS1 ) + gSF
11 (µ1 − zS1 ). (S79)

By changing the subscripts denoting the circuit index, we could obtain the bump position dynamics
for circuit 2. Combining the position dynamics in both circuits, we can denote the dynamics by using
matrix form,

żE = (DE
τ )

−1
[
− (GEE +DEF )zE +DEFµ+DES(zS − zE)

]
+ σE(D

E
τ )

−1/2ξt

żS = (DS
τ )

−1
[
DSE(zE − zS) +DSF (µ− zS)

]
, (S80)

where

zE = (zE1 , zE2 ), zS = (zS1 , z
S
2 ), µ = (µ1, µ2). (S81)

GEE =

(
gEE
12 −gEE

12

−gEE
21 gEE

21

)
, DX

τ =

(
τX1 0
0 τX1

)
, DXY =

(
gXY
11 0
0 gXY

22

)
, X, Y ∈ {E,S, F}

(S82)
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5.2 Identifying the bivariate stimulus prior

To investigate the stimulus prior stored in the coupled circuits, we consider a simple case that there
are no SOM neurons in both circuits. Here we assume the SOM will not change the equilibrium
distribution but only speed up sampling, as a conclusion from the sampling in a single recurrent
circuit. In this case, the zE dynamics reduces to (setting DES = 0),

żE = (DE
τ )

−1
[
− (GEE +DEF )zE +DEFµ

]
+ σE(D

E
τ )

−1/2ξt (S83)
The drift term can be related to the gradient of posteriors, i.e.,

∇ ln p(z|rF ) = ∇ ln p(rF |z) +∇ ln p(z)

= DEF (µ− zE)−GEEzE
(S84)

Similar to the 1D case, we regard the DEF (µ−zE) as the gradient of the likelihood, i.e., ∇ ln p(rF |z)
Then the −GEEzE will be treated as the gradient of the prior, ∇ ln p(z). For simplicity, considering
the interaction strength of two circuits’ samples are symmetric, i.e., gEE

12 = gEE
21 ≡ Λs, then the prior

is

p(z1, z2) ∝ exp

(
−1

2
z⊤Λsz

)
= exp[−Λs(z1 − z2)

2/2], Λs = Λs

(
1 −1
−1 1

)
(S85)

We see the coupled circuits store an associative prior of two stimuli which stores the co-occurrence
probability of the two (Fig. 5C). Moreover, the marginal prior of each stimulus is still uniform.

6 Simulation details and model parameters

6.1 Network parameters and simulation

Table S1 includes typical parameters used in our network simulation. Each network includes
NE = 180 excitatory neurons, NS = 180 SOM interneurons, both of which are uniformly distributed
in the stimulus feature space z ∈ (−180◦, 180◦]. The neuronal density is ρ = N/wz where wz = 360
is the width for stimulus feature space. All other parameters can be found in Table S1.

In particular, we use the critical E-to-E recurrent weight wc to scale the weight in the circuit model.
wc is the minimal value of wEE for holding a non-zero population response without feedforward
input and the inhibition from SOM, and can be calculated by solving a non-zero UE when setting
RF = wES = 0 (see SI Sec. 3.2).

wc = 2
√
2(2π)1/4

√
kaρ ≈ 0.896. (S86)

Then, the feedforward input intensity is scaled by the peak value of E population synaptic input, Uc,
that is self-sustained by the E neurons with recurrent weight wc without receiving feedforward input
and SOM’s inhibition,

Uc =
wc

2
√
πka

(S87)

Changes to default parameters in Fig.5 are included in the Table S2. For specialized parameters in
Fig. S2 refer to Table S3.

The network dynamics were simulated using Eulers method and a time step of 0.01τ . The empirical
distribution of stimulus samples is estimated from running the model for 500τ , and the responses and
samples in the first 10τ are discarded to exclude the effect from non-equilibrium responses.

The circuit model was simulated on an Asus ROG Zephyrus laptop which has an i7 intel core and 32
RAM. Most simulations take 3.2 seconds. Parameter scans were run on a HPC 512 GB RAM
computing cluster using 36 parallel jobs taking approximately six minutes.

6.2 Read out stimulus samples from the population responses

We use a linear decoder called the population vector to read out the instantaneous stimulus sample,
zE , from the E neuron population responses,

zE(t) =

∑
j rE(θj , t)θj∑
j rE(θj , t)

(S88)
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Table S1: Default network parameters
Parameter Variable Value
Time constant τ 1
Feedforward weight wEF 1.3wc

E to SOM weight wSE 0.5wc

E to E weight wEE 0.5wc

PV to E weight wPV 0.0005
SOM to E weight wES 0.6wc

Connection width aE 40◦

Inhibitory gain gs 10
Feedforward input intensity RF 0.8Uc

Feedforward input location z 0
Fano factor of injected variability FE 0.5

Table S2: Fig. 5 network parameters
Parameter Variable Value
Feedforward weight wEF 1.7wc

E to SOM weight wSE 0.5wc

E to E weight wEE 0.5wc

SOM to E weight wES 0.7wc

E1 to E2 weight w12 = w21 0.2wc

Connection width aE 40◦

SOM connection width aS 37.4◦

E to SOM connection width aSE 34.6◦

SOM to E connection width aES 20◦

SOM Time constant τS 5τE

Then the sampling distribution generated by the circuit model is defined as the empirical distribution
of the stimulus samples

p(z) =
∑
t

δ(z − zE(t)) (S89)

The sample zS is read out similarly from SOM neurons, which contributes to the auxiliary variable y
in the Hamiltonian sampling (Eq. 17).

6.3 Power spectrum analysis

For the power spectrum analysis, the local field potential (LFP) signals can be approximated as the
sum of the inhibitory or excitatory synaptic currents. Specifically, we use the sum of the synaptic
input from both the E and SOM networks,

LFP(t) =
∑
θ

uX(θ, t) (S90)

Then the LFP was bandpass filtered from 5 to 50 Hz with a Butterworth filter. The power spectral
density was estimated using the periodogram.

Table S3: Fig. S2 network parameters
Parameter Variable Value
E Time constant τE 1
Feedforward weight wEF 1.3wc

SOM Time constant τS 5τE
E to SOM weight wSE 0.5wc

E to E weight wEE 1.0wc

SOM to E weight wES 1.1wc
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6.4 Comparing the sampling distributions with posteriors

To determine whether the circuit model can sample the posterior, we calculate the KL divergence to
measure the discrepancy from the posterior p(z|rF ) to the circuit’s sampling distribution
p(z) =

∑
t δ(z − zE(t)),

DKL[p(z|rF )||p(z)] =
∫

p(z|rF ) ln
p(z|rF )
p(z)

dz (S91)

where the posterior (or the likelihood since the subjective circuit prior is uniform) is directly read out
from the feedforward input (Eq. 7). Since the posterior is a Gaussian distribution, we also
parameterize the empirical sampling distribution as a Gaussian, i.e., we numerically estimate the
mean and covariance of samples and then calculate the KL divergence.

6.5 Reproducing E neurons’ tuning curves from modulating interneurons

Mimicking the experiment measuring the E neurons’ tuning curves by perturbing interneurons[7], we
also perturb each type of interneurons in the circuit model individually and measure how these
perturbations change E neurons’ tuning curves. The experiments applied a full-field light to the same
type of neuron which can be approximately treated as the neurons of the same type receive the same
amount of perturbation [7]. Hence in our simulation, when perturbing one type of neurons, we apple
the same offset input to all neurons of that type.

Specifically, when we perturbed the SOM neurons,

τ
∂uS(x, t)

∂t
= −uS(x, t) + ρ

∑
X=E,F

(WSX ∗ rX)(θ, t) + IS ; (S92)

where IS is a constant input applied to every SOM neuron in the circuit model.

Similarly, for perturbing PV neurons, we add another offset input into the divisive normalization (Eq.
4),

rE(θ, t) =
[uE(θ, t)]

2
+

1 + ρwEP

∫
([uE(θ, t)]2+ + IP )dθ′

, (S93)

where IP is the perturbing input.

Then, with the existence of one of these offset inputs, we change the presented feedforward input
location z (Eq. 3) and measure the mean firing rate of an example E neuron.
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